Freebsd Is Not a Linux Distro
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Debugging the Freebsd Kernel
Introduction to Debugging the FreeBSD Kernel John H. Baldwin Yahoo!, Inc. Atlanta, GA 30327 [email protected], http://people.FreeBSD.org/˜jhb Abstract used either directly by the user or indirectly via other tools such as kgdb [3]. Just like every other piece of software, the The Kernel Debugging chapter of the FreeBSD kernel has bugs. Debugging a ker- FreeBSD Developer’s Handbook [4] covers nel is a bit different from debugging a user- several details already such as entering DDB, land program as there is nothing underneath configuring a system to save kernel crash the kernel to provide debugging facilities such dumps, and invoking kgdb on a crash dump. as ptrace() or procfs. This paper will give a This paper will not cover these topics. In- brief overview of some of the tools available stead, it will demonstrate some ways to use for investigating bugs in the FreeBSD kernel. FreeBSD’s kernel debugging tools to investi- It will cover the in-kernel debugger DDB and gate bugs. the external debugger kgdb which is used to perform post-mortem analysis on kernel crash dumps. 2 Kernel Crash Messages 1 Introduction The first debugging service the FreeBSD kernel provides is the messages the kernel prints on the console when the kernel crashes. When a userland application encounters a When the kernel encounters an invalid condi- bug the operating system provides services for tion (such as an assertion failure or a memory investigating the bug. For example, a kernel protection violation) it halts execution of the may save a copy of the a process’ memory current thread and enters a “panic” state also image on disk as a core dump. -
BSD – Alternativen Zu Linux
∗BSD { Alternativen zu Linux Karl Lockhoff March 19, 2015 Inhaltsverzeichnis I Woher kommt BSD? I Was ist BSD? I Was ist sind die Unterschiede zwischen FreeBSD, NetBSD und OpenBSD? I Warum soll ich *BSD statt Linux einsetzen? I Chuck Haley und Bill Joy entwickeln den vi in Berkeley I Bill Joy erstellt eine Sammlung von Tools, 1BSD I Unix Version 7 erscheint I 2BSD erscheint (Basis f¨urdie Weiterentwicklung PDP-11) I 3BSD erscheint (erstmalig mit einen eigenen Kernel) I 4BSD erscheint (enth¨altdas fast file system (ffs)) I Bill Joy wechselt zu Sun Microsystems I Kirk McKusick ¨ubernimmt die Entwicklung von BSD I 1978 I 1979 I 1980 I 1981 Woher kommt BSD? I 1976 I Unix Version 6 erscheint I 2BSD erscheint (Basis f¨urdie Weiterentwicklung PDP-11) I 3BSD erscheint (erstmalig mit einen eigenen Kernel) I 4BSD erscheint (enth¨altdas fast file system (ffs)) I Bill Joy wechselt zu Sun Microsystems I Kirk McKusick ¨ubernimmt die Entwicklung von BSD I Bill Joy erstellt eine Sammlung von Tools, 1BSD I Unix Version 7 erscheint I 1979 I 1980 I 1981 Woher kommt BSD? I 1976 I Unix Version 6 erscheint I 1978 I Chuck Haley und Bill Joy entwickeln den vi in Berkeley I 2BSD erscheint (Basis f¨urdie Weiterentwicklung PDP-11) I 3BSD erscheint (erstmalig mit einen eigenen Kernel) I 4BSD erscheint (enth¨altdas fast file system (ffs)) I Bill Joy wechselt zu Sun Microsystems I Kirk McKusick ¨ubernimmt die Entwicklung von BSD I Unix Version 7 erscheint I 1979 I 1980 I 1981 Woher kommt BSD? I 1976 I Unix Version 6 erscheint I 1978 I Chuck Haley und Bill Joy entwickeln den -
BSD UNIX Toolbox: 1000+ Commands for Freebsd, Openbsd and Netbsd Christopher Negus, Francois Caen
To purchase this product, please visit https://www.wiley.com/en-bo/9780470387252 BSD UNIX Toolbox: 1000+ Commands for FreeBSD, OpenBSD and NetBSD Christopher Negus, Francois Caen E-Book 978-0-470-38725-2 April 2008 $16.99 DESCRIPTION Learn how to use BSD UNIX systems from the command line with BSD UNIX Toolbox: 1000+ Commands for FreeBSD, OpenBSD and NetBSD. Learn to use BSD operation systems the way the experts do, by trying more than 1,000 commands to find and obtain software, monitor system health and security, and access network resources. Apply your newly developed skills to use and administer servers and desktops running FreeBSD, OpenBSD, NetBSD, or any other BSD variety. Become more proficient at creating file systems, troubleshooting networks, and locking down security. ABOUT THE AUTHOR Christopher Negus served for eight years on development teams for the UNIX operating system at the AT&T labs, where UNIX was created and developed. He also worked with Novell on UNIX and UnixWare development. Chris is the author of the bestselling Fedora and Red Hat Linux Bible series, Linux Toys II, Linux Troubleshooting Bible, and Linux Bible 2008 Edition. Francois Caen hosts and manages business application infrastructures through his company Turbosphere LLC. As an open- source advocate, he has lectured on OSS network management and Internet services, and served as president of the Tacoma Linux User Group. He is a Red Hat Certified Engineer (RHCE). To purchase this product, please visit https://www.wiley.com/en-bo/9780470387252. -
The Dragonflybsd Operating System
1 The DragonFlyBSD Operating System Jeffrey M. Hsu, Member, FreeBSD and DragonFlyBSD directories with slightly over 8 million lines of code, 2 million Abstract— The DragonFlyBSD operating system is a fork of of which are in the kernel. the highly successful FreeBSD operating system. Its goals are to The project has a number of resources available to the maintain the high quality and performance of the FreeBSD 4 public, including an on-line CVS repository with mirror sites, branch, while exploiting new concepts to further improve accessible through the web as well as the cvsup service, performance and stability. In this paper, we discuss the motivation for a new BSD operating system, new concepts being mailing list forums, and a bug submission system. explored in the BSD context, the software infrastructure put in place to explore these concepts, and their application to the III. MOTIVATION network subsystem in particular. A. Technical Goals Index Terms— Message passing, Multiprocessing, Network The DragonFlyBSD operating system has several long- operating systems, Protocols, System software. range technical goals that it hopes to accomplish within the next few years. The first goal is to add lightweight threads to the BSD kernel. These threads are lightweight in the sense I. INTRODUCTION that, while user processes have an associated thread and a HE DragonFlyBSD operating system is a fork of the process context, kernel processes are pure threads with no T highly successful FreeBSD operating system. Its goals are process context. The threading model makes several to maintain the high quality and performance of the FreeBSD guarantees with respect to scheduling to ensure high 4 branch, while exploring new concepts to further improve performance and simplify reasoning about concurrency. -
BSD UNIX Toolbox 1000+ Commands for Freebsd, Openbsd
76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iii BSD UNIX® TOOLBOX 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD®Power Users Christopher Negus François Caen 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page ii 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page i BSD UNIX® TOOLBOX 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page ii 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iii BSD UNIX® TOOLBOX 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD®Power Users Christopher Negus François Caen 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iv BSD UNIX® Toolbox: 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD® Power Users Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-0-470-37603-4 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data is available from the publisher. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis- sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions. -
ZFS 2018 and Onward
SEE TEXT ONLY 2018 and Onward BY ALLAN JUDE 2018 is going to be a big year for ZFS RAID-Z Expansion not only FreeBSD, but for OpenZFS • 2018Q4 as well. OpenZFS is the collaboration of developers from IllumOS, FreeBSD, The ability to add an additional disk to an existing RAID-Z VDEV to grow its size with- Linux, Mac OS X, many industry ven- out changing its redundancy level. For dors, and a number of other projects example, a RAID-Z2 consisting of 6 disks to maintain and advance the open- could be expanded to contain 7 disks, source version of Sun’s ZFS filesystem. increasing the available space. This is accomplished by reflowing the data across Improved Pool Import the disks, so as to not change an individual • 2018Q1 block’s offset from the start of the VDEV. The new disk will appear as a new column on the A new patch set changes the way pools are right, and the data will be relocated to main- imported, such that they depend less on con- tain the offset within the VDEV. Similar to figuration data from the system. Instead, the reflowing a paragraph by making it wider, possibly outdated configuration from the sys- without changing the order of the words. In tem is used to find the pool, and partially open the end this means all of the new space shows it read-only. Then the correct on-disk configura- up at the end of the disk, without any frag- tion is loaded. This reduces the number of mentation. -
DMFS - a Data Migration File System for Netbsd
DMFS - A Data Migration File System for NetBSD William Studenmund Veridian MRJ Technology Solutions NASAAmes Research Center" Abstract It was designed to support the mass storage systems de- ployed here at NAS under the NAStore 2 system. That system supported a total of twenty StorageTek NearLine ! have recently developed DMFS, a Data Migration File tape silos at two locations, each with up to four tape System, for NetBSD[I]. This file system provides ker- drives each. Each silo contained upwards of 5000 tapes, nel support for the data migration system being devel- and had robotic pass-throughs to adjoining silos. oped by my research group at NASA/Ames. The file system utilizes an underlying file store to provide the file The volman system is designed using a client-server backing, and coordinates user and system access to the model, and consists of three main components: the vol- files. It stores its internal metadata in a flat file, which man master, possibly multiple volman servers, and vol- resides on a separate file system. This paper will first man clients. The volman servers connect to each tape describe our data migration system to provide a context silo, mount and unmount tapes at the direction of the for DMFS, then it will describe DMFS. It also will de- volman master, and provide tape services to clients. The scribe the changes to NetBSD needed to make DMFS volman master maintains a database of known tapes and work. Then it will give an overview of the file archival locations, and directs the tape servers to move and mount and restoration procedures, and describe how some typi- tapes to service client requests. -
An Incremental Path Towards a Safer OS Kernel
An Incremental Path Towards a Safer OS Kernel Jialin Li Samantha Miller Danyang Zhuo University of Washington University of Washington Duke University Ang Chen Jon Howell Thomas Anderson Rice University VMware Research University of Washington LoC Abstract Incremental Progress Tens of Linux Safe Linux Linux has become the de-facto operating system of our age, Millions FreeBSD but its vulnerabilities are a constant threat to service availabil- Hundreds of Singularity ity, user privacy, and data integrity. While one might scrap Thousands Biscuit Linux and start over, the cost of that would be prohibitive due Theseus Thousands RedLeaf seL4 to Linux’s ubiquitous deployment. In this paper, we propose Hyperkernel Safety an alternative, incremental route to a safer Linux through No Type Ownership Functional proper modularization and gradual replacement module by Guarantees Safety Safety Verification module. We lay out the research challenges and potential Figure 1: Our vision and the current state of systems. solutions for this route, and discuss the open questions ahead. security vulnerabilities are reported each year, and lifetime CCS Concepts analysis suggests that the new code added this year has intro- duced tens of thousands of more bugs. ! • Software and its engineering Software verification; While operating systems are far from the only source of se- ! • Computer systems organization Reliability. curity vulnerabilities, it is hard to envision building trustwor- Keywords thy computer systems without addressing operating system correctness. kernel safety, verified systems, reliable systems One attractive option is to scrap Linux and start over. Many ACM Reference Format: past works focus on building more secure and correct op- Jialin Li, Samantha Miller, Danyang Zhuo, Ang Chen, Jon Howell, erating systems from the ground up: ones based on strong and Thomas Anderson. -
Interesting Things You Didn't Know You Could Do With
Interesting Things You Didn’t Know You Could Do With ZFS Allan Jude -- ScaleEngine Inc. [email protected] twitter: @allanjude Introduction Allan Jude ● 13 Years as FreeBSD Server Admin ● FreeBSD src/doc committer (focus: ZFS, bhyve, ucl, xo) ● Co-Author of “FreeBSD Mastery: ZFS” and upcoming “FreeBSD Mastery: Advanced ZFS” with M. W. Lucas ● Architect of the ScaleEngine CDN (HTTP and Video) ● Host of BSDNow.tv & TechSNAP.tv Podcasts ● Use ZFS for large collections of videos, extremely large website caches, mirrors of PC-BSD pkgs and RaspBSD ● Single Handedly Manage Over 1000TB of ZFS Storage The Power of ZFS ● Integrated Redundancy (Mirroring, RAID-Z) ● Data Integrity Checking (Checksums, Scrub) ● Pooled Storage (Hot Add Disks) ● Multi-Level Cache (ARC, L2ARC, SLOG) ● Copy-on-Write (no fsck) ● Snapshots and Clones ● Quotas and Reservations ● Transparent Compression (LZ4, GZIP1-9) ● Incremental Replication (zfs send/recv) ● Datasets with Individual Inherited Properties ● Custom Properties ● Fine Grained Delegation Applying That Power ZFS has many features, but how can I use them to solve my problems? ZFS has a very well designed command line user interface, making it very easy for a sysadmin to perform common tasks (add more storage, create new datasets, change settings and properties), accomplish things that were not possible before, as well as extract a great deal more information from the storage system. ZFS Was Meant To Be Scripted # zfs list -Hp -r -o name,refer,logicalreferenced sestore5/mysql02 22001288628 24331078144 sestore5/omicron -
Best Practices for Openzfs L2ARC in the Era of Nvme
Best Practices for OpenZFS L2ARC in the Era of NVMe Ryan McKenzie iXsystems 2019 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. 1 Agenda ❏ Brief Overview of OpenZFS ARC / L2ARC ❏ Key Performance Factors ❏ Existing “Best Practices” for L2ARC ❏ Rules of Thumb, Tribal Knowledge, etc. ❏ NVMe as L2ARC ❏ Testing and Results ❏ Revised “Best Practices” 2019 Storage Developer Conference. © iXsystems. All Rights Reserved. 2 ARC Overview ● Adaptive Replacement Cache ● Resides in system memory NIC/HBA ● Shared by all pools ● Used to store/cache: ARC OpenZFS ○ All incoming data ○ “Hottest” data and Metadata (a tunable ratio) SLOG vdevs ● Balances between ○ Most Frequently Used (MFU) Data vdevs L2ARC vdevs ○ Most Recently zpool Used (MRU) FreeBSD + OpenZFS Server 2019 Storage Developer Conference. © iXsystems. All Rights Reserved. 3 L2ARC Overview ● Level 2 Adaptive Replacement Cache ● Resides on one or more storage devices NIC/HBA ○ Usually Flash ● Device(s) added to pool ARC OpenZFS ○ Only services data held by that pool ● Used to store/cache: ○ “Warm” data and SLOG vdevs metadata ( about to be evicted from ARC) Data vdevs L2ARC vdevs ○ Indexes to L2ARC zpool blocks stored in ARC headers FreeBSD + OpenZFS Server 2019 Storage Developer Conference. © iXsystems. All Rights Reserved. 4 ZFS Writes ● All writes go through ARC, written blocks are “dirty” until on stable storage ACK NIC/HBA ○ async write ACKs immediately ARC OpenZFS ○ sync write copied to ZIL/SLOG then ACKs ○ copied to data SLOG vdevs vdev in TXG ● When no longer dirty, written blocks stay in Data vdevs L2ARC vdevs ARC and move through zpool MRU/MFU lists normally FreeBSD + OpenZFS Server 2019 Storage Developer Conference. -
Automating the Deployment of Freebsd & PC-BSD® Systems
Automating the deployment of FreeBSD & PC-BSD® systems by Kris Moore [email protected] In PC-BSD 9.x every installation is fully-scripted, due to the the pc-sysinstall backend. This backend can also be used to quickly automate the deployment of FreeBSD servers and PC-BSD desktops using a PXE boot environment. In PC-BSD & TrueOS™ 9.1 and higher, this functionality is easy to setup and deploy using the “pc-thinclient” utility. PXE booting allows you to boot systems via the LAN interface, as opposed to using traditional media, such as DVD or USB. In order for clients to boot via PXE they will need a PXE capable network adapter. The initial PXE setup To get started, you will need to have a system with two network interfaces running PC-BSD or TrueOS 9.1 and a complete ports tree in /usr/ports. If you do not have the ports tree installed, you can download it by running the command “portsnap fetch extract update” as root. With these pieces in place, open a root prompt and run the “pc-thinclient” command. The first screen you see will look something like this: Enter “y” to continue, and the following screen will be shown: In this case you are going to be setting up a PXE installation server, so enter “i” to continue. (The “r” option can be used to make your system a X thin-client server. More information about this can be found on the wiki page at the end of the article.) After selecting your type of PXE system, the thin-client wizard will then begin to build the “net/isc-dhcp42-server” port. -
Referência Debian I
Referência Debian i Referência Debian Osamu Aoki Referência Debian ii Copyright © 2013-2021 Osamu Aoki Esta Referência Debian (versão 2.85) (2021-09-17 09:11:56 UTC) pretende fornecer uma visão geral do sistema Debian como um guia do utilizador pós-instalação. Cobre muitos aspetos da administração do sistema através de exemplos shell-command para não programadores. Referência Debian iii COLLABORATORS TITLE : Referência Debian ACTION NAME DATE SIGNATURE WRITTEN BY Osamu Aoki 17 de setembro de 2021 REVISION HISTORY NUMBER DATE DESCRIPTION NAME Referência Debian iv Conteúdo 1 Manuais de GNU/Linux 1 1.1 Básico da consola ................................................... 1 1.1.1 A linha de comandos da shell ........................................ 1 1.1.2 The shell prompt under GUI ......................................... 2 1.1.3 A conta root .................................................. 2 1.1.4 A linha de comandos shell do root ...................................... 3 1.1.5 GUI de ferramentas de administração do sistema .............................. 3 1.1.6 Consolas virtuais ............................................... 3 1.1.7 Como abandonar a linha de comandos .................................... 3 1.1.8 Como desligar o sistema ........................................... 4 1.1.9 Recuperar uma consola sã .......................................... 4 1.1.10 Sugestões de pacotes adicionais para o novato ................................ 4 1.1.11 Uma conta de utilizador extra ........................................ 5 1.1.12 Configuração