A 10-Year Vision for Diamond Light Source

Total Page:16

File Type:pdf, Size:1020Kb

A 10-Year Vision for Diamond Light Source A 10-Year Vision for Diamond Light Source Diamond Light Source Ltd October 2015 2 Foreword The Diamond Light Source has been operational for 8 years, providing brilliant beams of light to probe the structure and composition of matter in the most incisive fashion, from the life sciences and medicine, through materials for energy and computing, to the environment, earth sciences and cultural heritage. It underpins research and innovation from more than 8000 scientists, mainly from UK universities and industry, with over 90 companies already paying for its services. Every year over 900 PhD students gain experience and training in state-of-the-art experimental and analytical techniques, and Diamond also supports training programmes for apprentices and extensive outreach to the public. It is a key component of the Harwell Campus, which brings together other central facilities of international standing, in partnership with UK universities as one of the leading centres for research and innovation in the world. However, the development of synchrotron technology proceeds at a blistering, relentless pace, with orders of magnitude improvement in brightness of sources, optical components and detectors. If Diamond is to continue to provide world-class facilities, and enable the academic and industrial communities it serves to remain competitive, it must continue to upgrade its technical capability: standing still will lead to decline and ineffective exploitation of significant investment in this facility. This document outlines a Vision for the scientific and societal challenges that synchrotron science will serve over the next 10 years, and the enabling technology that should be developed to meet these challenges. It presents a strategy to establish Diamond sustainably as a world-leading centre for synchrotron science, particularly in areas of excellence at UK universities, research institutes and in industry, and a cornerstone of a world-class site for scientific discovery and innovation at Harwell. It is based on extensive consultation within Diamond as well as discussion with external, international experts who have also advised on priorities for the various upgrade projects. It takes into account developments at other facilities in Europe, particularly the ESRF in which the UK also has a share. Diamond Management October 2015 3 Table of Contents EXECUTIVE SUMMARY 7 1.0 INTRODUCTION 9 1.1 A Vision and Strategic Plan for Diamond 9 1.2 The Strategic Planning Process 10 2.0 BACKGROUND AND CONTEXT 11 2.1 Synchrotron Science and the Diamond Light Source 11 2.2 The Harwell Campus 15 3.0 IMPACTS AND ACHIEVEMENTS 2007 – 2014 17 3.1 Scientific community and science 17 3.2 Industrial engagement 21 3.3 Technical and technique developments 24 3.4 Skills for success 25 3.5 Key collaborations 26 3.6 Health and safety 27 3.7 Engaging society 27 3.8 Environment 28 3.9 Cost savings and efficiencies 29 4.0 A 10-YEAR VISION FOR DIAMOND 31 4.1 Scientific Vision and the Role of Synchrotron Radiation 32 4.1.1 Integrated structural biology 32 4.1.2 Chemistry and catalysis 33 4.1.3 Soft condensed matter 34 4 4.1.4 Biomaterials and medicine 36 4.1.5 Engineering and materials 37 4.1.6 Condensed matter physics 38 4.1.7 Environment, earth sciences and cultural heritage 39 4.2 A Vision for Technical Developments at Diamond 40 4.2.1 Sources 41 4.2.2 Beamline development 45 4.2.3 Detectors 49 4.2.4 Optics and metrology 50 4.2.5 Sample environment 52 4.2.6 Data handling and computing 53 4.3 Support laboratories and complementary facilities 56 across the Harwell Campus 4.4 Operating model and organisation of Diamond 57 4.5 Development of other major synchrotron facilities 58 5.0 STRATEGIC GOALS AND OBJECTIVES 60 5.1 A world-leading facility in synchrotron-enabled research and innovation 60 5.2 Maximising the scientific, economic and societal impact of Diamond 62 5.3 Ensuring the long-term sustainability of Diamond as a national facility 63 5.4 Engaging and inspiring the general public through promoting science 64 5.5 Continuously planning for Diamond’s technical and scientific future 65 5.6 Options, resources and a delivery plan 65 5 APPENDICES Appendix 1 – Further highlights of industrial use 69 Appendix 2 – Science Visions 72 A 2.1 Integrated structural biology 72 A 2.2 Chemistry and catalysis 80 A 2.3 Soft condensed matter 91 A 2.4 Biomaterials and medicine 97 A 2.5 Engineering and materials 104 A 2.6 Condensed matter physics 114 A 2.7 Environment, earth sciences and cultural heritage 118 Appendix 3 – Enabling Technology 125 A 3.1 Detectors 125 Appendix 4 – Prioritisation Process 128 Appendix 5 – Participants at the Diamond ‘Vision’ Meeting – 130 September 30th – October 1st 2014 Appendix 6 – Glossary 135 6 EXECUTIVE SUMMARY o Diamond Light Source is the UK’s national synchrotron light source and provides world-class facilities for scientists from universities and industry, both in the UK and internationally to advance knowledge in virtually all fields of research. It is a limited company, owned 86% by the UK Government via the Science and Technology Facilities Research Council (STFC) with the remainder funded by the Wellcome Trust. At the heart of the facility is a particle accelerator, where electrons travel close to the speed of light emitting electromagnetic radiation, primarily as X-rays, but also ultraviolet and infrared light. These brilliant beams of light are used to reveal the structure and chemical character of a very wide range of materials down to atomic scales. Such information is essential in understanding and developing the properties or processes for a very wide range of systems, from biomolecules and catalysts, through electronic devices and high performance engineering alloys to astrophysics and archaeology. The work that Diamond supports has an increasingly high impact on some of the key challenges for our society, from healthcare and the environment, to more energy efficient devices and transport. It also plays a key role in underpinning research and fuelling innovation for industry. Diamond has a strong commitment to train the next generation of scientists, engineers and technicians, ensuring they develop the skills and experience to exploit both Diamond and other world-class research facilities in the UK. o Since user operations began at Diamond in 2007 its performance, capability and capacity have improved, in some cases dramatically: the beam current and reliability have risen steadily; the number of operational beamlines now stands at 25, with a further 8 planned for completion by 2018; in the 2014/15 Financial Year there were over 3500 unique users who made nearly 5000 on-site user visits and more than 2700‘remote’ visits; over 90 companies pay for access to beamtime. Published outputs are in line with other facilities of this size at this stage of operation, and many of these are of very high impact; during 2014, Diamond ranked in the top 3 facilities in the world for depositing structures in the Protein Data Bank. o The fast, relentless, pace of the development of technology for synchrotron facilities offers wholly new opportunities for science further into the future. Diamond wishes to take full advantage of these opportunities to continue to support UK research and innovation at a world-class level. It is also timely to reflect on whether the structure and operating model for Diamond, which was set up for the design and construction of the facility, is still most appropriate as it enters a new stage of its lifecycle, with full- blown operations and an expectation to deliver world-leading or world-class science across its beamlines. Diamond has consulted internally and externally to develop a 10-year Vision of the scientific and societal challenges to which it should rise, together with a Vision of the technical development required to meet those challenges. o The vision for Diamond is to be: a world-leading centre for synchrotron science, particularly in areas of excellence at UK universities, research institutes and in industry; a cornerstone of a world-class site for scientific discovery and innovation at Harwell. This vision has five goals: to be a world-leading user facility engaged in synchrotron research and innovation; to maximise the scientific, economic and societal impact of Diamond; to ensure the long-term sustainability of Diamond as a national facility; to engage and inspire the general public through promoting an understanding of and enthusiasm for science; to continuously plan for Diamond’s technical and scientific future. 7 o This document outlines a vision for science and its contribution to the solution of societal challenges enabled by access to a world-class synchrotron. It also presents the technical developments that will enable such advances, comprising: a brighter, more reliable source and the launch of a project to establish a scientific case and technical design for a new lattice for the storage ring – ‘Diamond II’; upgrades to current beamlines to maintain or even make a step change in competitiveness – as well as proposals for additional new beamlines; development and implementation of new technology for detectors, optics and metrology and for sample environment; significant enhancement of what is currently possible for data storage, transfer and analysis; improvements in the degree of effectiveness of automation and higher throughput methods. The choice of upgrade projects is the result of a rigorous process of prioritisation against the strategic aims of Diamond, which eliminated many other proposals and ranked the remainder. o Diamond’s most valuable asset is a highly motivated and skilled workforce and future success will depend critically on continuing to attract such people in a very competitive market and to make the most of their talents through continued development, and the provision of a stimulating working environment, effective management and strong leadership.
Recommended publications
  • Wellcome Trust Annual Report and Financial Statements 2017 Contents
    Annual Report and Financial Statements 2017 2 Wellcome Trust Annual Report and Financial Statements 2017 Contents Report from the Chair and the Director 5 Trustee’s Report 8 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 18 Financial Review 29 Structure and Governance 34 Risk Management 37 Remuneration Report 40 Audit Committee Report 43 Independent Auditor’s Report 45 Financial Statements 58 Consolidated Statement of Financial Activities 58 Consolidated Balance Sheet 59 Statement of Financial Activities of the Trust 60 Balance Sheet of the Trust 61 Consolidated Cash Flow Statement 62 Notes to the Financial Statements 63 Reference and Administrative Details 117 3 Wellcome Trust Annual Report and Financial Statements 2017 “ At Wellcome, we believe in the power of ideas to improve health” Jeremy Farrar Director 4 Wellcome Trust Annual Report and Financial Statements 2017 Report from the Chair and the Director “Our core approach is funding people to explore great ideas, at every step of the way from discovery to impact” At Wellcome, we believe in the power of ideas to improve cause of maternal mortality in the world. It also includes health. Funded from our independent investment portfolio, supporting research in the humanities and social sciences, we support thousands of scientists and researchers in more such as a project which this year published ethical guidelines than 70 countries, as well as innovators, educators and artists. for involving pregnant women in Zika vaccine research. Together, we take on big problems, fuel imaginations and spark And resources like the Human Induced Pluripotent Stem Cell debate, working always to achieve better health for everyone.
    [Show full text]
  • The Electron Microscopy Science Technology Platform at the Francis
    The Francis Crick Institute is a The Electron biomedical discovery institute Microscopy dedicated to understanding the fundamental biology underlying Science health and disease. Its work Technology is helping to understand why disease develops and to translate Platform at discoveries into new ways to the Francis prevent, diagnose and treat illnesses such as cancer, heart Crick Institute disease, stroke, infections, and Lucy Collinson neurodegenerative diseases. An independent organisation, its founding partners are the Medical Research Council (MRC), Cancer Research UK, Wellcome, University College London, Imperial College London and King’s College London. The Crick was formed in 2015, with many of the Crick’s scientists joining from two ‘parent’ institutes, the MRC’s National Institute for Medical Research and Cancer Research UK’s London Research Institute, and in 2016 it moved into a brand new state-of- the-art building in central London which brings together 1500 scientists and support staff working collaboratively across disciplines, making it the biggest biomedical research facility under a single roof in Europe. © Nick Guttridge 4 ISSUE 46 JUNE 2017 5 Each microscope room is a six-sided shielded box, • The Phenom-World DelPhi benchtop SEM with walls that contain complex metallic layers has an integrated fluorescence microscope to attenuate DC fields, and an active cancellation for correlative imaging system to attenuate AC fields. Under each • The FEI Twin 120 kV TEM has a cryo stage for microscope is a concrete platform, cast in place, and screening vitrified macromolecular samples supported by air springs that remove environmental prior to imaging on 200 kV and 300 kV TEMs vibration to <1 Hz.
    [Show full text]
  • Structure of Human Aspartyl Aminopeptidase Complexed With
    Chaikuad et al. BMC Structural Biology 2012, 12:14 http://www.biomedcentral.com/1472-6807/12/14 RESEARCH ARTICLE Open Access Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family Apirat Chaikuad1, Ewa S Pilka1, Antonio De Riso2, Frank von Delft1, Kathryn L Kavanagh1, Catherine Vénien-Bryan2, Udo Oppermann1,3 and Wyatt W Yue1* Abstract Backround: Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results: The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β- hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions: The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference.
    [Show full text]
  • A Critical Base Pair in K-Turns That Confers Folding Characteristics and Correlates with Biological Function
    ARTICLE Received 16 Apr 2014 | Accepted 2 Sep 2014 | Published 29 Oct 2014 DOI: 10.1038/ncomms6127 OPEN A critical base pair in k-turns that confers folding characteristics and correlates with biological function Scott A. McPhee1, Lin Huang1 & David M.J. Lilley1 Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved AG pairs, that is, the 3b3n position. A Watson–Crick pair leads to an inability to fold in metal ions alone, while 3n ¼ Gor3b¼ C (but not both) permits folding. Crystallographic study reveals two hydrated metal ions coordinated to O6 of G3n and G2n of Kt-7. Removal of either atom impairs Mg2 þ - induced folding in solution. While SAM-I riboswitches have 3b3n sequences that would predispose them to ion-induced folding, U4 snRNA are strongly biased to an inability to such folding. Thus riboswitch sequences allow folding to occur independently of protein binding, while U4 should remain unfolded until bound by protein. The empirical rules deduced for k-turn folding have strong predictive value. 1 Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK. Correspondence and requests for materials should be addressed to D.M.J.L. (email: [email protected]). NATURE COMMUNICATIONS | 5:5127 | DOI: 10.1038/ncomms6127 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.
    [Show full text]
  • Living Healthier for Longer Sharing Data Saves Lives
    News from the Medical Research Council network Spring 2014 Leading science for better health MEASUREto How some MRC scientific workshops are making custom-made kit to enable pioneering research Living healthier for longer Supporting innovative ageing research through the Lifelong Health and Wellbeing initiative Sharing data saves lives Opinions from two MRC researchers Network can also be downloaded as a PDF at: www.mrc.ac.uk/network CONTENTS NEWS News COMMENT FROM £39.1m for improving data research 3 £39.1m for improving Science festival fun 4 John Let’s talk about dementia 7 data research Savill A £32m MRC investment, announced by Universities and Science the MRC Consortium for Medical Microbial Bioinformatics led by Minister David Willetts at the High Performance Computing and Warwick University, the Medical Bioinformatics partnership led People CHIEF EXECUTIVE Big Data Conference in London on 6 February, plus an additional by Imperial College London and University College London £7.1m, is the latest instalment of a £90m funding initiative to Partners which includes the Francis Crick Institute, will also Dr Jane Cope on the power of persuasion 9 In February, the Minister for tackle health and bioinformatics challenges for the advancement support career opportunities for computational scientists, Universities and Science David of medical research. technologists and programme leaders, enhancing the UK’s skills Willetts announced a £32m MRC in this area. investment into improving the UK’s Six major strategic awards will strengthen collaborative links, capability in, and capacity for, improve tools and infrastructure for researchers and support the Mr Willets said: “Making the most of large and complex data is a Latest discoveries medical bioinformatics.
    [Show full text]
  • Synchrotron Light Source
    Synchrotron Light Source The evolution of light sources echoes the progress of civilization in technology, and carries with it mankind's hopes to make life's dreams come true. The synchrotron light source is one of the most influential light sources in scientific research in our times. Bright light generated by ultra-rapidly orbiting electrons leads human beings to explore the microscopic world. Located in Hsinchu Science Park, the NSRRC operates a high-performance synchrotron, providing X-rays of great brightness that is unattainable in conventional laboratories and that draws NSRRC users from academic and technological communities worldwide. Each year, scientists and students have been paying over ten thousand visits to the NSRRC to perform experiments day and night in various scientific fields, using cutting-edge technologies and apparatus. These endeavors aim to explore the vast universe, scrutinize the complicated structures of life, discover novel nanomaterials, create a sustainable environment of green energy, unveil living things in the distant past, and deliver better and richer material and spiritual lives to mankind. Synchrotron Light Source Light, also known as electromagnetic waves, has always been an important means for humans to observe and study the natural world. The electromagnetic spectrum includes not only visible light, which can be seen with a naked human eye, but also radiowaves, microwaves, infrared light, ultraviolet light, X-rays, and gamma rays, classified according to their wave lengths. Light of Trajectory of the electron beam varied kind, based on its varied energetic characteristics, plays varied roles in the daily lives of human beings. The synchrotron light source, accidentally discovered at the synchrotron accelerator of General Electric Company in the U.S.
    [Show full text]
  • The Diamond Light Source
    The Diamond Light Source ... a bright future for UK and World science Richard P. Walker, Technical Director What is Diamond ? • The largest scientific investment in the UK for 30 years • A synchrotron light source producing pinpoint UV and X-ray light beams of exceptional brightness • A ‘super microscope’ for new research opportunities into the structure and properties of matter What is Diamond ? • A Power Converter ! 15 MW of electrical power from the grid … 300-500 kW of X-rays … … but most of which only produces unwanted heat; only a fraction is selected for use in experiments. What is Synchrotron Radiation ? SR is electromagnetic radiation emitted when a high energy beam of charged particles (electrons) is deflected by a magnetic field. What’s so special about Synchrotron Radiation ? SR SR is emitted over a wide range of the electromagnetic spectrum, from Infra-red to hard X-rays Any desired radiation wavelength can be produced - enabling a very wide range of scientific and technological applications What’s so special about Synchrotron Radiation ? SR is very intense, and has extremely high brightness (emitted from a small area, with small angular divergence, determined by the properties of the electron beam) High brightness means: - it can be focused to sub-micron spot sizes: possibility of examining extremely small samples or investigating the structure and properties of objects with very fine spatial resolution - experiments can be carried out much more quickly: high through-put of samples or ability to follow chemical and biological reactions in real-time Diamond is a “third-generation” synchrotron radiation source • 1st generation: machines originally built for other purposes e.g.
    [Show full text]
  • Structural Basis of Mammalian Mucin Processing by the Human Gut O
    ARTICLE https://doi.org/10.1038/s41467-020-18696-y OPEN Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila ✉ ✉ Beatriz Trastoy 1,4, Andreas Naegeli2,4, Itxaso Anso 1,4, Jonathan Sjögren 2 & Marcelo E. Guerin 1,3 Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness 1234567890():,; and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila,anO-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan. We determine the high-resolution X-ray crystal structures of the unliganded form of OgpA, the complex with the glycodrosocin O-glycopeptide substrate and its product, providing a comprehensive set of snapshots of the enzyme along the catalytic cycle. In combination with O-glycopeptide chemistry, enzyme kinetics, and computational methods we unveil the molecular mechanism of O-glycan recognition and specificity for OgpA. The data also con- tribute to understanding how A. muciniphila processes mucins in the gut, as well as analysis of post-translational O-glycosylation events in proteins. 1 Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain. 2 Genovis AB, Box 790, 22007 Lund, Sweden. 3 IKERBASQUE, Basque Foundation for Science, 48013 ✉ Bilbao, Spain. 4These authors contributed equally: Beatriz Trastoy, Andreas Naegeli, Itxaso Anso.
    [Show full text]
  • Structure and Ligand Binding of the ADP-Binding Domain of the NAD+ Riboswitch
    Downloaded from rnajournal.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Structure and ligand binding of the ADP-binding domain of the NAD+ riboswitch Lin Huang1, Jia Wang and David M. J. Lilley* Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K. * To whom correspondence should be addressed 1. Current address : Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 , P. R. China and RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China Keywords : Riboregulation; RNA structure; X-ray crystallography; metal ions; nucleotide binding Running title: The structure of the NAD+ riboswitch Submitted to the RNA journal 20 January 2020 Editorial enquiries to Professor Lilley: Tel: (+44)-1382-384243 Email: [email protected] Downloaded from rnajournal.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT The nadA motif is the first known NAD+-dependent riboswitch, comprising two similar tandem bulged stem-loop structures. We have determined the structure of the 5’ domain 1 of the riboswitch. It has three coaxial helical segments, separated by an ACANCCCC bulge and by an internal loop, with a tertiary contact between them that includes two C:G base pairs. We have determined the structure with a number of ligands related to NADH, but in each case only the ADP moiety is observed. The adenosine adopts an anti conformation, and forms multiple hydrogen bonds across the width of the sugar edge of the penultimate C:G base pair of the helix preceding the bulge, and the observed contacts have been confirmed by mutagenesis and calorimetry.
    [Show full text]
  • Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
    Annual Report and Financial Statements 2019 Table of contents Report from Chair 3 Report from Director 5 Trustee’s Report 7 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 21 Financial Review 31 Structure and Governance 36 Social Responsibility 40 Risk Management 42 Remuneration Report 44 Remuneration Committee Report 46 Nomination Committee Report 47 Investment Committee Report 48 Audit and Risk Committee Report 49 Independent Auditor’s Report 52 Financial Statements 61 Consolidated Statement of Financial Activities 62 Consolidated Balance Sheet 63 Statement of Financial Activities of the Trust 64 Balance Sheet of the Trust 65 Consolidated Cash Flow Statement 66 Notes to the Financial Statements 67 Alternative Performance Measures and Key Performance Indicators 114 Glossary of Terms 115 Reference and Administrative Details 116 Table of Contents Wellcome Trust Annual Report 2019 | 2 Report from Chair During my tenure at Wellcome, which ends in The macro environment is increasingly challenging, 2020, I count myself lucky to have had the which has created volatility in financial markets. opportunity to meet inspiring people from a rich Q4 2018 was a very difficult quarter, but the diversity of sectors, backgrounds, specialisms resumption of interest rate cuts by the US Federal and scientific fields. Reserve underpinned another year of gains for our portfolio. We recognise that the cycle is extended, Wellcome’s achievements belong to the people and that the portfolio is likely to face more who work here and to the people we fund – it is challenging times ahead. a partnership that continues to grow stronger, more influential and more ambitious, spurred by The team is working hard to ensure that our independence.
    [Show full text]
  • X-Ray Photoelectron Spectroscopy of Hydrogen and Helium 12 February 2019
    X-ray photoelectron spectroscopy of hydrogen and helium 12 February 2019 This work demonstrated that ambient pressure X- ray photoelectron spectra of hydrogen and helium can be obtained when a bright-enough X-ray source is used, such as at the National Synchrotron Light Source II. In the case of helium gas, the spectrum shows a symmetric peak from its only orbital. In the case of hydrogen gas molecules, an asymmetric peak is observed, which is related to the different possible vibrational modes of the final state. The hydrogen X-ray beam induces photo-ejection of an electron from 2 (left) hydrogen and (right) helium . Credit: US molecule vibrational structure is evident in the H 1s Department of Energy spectrum. More information: Jian-Qiang Zhong et al. Synchrotron-based ambient pressure X-ray For the first time scientists measured the photoelectron spectroscopy of hydrogen and vibrational structure of hydrogen and helium atoms helium, Applied Physics Letters (2018). DOI: by X-rays. The results disprove the misconception 10.1063/1.5022479 that it's impossible to obtain X-ray photoelectron spectroscopy (XPS) spectra of hydrogen and helium, the two lightest elements of the Periodic Table. This was thought to be the case due to low Provided by US Department of Energy probabilities of electron ejection from these elements induced by X-rays. Unparalleled beam brightness at the National Synchrotron Light Source-II significantly increases the probability of a photon colliding with a gas atom at ambient pressures. The beamline makes it possible to use XPS to directly study the two most abundant elements in the universe.
    [Show full text]
  • National Synchrotron Light Source II
    National Synchrotron Light Source II J.P. Hill, NSLS-II Director National Lab Day October 10th 2019 User Facilities at the National Labs • One of the primary missions of the National Labs is to provide large scale user facilities that are beyond the reach of individual institutions • Principal among these are the 5 light sources, the 2 neutron sources and the 5 nanocenters. DOE-BES stewards these facilities for the Nation • Each provides world-leading characterization facilities that are free to use through a transparent, peer-reviewed proposal process • Our scientists are leaders in their fields and are there to help you answer your science questions • In structural biology, synchrotrons in particular have revolutionized the field and continue to push state-of-the-art with diffraction and imaging capabilities of extraordinary sensitivity and resolution 2 NSLS-II: The Nation’s brightest synchrotron 28 “beamlines” for experiments from scattering, to imaging to spectroscopy • State-of-the-art beamlines in structural biology and imaging: Protein crystallography Solution scattering Spectroscopic imaging • Growing emphasis on “multi-modal” i.e. combining more than one technique to obtain a more complete picture of a given biological problem 3 4 Biological “Imaging” at NSLS-II atomic resolution structures Complexes cellular context and function MX MX, S/WAXS Imaging cryoEM 4 Multi-modal, multi-length scale 5 Ultra bright beams enable new methods: Serial crystallography Jets of micro-crystals Raster data collection 1 µm step raster scans. Total shutter open time for dataset = 18 s These new approaches greatly ease the need to grow large crystals – perhaps the biggest bottleneck in structure determination.
    [Show full text]