How Deal with a Case of Anemia

Total Page:16

File Type:pdf, Size:1020Kb

How Deal with a Case of Anemia How deal with a case of Anemia What is anemia? Anemia is a medical condition in which the red blood cell count and hemoglobin is less than normal for age and sex . • Most common hematologic disorder by far • Almost always a secondary disorder What causes anemia? Any process that can disrupt the normal • life sppyan of a red blood cell may cause anemia. Normal life span of a red blood cell is typically around 120 days. Red blood cells are made in the bone marrow. Anemia is caused essentially through two • basic ppyathways. Anemia is either caused: 1-by a decrease in production of red blood cell or hemoglobin, or 2-by a loss or destruction of blood. • Classification of anemia There are two major approaches: the • "kinetic" approach which involves evaluating production, destruction and loss and the "morphologic" approach which groups anemia by red blood cell size. The morphologic approach uses a quickly available and cheap lab test as its starting point (the MCV and MCH). AdihidiAccording to thes indices ,anem ia can c liflassify to:- 1-microcytic hypochromic (low MCV and MCH) 2-Normocytic normochromic (normal MCV and MCH) 3- Macrocytic (high MCV) Microcytic anemia Is primarily a result of hemoglobin synthesis failure/insufficiency, which could be caused by several etiologies: - Heme synthesis defect -Iron deficiency anemia -Anemia of chronic disease (more commonly presenting as normocytic anemia) - Glo bin syn thes is de fec t -alpha-, and beta-thalassemia - HbE syndrome - HbC syndrome - and various other unstable hemoglobin diseases - Sideroblastic defect - Hereditary sideroblastic anemia - AididbltiiildiAcquired sideroblastic anemia, including ldtiitlead toxicity - Reversible sideroblastic anemia Macrocytic anemia Megaloblastic anemia the most common cause of macrocytic anemia, is due to a deficiency of either vitamin B12, folic acid (()or both). Pernicious anemia is caused by a lack of intrinsic factor Non Megaloblastic Macrocytic anemia -Chemotherapy - liver diseaseds - hypothyroidism - Alcohol - Pregnancy Normocytic anemia Normocytic anaemia occurs when the overall • hemoglobin levels are always decreased, but the red blood cell size (Mean corpuscular volume) remains normal. Causes include: - Acute blood loss - Anemia of chronic disease - Aplastic anemia (bone marrow failure) • - Hemolytic anemia Dimorphic anemia When two causes of anemia act simultaneously, e.g., macrocytic hypochromic, due to hookworm infestation leading to deficiency of both iron and vitamin B12 or folic acid or following a blood transfusion more than one abnormality of red cell indices may be seen. Evidence for multiple causes appears with an elevated RBC distribution width (RDW), which suggests a wider-than-normal range of red cell sizes. Anemia • History and Exam • Reticulocyte count • Blood film • MCV • Ferritin • WBC,,,p diff, platelets 1st Test RETICULOCYTE COUNT MCVlow/MCHlow Reticulocyte Normal/low High Hb. electrophoresis Thalassemia Other abnormal hemoglobin Normal/low SiSerum iron Low High Ferritin • Low Normal/high BM iron IDA ACD Sideroblastic anemia • MCV Normal/MCH normal Reticulocyte count 1-Low/normal BM morphology Normal Abnormal Hypoplastic Infiltration/fibrosis 2nd anemia Aplastic anemia leukemia -Inflammations metastases - renal disease myelobibrosis • -Liver disease Endocrine def. 2- Reticulocyte count high Acute blood loss hemolysis rather than Thalassemia MCV high Reticulocyte count High Norma/Low BM morphology Megoloblastic Non megaloblastic • Vit B12 def Alcohol Folate def Liver disease hypothyroidism MDS AIHA • Figure 1-3. Overview of anemia diagnostic work-up using WHO anemia definitions..
Recommended publications
  • Section 8: Hematology CHAPTER 47: ANEMIA
    Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited.
    [Show full text]
  • Hematopoiesis/RBC Disorders
    Neonatal Hematopoiesis and RBC Disorders Vandy Black, MD, MSc Pediatric Hematology June 2, 2016 Objectives • Review normal erytHropoiesis in tHe fetus and neonate and regulation of fetal hemoglobin • Outline tHe differential diagnosis of neonatal RBC disorders witH a focus on tHe clinical and laboratory findings • Discuss common presentations of intrinsic red cell disorders in neonates WhicH of tHe following infants is most likely to be diagnosed with a primary hematologic disorder (i.e. need ongoing follow-up in my office)? A. A full-term male with a Hb of 7.5 gm/dL at birth (MCV 108) B. A one week old witH a newborn screen tHat shows Hb FAS C. A full-term Caucasian male with a peak bilirubin of 21 mg/dL whose mom is AB+ D. A 26 week AA female wHose fatHer Has a history of G6PD deficiency RBC Disorders in tHe NICU • Anemia is a common finding in tHe NICU • Differential is broad • Hospitalized preterm infants receive more PRBC transfusions tHan any otHer patient group • >80% of ELBW infants receive at least one PRBC transfusion How RBC Disorders Present? • Anemia on a CBC – May be an expected or incidental finding • Abnormal RBC indices • Abnormal newborn screens • Hyperbilirubinemia • Screening because of family History What is Normal? CHristensen et al, Semin Perinatol 2009 What is Normal? CHristensen et al, Semin Perinatol 2009 Hemoglobin SwitcHing How to ApproacH Anemia • Are otHer cell lines involved? • What is tHe MCV? • What is tHe reticulocyte count? • What does tHe peripHeral blood smear sHow? Microcytic Anemia • Iron Deficiency – Iron supplementation for preterm infants • Thalassemia – Beta-thalassemia less likely in the neonatal period • Chronic Inflammation – Disorders of iron transport (e.g.
    [Show full text]
  • Simultaneous Pure Red Cell Aplasia and Auto-Immune Hemolytic Anemia in a Previously Healthy Infant
    Simultaneous Pure Red Cell Aplasia and Auto-immune Hemolytic Anemia in a Previously Healthy Infant Robert P. Sanders, MD July 16, 2002 Case Presentation Patient Z.H. • Previously Healthy 7 month old WM • Presented to local ER 6/30 with 1 wk of decreased activity and appetite, low grade temp, 2 day h/o pallor. • Noted to have severe anemia, transferred to LeBonheur • Review of Systems – ? Single episode of dark urine – 4 yo sister diagnosed with Fifth disease 1 wk prior to onset of symptoms, cousin later also diagnosed with Fifth disease – Otherwise negative ROS •PMH – Term, no complications – Normal Newborn Screen – Hospitalized 12/01 with RSV • Medications - None • Allergies - NKDA • FH - Both parents have Hepatitis C (pt negative) • SH - Lives with Mom, 4 yo sister • Development Normal Physical Exam • 37.2 167 33 84/19 9.3kg • Gen - Alert, pale, sl yellow skin tone, NAD •HEENT -No scleral icterus • CHEST - Clear • CV - RRR, II/VI SEM at LLSB • ABD - Soft, BS+, no HSM • SKIN - No Rash • NEURO - No Focal Deficits Labs •CBC – WBC 20,400 • 58% PMN 37% Lymph 4% Mono 1 % Eo – Hgb 3.4 • MCV 75 MCHC 38.0 MCH 28.4 – Platelets 409,000 • Retic 0.5% • Smear - Sl anisocytosis, Sl hypochromia, Mod microcytes, Sl toxic granulation • G6PD Assay 16.6 U/g Hb (nl 4.6-13.5) • DAT, Broad Spectrum Positive – IgG negative – C3b, C3d weakly positive • Chemistries – Total Bili 2.0 – Uric Acid 4.8 –LDH 949 • Urinalysis Negative, Urobilinogen 0.2 • Blood and Urine cultures negative What is your differential diagnosis? Differential Diagnosis • Transient Erythroblastopenia of Childhood • Diamond-Blackfan syndrome • Underlying red cell disorder with Parvovirus induced Transient Aplastic Crisis • Immunohemolytic anemia with reticulocytopenia Hospital Course • Admitted to ICU for observation, transferred to floor 7/1.
    [Show full text]
  • A Case of Hemolysis and Methemoglobinemia Following Amyl Nitrite Use in an Individual with G6PD Deficiency
    Available online at www.sciencedirect.com Journal of Acute Medicine 3 (2013) 23e25 www.e-jacme.com Case Report A case of hemolysis and methemoglobinemia following amyl nitrite use in an individual with G6PD deficiency Anselm Wong*, Zeff Koutsogiannis, Shaun Greene, Shona McIntyre Victorian Poisons Information Centre, Austin Hospital, Heidelberg 3084, Victoria, Australia Received 28 August 2012; accepted 26 December 2012 Available online 5 March 2013 Abstract A 34-year-old man presented feeling generally unwell with dark urine 3 days after inhaling amyl nitrite. His initial heart rate was 118/min, blood pressure 130/85 mmHg, O2 saturation 85% on 15 L/min oxygen, and Glasgow coma score 15. He was pale, with clear chest sounds on auscultation. His hemoglobin was 60 g/L, bilirubin 112 mM, and methemoglobin concentration 6.9% on an arterial blood gas. Amyl nitrite- induced hemolysis and methemoglobinemia were diagnosed. Methylene blue was not administered because of the relatively low methemo- globin concentration and the possibility of inducing further hemolysis. He was subsequently confirmed as having glucose-6-phosphate dehy- drogenase deficiency, which had originally been diagnosed in childhood. Amyl nitrite toxicity may include concurrent methemoglobinemia and hemolysis. Administration of methylene blue for clinically significant methemoglobinemia can induce further hemolysis. Copyright Ó 2013, Taiwan Society of Emergency Medicine. Published by Elsevier Taiwan LLC. All rights reserved. Keywords: Amyl nitrite; Glucose-6-phosphate dehydrogenase deficiency; Hematology; Toxicology 1. Introduction dark urine for 3 days following his return from Vanuatu 4 weeks earlier. He had drunk 100 half-coconut shells of kava Amyl nitrite is one of a number of alkyl nitrites otherwise while there.
    [Show full text]
  • Approach to Anemia
    APPROACH TO ANEMIA Mahsa Mohebtash, MD Medstar Union Memorial Hospital Definition of Anemia • Reduced red blood mass • RBC measurements: RBC mass, Hgb, Hct or RBC count • Hgb, Hct and RBC count typically decrease in parallel except in severe microcytosis (like thalassemia) Normal Range of Hgb/Hct • NL range: many different values: • 2 SD below mean: < Hgb13.5 or Hct 41 in men and Hgb 12 or Hct of 36 in women • WHO: Hgb: <13 in men, <12 in women • Revised WHO/NCI: Hgb <14 in men, <12 in women • Scrpps-Kaiser based on race and age: based on 5th percentiles of the population in question • African-Americans: Hgb 0.5-1 lower than Caucasians Approach to Anemia • Setting: • Acute vs chronic • Isolated vs combined with leukopenia/thrombocytopenia • Pathophysiologic approach • Morphologic approach Reticulocytes • Reticulocytes life span: 3 days in bone marrow and 1 day in peripheral blood • Mature RBC life span: 110-120 days • 1% of RBCs are removed from circulation each day • Reticulocyte production index (RPI): Reticulocytes (percent) x (HCT ÷ 45) x (1 ÷ RMT): • <2 low Pathophysiologic approach • Decreased RBC production • Reduced effective production of red cells: low retic production index • Destruction of red cell precursors in marrow (ineffective erythropoiesis) • Increased RBC destruction • Blood loss Reduced RBC precursors • Low retic production index • Lack of nutrients (B12, Fe) • Bone marrow disorder => reduced RBC precursors (aplastic anemia, pure RBC aplasia, marrow infiltration) • Bone marrow suppression (drugs, chemotherapy, radiation)
    [Show full text]
  • General Refugee Health Guidelines
    GENERAL REFUGEE HEALTH GUIDELINES U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases Division of Global Migration and Quarantine August 6, 2012 Background On average, more than 50,000 refugees relocate to the United States annually. 1 They come from diverse regions of the world and bring with them health risks and diseases common to all refugee populations as well as some that may be unique to specific populations. The purpose of this document is to describe general and optional testing components that do not fall into the specific disease categories of these guidelines. These guidelines are based upon principles of best practices, with references to primary published reports when available. This document differs from others in the guidelines, which recommend screening for specific disorders. The guidelines in this document include testing for abnormalities or clinical conditions that are not specific disorders but are suggestive of underlying disorders. The tests in this document may indicate either acute or chronic disorders and generally indicate the need for further testing and evaluation to identify the condition causing the abnormality. Testing for chronic health conditions is important, since these conditions are common in newly arriving refugees, both children and adults. 2 Since refugee populations are diverse and are predisposed to diseases that may differ from those found in the U.S. population, the differential diagnosis and initial evaluation of abnormalities are discussed to assist the clinician. General and Optional Tests Many disorders may be detected by using general, nonspecific testing modalities.
    [Show full text]
  • Neurological Complications of Paroxysmal Nocturnal Hemoglobinuria
    PEER REVIEWED LETTER Neurological Complications of Paroxysmal Nocturnal Hemoglobinuria N. Jewel Samadder, Leanne Casaubon, Frank Silver, Rodrigo Cavalcanti Can. J. Neurol. Sci. 2007; 34: 368-371 Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired stem cell disorder characterized by three cardinal clinical manifestations: 1) hemolysis and hemoglobinuria, 2) thrombosis, and 3) bone marrow failure indistinguishable from aplastic anemia.1 Paroxysmal nocturnal hemoglobinuria is a rare disease with an incidence of 2-6 per million persons. Only 220 reported cases of PNH were found in one of the largest retrospective epidemiological studies in France from 1946 to 1995.2 CASE REPORT A 54-year-old woman presented to the Emergency Department complaining of sudden onset of right-sided tinnitus followed by dizziness, dysarthria, nausea, and vomiting. Her only additional complaint was that of “cola” colored urine and dysuria. The patient denied a history of fever, seizures, focal weakness or sensory abnormalities. There was no history of cough, night sweats, weight loss or diarrhea. The patient’s neurologic symptoms resolved within minutes, followed only by a self-limiting bi-frontal headache. Her past medical history was significant for a diagnosis of paroxysmal nocturnal hemoglobinuria made at age 27 when she Figure 1. Cardiac catheterization (angiogram) showing occlusive presented to hospital with symptoms of anemia. Investigations thrombus in circumflex artery. The thrombus is indicated. at that time, including a HAMs test, confirmed the diagnosis of PNH. After her initial management, she had not been followed by a haematologist. Four years prior to the current admission she presented to hospital with a seizure and severe left hemiparesis.
    [Show full text]
  • Normocytic Anemia
    NORMOCYTIC ANEMIA DR. SOAD KHALIL AL JAOUNI FRCP(C) Associate Professor Consultant Hematologist Consultant Pediatrics Hematology/Oncolo gy Hematology Department College of Medicine King Abdulaziz University KAU, ALJAOUNI CLASSIFICATION OF ANEMIA Microcytic Normocytic Macrocytic normochromic MCV<80 fl MCV 80-95 fl MCV>95 fl MCV<27 pg MCV>26 pg Megaloblastic: vitamin B12 or deficiency Iron deficiency Many haemolytic anaemias Non-megaloblastic alcohol, liver disease Thalassaemia Anaemia of chronic disease Aplastic anemia (some cases) Anaemia of chronic After acute blood loss Myelodysplastic anemia(MDS) disease (some case) Renal disease Lead Poisoning Mixed deficiencies Sideroblastic anaemia Bone marrow failure, (some cases) post-chemotherapy, infiltration by carcinoma, etc. KAU, ALJAOUNI Normocytic, Normochronic Anemia MCV 80-95 fl MCH>26 pg •Many haemolytic anaemias •Anaemia of chronic disease (some cases) •After acute blood loss •Renal disease •Mixed deficiencies e.g. (iron deficiency and megaloblastic anemia) •Bone marrow failure, e.g. post-chemotherapy, infiltration by carcinoma, etc. KAU, ALJAOUNI ANAEMIA OF CHRONIC DISORDERS One of the most common anaemias occurs in patients with a variety of chronic inflammatory and malignant diseases. The characteristic features are: 1. Normochromic, normocytic or mildly hypochromic (MCV rarely <75 fl) indices and red cell morphology; 2. Mild and non-progressive anaemia (haemoglobin rarely less than 9.0g/dl)- the severity being related to the severity of the disease; 3. Both the serum iron and TIBC are reduced; sTfR levels are normal. 4. Bone marrow storage (reticuloendothelial) iron is normal but erythro blas t iron isreddduced. KAU, ALJAOUNI CLASSIFICATION OF ANAEMIA Macrocytic MCV>95 fl •Megaloblastic: vitamin B12 or folate deficiency •Non-megaloblastic:alcohol, liver disease, •Myelodysplasia, •Aplastic anaemia, etc.
    [Show full text]
  • From Isolated Sideroblastic Anemia to Mitochondrial Myopathy, Lactic Acidosis and Sideroblastic Anemia 2
    Red Cell Biology & its Disorders SUPPLEMENTARY APPENDIX The phenotypic spectrum of germline YARS2 variants: from isolated sideroblastic anemia to mitochondrial myopathy, lactic acidosis and sideroblastic anemia 2 Lisa G. Riley, 1,2,* Matthew M. Heeney, 3,4,* Joëlle Rudinger-Thirion, 5 Magali Frugier, 5 Dean R. Campagna, 6 Ronghao Zhou, 3 Gregory A. Hale, 7 Lee M. Hilliard, 8 Joel A. Kaplan, 9 Janet L. Kwiatkowski, 10,11 Colin A. Sieff, 3,4 David P. Steensma, 12,13 Alexander J. Rennings, 14 Annet Simons, 15 Nicolaas Schaap, 16 Richard J. Roodenburg, 17 Tjitske Kleefstra, 15 Leonor Arenil - las, 18 Josep Fita-Torró, 19 Rasha Ahmed, 20 Miguel Abboud, 20 Elie Bechara, 21 Roula Farah, 21 Rienk Y. J. Tamminga, 22 Sylvia S. Bottomley, 23 Mayka Sanchez, 19,24,25 Gerwin Huls, 26 Dorine W. Swinkels, 27 John Christodoulou 1,2,28,29,# and Mark D. Fleming 3,6,13,# *LGR and MMH contributed equally to this work. #JC and MDF contributed equally to this work as co-senior authors. 1Genetic Metabolic Disorders Research Unit, Kids Research Institute, Children’s Hospital at Westmead, Sydney, Australia; 2Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Australia; 3Dana Farber-Boston Children’s Center for Cancer and Blood Disorders, Boston, MA, USA; 4Department of Pediatrics, Harvard Medical School, Boston, MA, USA; 5Architecture et Réactiv - ité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France; 6Department of Pathology, Boston Children's Hospital, Boston, MA, USA; 7Johns Hopkins All Children's Hospital,
    [Show full text]
  • Erythrocytes (Red Blood Cells, Rbcs)
    Med Chem 535 ~ Diagnostic Medicinal Chemistry Hematology ~ Erythrocytes (Red Blood Cells, RBCs) I. Tests A. Red Blood Cell Count (RBC)* B. Hemoblobin (Hb or Hgb)* C. Hematocrit (Hct)* D. Wintrobe Indices (Indices) 1. Mean Corpuscular Volume (MCV) 2. Mean Corpuscular Hemoglobin (MCH) 3. Mean Corpuscular Hemoglobin Concentration (MCHC) E. Red Cell Distribution Width (RDW) F. Reticulocyte Count (Retics)* G. Erythrocyte Sedimentation Rate (ESR or Sed Rate) H. Serum Ferritin I. Transferrin and Serum Iron J. Haptoglobin K. Zinc Protoporphyrin Hemoglobin (ZPPH) II. RBC Disorders A. Polycythemia B. Anemias 1. Acute Blood Loss 2. Hemolytic Anemia 3. Anemia of Chronic Disease 4. Nutritional C. Hemoglobinopathies 1. Sickle Cell Anemia 2. Thalassemia 3. Methemoglobinemia/G6PD Deficiency III. Drug Induced Anemia A. Drug-Induced Oxidative Stress B. Cyanide Poisoning C. Immune Hemolytic Anemia HEMATOLOGY ~ ERYTHROCYTES HEMATOLOGY ~ the study of blood and its cellular elements: Erythrocytes (a.k.a., red blood cells), Leukocytes (a.k.a., white blood cells), and Platelets. The bone marrow typically produces ~ 2.5 x 109 RBCs, 1 x 109 granulocytes and 2.5 x 109 platelets per kg/day. CBC ~ Complete Blood Count is one of the most commonly ordered lab tests. It typically includes an erythrocyte count (RBC), leukocyte count (WBC), hemoglobin concentraton (Hgb), hematocrit (Hct), RBC indices, reticulocyte count, and platelet count. When a CBC with differential (Dif) is ordered, the WBC subtypes are quantified. Absolute Neutrophil Count (ANC) ~ neutrophil absolute number vs. relative percent Flow Cytometry Instruments can count 50,000 cells/sec When a particle passes through the detector it scatters light. Forward scattering is proportional to the size of the particle (cell): Particles between 2 fL and 20 fL are platelets; Particles > 36 fL are RBCs and WBCs; Analysis of samples with lysed RBCs affords WBCs.
    [Show full text]
  • Anemia in Children JOSEPH J
    Anemia in Children JOSEPH J. IRWIN, M.D., and JEFFREY T. KIRCHNER, D.O., Lancaster General Hospital, Lancaster, Pennsylvania Anemia in children is commonly encountered by the family physician. Multiple causes exist, but with a thorough history, a physical examination and limited laboratory evaluation a specific diagnosis can usually be established. The use of the mean corpuscular volume to classify the ane- mia as microcytic, normocytic or macrocytic is a standard diagnostic approach. The most common form of microcytic anemia is iron deficiency caused by reduced dietary intake. It is easily treat- able with supplemental iron and early intervention may prevent later loss of cognitive function. Less common causes of microcytosis are thalassemia and lead poisoning. Normocytic anemia has many causes, making the diagnosis more difficult. The reticulocyte count will help narrow the differential diagnosis; however, additional testing may be necessary to rule out hemolysis, hemoglobinopathies, membrane defects and enzymopathies. Macrocytic anemia may be caused by a deficiency of folic acid and/or vitamin B12, hypothyroidism and liver disease. This form of anemia is uncommon in children. (Am Fam Physician 2001;64:1379-86.) nemia is a frequent laboratory in developing humans: the embryonic, abnormality in children. As Gower-I, Gower-II, Portland, fetal hemoglo- many as 20 percent of children bin (HbF) and normal adult hemoglobin in the United States and 80 per- (HbA and HbA2). HbF is the primary hemo- cent of children in developing globin found in the fetus. It has a higher affin- Acountries will be anemic at some point by the ity for oxygen than adult hemoglobin, thus age of 18 years.1 increasing the efficiency of oxygen transfer to the fetus.
    [Show full text]
  • Autoimmune Hemolytic Anemia
    Michalak et al. Immunity & Ageing (2020) 17:38 https://doi.org/10.1186/s12979-020-00208-7 REVIEW Open Access Autoimmune hemolytic anemia: current knowledge and perspectives Sylwia Sulimiera Michalak1* , Anna Olewicz-Gawlik2,3,4, Joanna Rupa-Matysek5, Edyta Wolny-Rokicka6, Elżbieta Nowakowska1 and Lidia Gil5 Abstract Autoimmune hemolytic anemia (AIHA) is an acquired, heterogeneous group of diseases which includes warm AIHA, cold agglutinin disease (CAD), mixed AIHA, paroxysmal cold hemoglobinuria and atypical AIHA. Currently CAD is defined as a chronic, clonal lymphoproliferative disorder, while the presence of cold agglutinins underlying other diseases is known as cold agglutinin syndrome. AIHA is mediated by autoantibodies directed against red blood cells (RBCs) causing premature erythrocyte destruction. The pathogenesis of AIHA is complex and still not fully understood. Recent studies indicate the involvement of T and B cell dysregulation, reduced CD4+ and CD25+ Tregs, increased clonal expansions of CD8 + T cells, imbalance of Th17/Tregs and Tfh/Tfr, and impaired lymphocyte apoptosis. Changes in some RBC membrane structures, under the influence of mechanical stimuli or oxidative stress, may promote autohemolysis. The clinical presentation and treatment of AIHA are influenced by many factors, including the type of AIHA, degree of hemolysis, underlying diseases, presence of concomitant comorbidities, bone marrow compensatory abilities and the presence of fibrosis and dyserthropoiesis. The main treatment for AIHA is based on the inhibition of autoantibody production by mono- or combination therapy using GKS and/or rituximab and, rarely, immunosuppressive drugs or immunomodulators. Reduction of erythrocyte destruction via splenectomy is currently the third line of treatment for warm AIHA. Supportive treatment including vitamin supplementation, recombinant erythropoietin, thrombosis prophylaxis and the prevention and treatment of infections is essential.
    [Show full text]