Advances in Molecular Electronics: a Brief Review

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Molecular Electronics: a Brief Review Open Access Journal of Biomedical Science and Research Volume 1 Issue 1 Research Article Genetic Skeletal Disorders in Pakistan: A brief Commentary Ahmad Fa, Bilal Mb, Khan Ac and Umair Mb* aDepartment of Biochemistry, Quaid-i-Azam University, Faculty of Biological Sciences, Islamabad, Pakistan bDepartment of Medical Genomics, King Saud bin Abdul-Aziz University for Health Sciences, Saudi Arabia cDepartment of Developmental Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Saudi Arabia Article Info Abstract Article History: Genetic skeletal disorders (GSDs) constitute a heterogeneous, rare and a distinctive group Received: 03 January, 2019 Accepted: 27 February, 2019 of rare bone growth disorders, leading to abnormal size and shape of the skeleton. Published: 05 December, 2019 Prevalence, mutation spectrum and geographic distribution of genetic skeletal disorders (GSDs) in Pakistan are not known. The present study reviewed different GSDs, listed in the * Corresponding author: Umair “Nosology and Classification of Genetic Skeletal Disorders: [1] using to-date literature M, Department of Medical Genomics, King Saud bin Abdul-Aziz published in different data-bases. The most recurrently reported skeletal disorders in University, Ministry of National Pakistan include acromesomelic dysplasia (AMDM, AMDG, AMDH), Polydactyl, Guard-Health Affairs, P.O.Box 3660, Mucopolysaccharidosis, Split hand/Split foot malformation (SHFM), synpolydacyly, Riyadh 11481, Saudi Arabia; Tel: accounting for 56.32% of the total cases. Disorders from nineteen different groups listed in +92-314-5065505; E-mail: [email protected], the “Nosology and Classification of Genetic Skeletal Disorders [1] have not been reported [email protected] from Pakistani population. Most of the publication came from University and research institutes, while very minimal was done by the hospitals. In most of the cases, mutations were identified using next-generation sequencing technologies. In total, mutations in 45 genes causing nineteen different GSDs were reported from Pakistani population in the literature to-date. The current data will help clinicians and researchers working in the field of rare skeletal disorders in Pakistan, helping diagnosis and proper disease management. The review also highlighted the need to create a multi-level national network (database) that could help to provide proper molecular diagnosis and care to the patients suffering from severe GSDs in Pakistan. Keywords: Genetic skeletal disorders; Rare genetic diseases; Pakistan Copyright: © 2019 Ahmad F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. have been not been performed yet. Most GSDs are reported as Introduction familial cases in the literature having both autosomal dominant Genetic skeletal disorders (GSDs) constitute a diverse, and autosomal recessive inheritance, which is common in heterogeneous, and austere group of rare bone growth disorders, Pakistani population. which arise due to disturbances in the skeletal development processes, growth, pathways, and homeostasis caused by Skeletal dysplasias mutations in different genes involved in the development of the Skeletal dysplasias are clinically and genetically heterogeneous skeletal system. The proper disease diagnosis is a challenge for bone and cartilages growth disorder, which result in abnormal size GSDs as syndromic and non-syndromic forms of GSDs affects and shape of the skeletal system. Skeletal dysplasia’s are also many individuals, thus leading to high health cost and poor quality defined as a generalized abnormality in the skeleton (from the of life [2-13]. Greek word, skeleton meaning “dried up”, mostly associated with The “Nosology and Classification of Genetic skeletal disorders linear skeletal abnormality and having a prevalence of 1/5000 live [1]” listed 436 different GSDs classified into 42 different groups birth [14]. Skeletal disorders in syndromic forms are associated using clinical, radiographic, and molecular diagnostics standards with other organs abnormalities, which result from teratogen and mutations were reported in only 364 different genes [1]. The exposure, somatic mosaicism and imprinting errors. GSDs are Nosology skeletal disorder classification provides an excellent inherited as autosomal dominant/recessive, X-linked guideline for diagnosis and identification of novel skeletal (recessive/dominant), or can be inherited as a denovo entity [15]. disorders for researchers, and also help to better understand the GSDs are mostly classified based on pattering abnormalities, mechanisms underlying these genetic mutations, proteins and linear development, differentiation, and maintenance of the human different pathways involved in skeletal development. Population- skeleton [16]. The last revision of the International Skeletal based studies in Pakistan to determine the prevalence of GSDs Dysplasia Society (ISDS) was performed in 2015 to classify the Pubtexto Publishers | www.pubtexto.com 1 J Biomed Sci Res Citation: Ahmad F, Bilal M, Khan A, Umair M (2019). Genetic Skeletal Disorders in Pakistan: A brief Commentary. J Biomed Sci Res 1(1): 101 newly reported genes/disorders, which revealed new molecular Cartilage-hair hypoplasia 4 0 and pathological concepts associated with GSDs. This revision Cenani-Lenz syndactyly syndrome with oro-facial 12 30 cases was reviewed by [1]. Classified total 436 disorders into 42 and skeletal symptoms different groups on the basis of genetic, radiographic, molecular, Chondrodysplasia 24 18 cases (1BP) and biochemical criteria’s. For these 436 disorders mutations in Ellis–van Creveld syndrome 11 1.1BP only 364 genes were identified at that time. The present study Frontonasal dysplasia 8 28 (0.7BP) Infantile GM1 systematically reviewed GSDs reported in Pakistani population 1 330 cases (0.75) gangliosidosis illustrated in different online databases to-date. The review also Infantile malignant 2 0.75BP analyzed and highlighted the challenges involved in proper osteopetrosis diagnosis and treatment of these severe GSDs. Joubert Syndrome 6 33 (1.125BP) Marfan syndrome 14 25 Methodology Meckel syndrome 3 3 4.0BP Mucopolysaccharidosis 31 19 cases (15.0BP) Study basis Multiple hereditary 24 0 The present investigation covered all 436 genes reported to cause exostoses Osteoarthropathy, GSDs that has been classified into 42 groups in the “Nosology 4 30 cases and Classification of GSDs [1]. hypertrophic Osteogenesis Imperfecta 10 54 (10.0 BP) Bata bases used Osteopetrosis 4 140 (1.0BP) A literature search using different online available database was Polydactyly 64 278 conducted such as PubMed Polydactyly and mesoaxial (https://www.ncbi.nlm.nih.gov/pubmed), Pub plus synostotic syndactyly with 11 6 families phalangeal reduction (http://www.pubplus.org/), Google scholar Pseudoachondroplasia 17 3.3BP (https://scholar.google.com/), OMIM (https://www.omim.org), Roberts syndrome 2 150 cases HGMD (http://www.hgmd.cf.ac.uk/) and research gate SHFM 68 22 (5.4BP) Spondyloepiphyseal (https://www.researchgate.net/). Pakistan Genetic Mutation 13 36 (1BP) dysplasia Database (http://pakmutation.com/) is the only database available Synpolydactyly 79 0 for the mutations reported within Pakistani population Temtamy preaxial 2 18 cases corresponding rare genetic disorders. brachydactyly syndrome Trichorhinophalangeal Search approach 13 200 cases All the genes reported to-date causing skeletal disorders were syndrome type III Total 490 obtained from the “Nosology and Classification of GSDs [1].” The search was made by typing the mesh “gene name Pakistan” using The geographic distribution of GSDs in Pakistan is presented in different search engines such as PubMed, Google scholar, OMIM, Figure 1. GSDs have been reported in all the provinces of HMGD and research gate. Pakistan. However, more patients were reported from the Sindh province of Pakistan (41.42%). Details regarding a number of Results disorders reported from each province have been presented in A total of 490 cases having genetic skeletal disorders in the 19 Table 3. groups of the “Nosology and Classification of GSDs [1]” were reported from Pakistan in the current literature available. All the Discussion cases and mutations reported so far from Pakistan has been Genetic skeletal disorders (GSDs) are a highly heterogeneous documented in Table 1 and Table 2. The five most frequently group of disorders that arise as a result of cartilage or bone growth reported GSDs were Acromesomelic dysplasia (AMDM, AMDG, abnormality. It has been reported in X-linked AMDH), Mucopolysaccharidosis, Polydactyly, SHFM, (dominant/recessive) and autosomal (recessive/dominant) forms Synpolydactyly, accounting for 56.32% of cases (Table 3). and in both syndromic (severe) and non-syndromic forms (mild- severe). Proper diagnosis is very important for the management Table 1: Number of published cases of genetic skeletal diseases in and treatment of these genetic disorders such as family history, Pakistan compared to Orphadata Europe 2018 (www.orphadata.org). complete medical records, photographs/radiographs, MRI Cases Cases reported (additional neurological phenotypes), audiograms etc. Pakistan as Genetic Skeletal Disorders reported and prevalence the world’s 33rd largest country with respect to the area (881913sq- (GSDs) from Europe/100,000 Pakistan km), having five provinces
Recommended publications
  • Final Copy 2020 09 29 Mania
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Maniaki, Evangelia Title: Risk factors, activity monitoring and quality of life assessment in cats with early degenerative joint disease General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. RISK FACTORS, ACTIVITY MONITORING AND QUALITY OF LIFE ASSESSMENT IN CATS WITH EARLY DEGENERATIVE JOINT DISEASE Evangelia Maniaki A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master’s in Research in the Faculty of Health Sciences Bristol Veterinary School, June 2020 Twenty-nine thousand two hundred and eighteen words 1.
    [Show full text]
  • Ch07 Final.Qxd 7/2/07 13:55 Page 87
    Ch07 final.qxd 7/2/07 13:55 Page 87 87 CHAPTER 7 ARTHROLOGY Feline arthrology has been an overlooked subject in term osteoarthritis is reserved for the specific type of the past with most reviews of joint disease in small DJD that affects diarthrodial synovial articulations. animals focusing on the dog. However, cats are now Diseases of synovial joints can conveniently be known to suffer from many different types of joint divided into degenerative arthritis and inflammatory disease and, although there are many similarities with arthritis on the basis of the predominant pathologic the dog, there are also many features that are unique process (Table 20). Degenerative arthropathies are the to the feline patient. most common types and include traumatic arthritis and osteoarthritis. Inflammatory arthropathies are less CLASSIFICATION OF JOINT DISEASE common than degenerative arthropathies and have The terms arthritis and arthropathy literally mean joint either an infective or immune-mediated etiology. inflammation and joint disease, respectively. These terms Infective arthritis caused by bacterial infection (septic are used interchangeably in this chapter to describe arthritis) is the commonest type of inflammatory arthritis a number of well defined joint diseases characterized in the cat. Septic arthritis is classed as an erosive type of by a combination of inflammatory and degenerative arthritis because there is destruction of articular cartilage changes. The terms degenerative joint disease (DJD) in joints infected by bacteria. Immune-mediated and osteoarthritis are also often used synonymously. In arthropathies can be subdivided into both erosive this chapter, DJD is used as a general descriptive term to and nonerosive forms.
    [Show full text]
  • Ollier Disease: a Case Report
    Case Report Ollier Disease: A Case Report Bajracharya L*, Shrestha M**, Paudel S***, Shrestha PS*** *Teaching Assistant, **Assistant Professor, Department of Paediatrics, ***Assistant Professor, Department of Radiology, ****Professor, Department of Paediatrics, TUTH, Kathmandu, Nepal. ABSTRACT Ollier disease is a rare disease featuring multi ple enchondromas mainly aff ecti ng limbs. We describe a boy who presented in our OPD with multi ple painless joint deformiti es mostly in the both upper and lower limbs. Conventi onal X-ray evaluati on revealed typical multi ple radiolucent, homogenous oval and elongated shapes in the deformed limbs. : Ollier Disease , Enchondromatosis INTRODUCTION Enchondromas are common, benign, usually deformity of limbs. There is no history of weight asymptomati c carti lage tumours that develop in loss or traumati c injury. There is no similar family metaphyses and may also involve the diaphysis of history . He is acti ve , appropriate in all domains of long tubular bones.1 Ollier disease is defi ned by the development except delayed motor milestones, short presence of multi ple enchondromas and characterized limb gait and postural lumbar scoliosis. His vitals are by an asymmetric distributi on of carti lage lesions which stable. Weight is 20kg and height is 106cm (both less can be extremely variable. 2 The prevalence of Ollier’s than 3rd percenti le of NCHS). His head circumference disease is esti mated to be 1/100000 .1Children with is 52cm (50th percenti le). Upper segment to lower symptomati c enchondromatosis cases usually present segment rati o is 0.89cm. Multi ple joints are swollen before puberty with deformity, growth disorders and but nontender and non-erythematous.
    [Show full text]
  • Multiple Hereditary Exostoses
    Multiple Hereditary Exostoses Dror Paley MD, FRCSC Medical Director, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL David Feldman, MD Director, Spinal deformity center, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL Multiple hereditary exostoses (MHE), also known as multiple osteochondromas (MO), is an autosomal dominant skeletal disorder. Approximately 10–20% of individuals are a result of a spontaneous mutation while the rest are familial. The prevalence of MHE/MO is 1/50 000. There are two known genes found to cause MHE/MO, EXT1 located on chromosome 8q23-q24 and EXT2 located on chromosome 11p11-p12. In 10–15% of the patients, no mutation can be located by current methods of genetic testing.1–7 These mutations are scattered across both genes. EXT1/EXT2 is essential for the biosynthesis of heparan sulfate (HS). HS production in patients’ cells is reduced by 50% or more.8–19 MHE/MO is associated with characteristic progressive skeletal deformities of the extremities and shortening of one or both the sides, leading to limb length discrepancy (LLD) and short stature.20–28 Two bone segments, such as the lower leg or forearm, are at greater risk of problems due to either osteochondromas (OCs) from one or both bones impinging on or deforming the other bone or a primary issue of altered growth causing one bone to grow at a faster or slower rate. OCs can also affect joint motion due to impingement of an OC with the opposite side of the joint or subluxation/dislocation related to deformity, impingement, and incongruity.20,24,26,29,30 OCs can also cause nerve or vessel entrapment and/or compression, including the spinal cord and nerve roots.
    [Show full text]
  • 21362 Arthritis Australia a to Z List
    ARTHRITISINFORMATION SHEET Here is the A to Z of arthritis! A D Goodpasture’s syndrome Achilles tendonitis Degenerative joint disease Gout Achondroplasia Dermatomyositis Granulomatous arteritis Acromegalic arthropathy Diabetic finger sclerosis Adhesive capsulitis Diffuse idiopathic skeletal H Adult onset Still’s disease hyperostosis (DISH) Hemarthrosis Ankylosing spondylitis Discitis Hemochromatosis Anserine bursitis Discoid lupus erythematosus Henoch-Schonlein purpura Avascular necrosis Drug-induced lupus Hepatitis B surface antigen disease Duchenne’s muscular dystrophy Hip dysplasia B Dupuytren’s contracture Hurler syndrome Behcet’s syndrome Hypermobility syndrome Bicipital tendonitis E Hypersensitivity vasculitis Blount’s disease Ehlers-Danlos syndrome Hypertrophic osteoarthropathy Brucellar spondylitis Enteropathic arthritis Bursitis Epicondylitis I Erosive inflammatory osteoarthritis Immune complex disease C Exercise-induced compartment Impingement syndrome Calcaneal bursitis syndrome Calcium pyrophosphate dehydrate J (CPPD) F Jaccoud’s arthropathy Crystal deposition disease Fabry’s disease Juvenile ankylosing spondylitis Caplan’s syndrome Familial Mediterranean fever Juvenile dermatomyositis Carpal tunnel syndrome Farber’s lipogranulomatosis Juvenile rheumatoid arthritis Chondrocalcinosis Felty’s syndrome Chondromalacia patellae Fibromyalgia K Chronic synovitis Fifth’s disease Kawasaki disease Chronic recurrent multifocal Flat feet Kienbock’s disease osteomyelitis Foreign body synovitis Churg-Strauss syndrome Freiberg’s disease
    [Show full text]
  • Orphanet Journal of Rare Diseases Biomed Central
    Orphanet Journal of Rare Diseases BioMed Central Review Open Access Ollier disease Caroline Silve*1 and Harald Jüppner2 Address: 1INSERM U. 773, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75018 Paris, France and 2Endocrine Unit, Department of Medicine, and Pediatric Neprology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA Email: Caroline Silve* - [email protected]; Harald Jüppner - [email protected] * Corresponding author Published: 22 September 2006 Received: 31 July 2006 Accepted: 22 September 2006 Orphanet Journal of Rare Diseases 2006, 1:37 doi:10.1186/1750-1172-1-37 This article is available from: http://www.OJRD.com/content/1/1/37 © 2006 Silve and Jüppner; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Enchondromas are common intraosseous, usually benign cartilaginous tumors, that develop in close proximity to growth plate cartilage. When multiple enchondromas are present, the condition is called enchondromatosis also known as Ollier disease (WHO terminology). The estimated prevalence of Ollier disease is 1/100,000. Clinical manifestations often appear in the first decade of life. Ollier disease is characterized by an asymmetric distribution of cartilage lesions and these can be extremely variable (in terms of size, number, location, evolution of enchondromas, age of onset and of diagnosis, requirement for surgery). Clinical problems caused by enchondromas include skeletal deformities, limb-length discrepancy, and the potential risk for malignant change to chondrosarcoma.
    [Show full text]
  • Craniofacial Chondrosarcomas: Imaging Findings in 15 Untreated Cases
    165 Craniofacial Chondrosarcomas: Imaging Findings in 15 Untreated Cases Ya-Yen Lee1 Radiographic findings of 15 untreated chondrosarcomas of the cranial and facial Pamela Van Tassel bones were reviewed. These tumors have a propensity to occur in the wall of a maxillary sinus, at the junction of sphenoid and ethmoid sinuses and vomer, and at the undersur­ face of the sphenoid bone. Because of its slow-growing nature, chondrosarcomas tend to be large, multi lobulated, and sharply demarcated when detected. Frequent bone changes are a combination of erosion and destruction, with sharp transitional zones and absent periosteal reaction. Tumor matrix calcifications, not necessarily chondroid, are almost always present. Both CT and MR may be necessary for thorough evaluation of tumor extent. Chondrosarcoma, a malignant but usually slow-growing cartilaginous tumor, constitutes approximately 11 % of malignant bone tumors [1] but rarely occurs in the craniofacial region . Because of its propensity to occur in the deep facial structures or base of the skull, the true extent and origin of the tumor may be overlooked if not properly evaluated radiographically. We review a relatively large series of craniofacial chondrosarcomas and discuss the differential diagnosis and choice of imaging technique. Materials and Methods This retrospective radiologic review was based on the pretreatment radiographic studies of 15 patients with craniofacial chondrosarcomas seen at our institution over a period of 40 years , excluding three intracranial dural chondrosarcomas, which are to be reported sepa­ rately. An attempt was also made to correlate the radiographic findings with the hi stologic grades of the tumors. The ages of the patients ranged from 10 to 73 years , with a mean of 40 years.
    [Show full text]
  • Differential Diagnosis of Cartilaginous Lesions of Bone
    Differential Diagnosis of Cartilaginous Lesions of Bone David Suster, MD; Yin Pun Hung, MD, PhD; G. Petur Nielsen, MD Context.—Cartilaginous tumors represent one of the most Data Sources.—PubMed (US National Library of Med- common tumors of bone. Management of these tumors icine, Bethesda, Maryland) literature review, case review includes observation, curettage, and surgical excision or of archival cases at the Massachusetts General Hospital, resection, depending on their locations and whether they are and personal experience of the authors. benign or malignant. They can be diagnostically challenging, Conclusions.—This review has examined primary well- particularly in small biopsies. In rare cases, benign tumors differentiated cartilaginous lesions of bone, including their may undergo malignant transformation. differential diagnosis and approach to management. Objective.—To review common cartilaginous tumors, Because of the frequent overlap in histologic features, including in patients with multiple hereditary exostosis, particularly between low-grade chondrosarcoma and Ollier disease, and Maffucci syndrome, and to discuss enchondroma, evaluation of well-differentiated cartilagi- problems in the interpretation of well-differentiated nous lesions should be undertaken in conjunction with cartilaginous neoplasms of bone. Additionally, the concept thorough review of the imaging studies. of atypical cartilaginous tumor/chondrosarcoma grade 1 (Arch Pathol Lab Med. 2020;144:71–82; doi: 10.5858/ will be discussed and its use clarified. arpa.2019-0441-RA)
    [Show full text]
  • The Orthopaedic Manifestations of Osteogenesis Imperfecta: a Collective Review
    The Orthopaedic manifestations of Osteogenesis Imperfecta: A Collective Review By Bhatta A D Department of Orthopedic surgery Nelson Mandela School of Medicine KZN, South Africa Submitted in partial fulfilment of the academic requirements For the degree of MMed in the Department of Orthopaedics School of Clinical Medicine College of Health Sciences University of KwaZulu-Natal Durban 2016 (year) As the candidate’s supervisor I have approved this thesis for submission. Signed: Name: Prof M N Rasool Date: 24/02/2017 1 Declaration I Dr. AABASH DEV BHATTA declare that - (i) The research reported in this dissertation, except where otherwise indicated, and is my original work. (ii) This dissertation has not been submitted for any degree or examination at any other university. (iii) This dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. (iv) This dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a) Their words have been re-written but the general information attributed to them has been referenced; b) Where their exact words have been used, their writing has been placed inside quotation marks, and referenced. (v) Where I have reproduced a publication of which I am an author, co-author or editor, I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications. (vi) This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the References sections.
    [Show full text]
  • Musculoskeletal
    MUSCULOSKELETAL Dr. Dean Bruce University of Alberta DISCLOSURES… Member of the Royal College Examination Committee in Diagnostic Radiology. Lectures given to the Workman’s Compensation Board and Siemens MRI Symposium. Learning Objectives 1. Better understand Bone and Soft Tissue Tumors through individual cases. 2. Assess Internal Derangement of Joints through individual cases. 3. Improve your CanMEDS roles as a Scholar and Collaborator CASES 19 year old male Foot pain while running 1 Axial STIR Axial T1 Sagittal T1 22 year old male 2 months of elbow pain 2 Sagittal T1 Sagittal PD FS Coronal STIR Sagittal CT Recon Axial CT 9 year old male Growing ankle mass 3 Sagittal STIR Sagittal T1 AXIAL T2 52 year old female Slowly growing painless lump in triceps 4 Coronal T1 Coronal STIR COR T1 FS + GAD Ultrasound CASE REVIEW Case 1: DIFFUSE PIGMENTED VILLONODULAR SYNOVITIS (PVNS) OF CALCANEOCUBOID JOINT 1 Axial STIR Axial T1 Sagittal T1 1 Key Points NOTABLE: Mono-articular benign neoplasm, which is treated by synovectomy, but high-recurrence rates (50%) CLASSIC DESCRIPTOR: Low T1 and T2 lobulated tissue throughout the joint, with blooming on the gradient sequences due to hemosiderin PEARL: Almost never calcifies Cystic bone changes are usually in small joints Preserved joint space until late Case 1: PVNS of Calcaneocuboid Joint Companion Case – PVNS Wrist Coronal T2 Coronal GRE T2 Coronal T1 1 Differential Diagnosis 1. Amyloid Arthropathy a. Multiple joints (Systemic) 2. Chronic Hemorrhagic Effusions a. Rheumatoid arthritis b. Hemophilia c. Intra-articular Hemangioma, Sarcoma (very rare) 3. Synovial Chondromatosis a. Round or ovoid lesion, usually with calcification 4.
    [Show full text]
  • Osteochondromatosis: a Rare Clinical Condition
    [Downloaded free from http://www.jscisociety.com on Saturday, August 23, 2014, IP: 14.200.188.177] || Click here to download free Android application for this journal CASE REPORT Osteochondromatosis: A rare clinical condition Kiran Patil, Mahantesh Y. Patil, Abstract Aditya Khemka Department of Orthopedics, J.N.M.C. A case report of multiple hereditary exostosis / osteochondromatosis is presented. Exostosis Belgaum, Karnataka, India is a benign cartilaginous lesion. Solitary lesions are called osteochondroma, while the presence of multiple lesions, an autosomal dominantly inherited genetic defect, is called osteochondromatosis. In extremely rare instances they may devolve into a chondrosarcoma, the chances of which are much higher in the presence of multiple lesions. We report a rare case of an eight-year-old girl who presented with multiple swellings arising from Address for correspondence: the metaphysial regions of the femur, tibia, fibula, and the radius. She was treated Dr. Kiran Patil, conservatively by us, and is currently being monitored regularly for any malignant change. Department of Orthopedics, J.N.M.C, Belgaum, Karnataka, India. Key words: Benign bone tumor, cartilage, multiple exostoses, osteochondromatosis E-mail: [email protected] INTRODUCTION CASE REPORT An osteochondroma was first described by Sir Astley An eight-year-old girl presented in our Outpatient Cooper, in 1818. It is the most common benign Department with a hard bony irregular swelling in the developmental tumor of the appendicular skeleton, lateral aspect of the lower third of the leg, 5 × 5 × 4 cm. characterized by abnormal ectopic endochondral It had gradually increased in size from approximately ossification around the physis.[1] Osteochondroma 2 × 2 cm when first noticed over four years ago, to the accounts for 34% of the benign cartilage tumors and present size.
    [Show full text]
  • CASE REPORT 6-Month-Old Girl ONLINE EXCLUSIVE SIGNS & SYMPTOMS – Leg-Length Discrepancy
    THE PATIENT CASE REPORT 6-month-old girl ONLINE EXCLUSIVE SIGNS & SYMPTOMS – Leg-length discrepancy – Asymmetric gluteal folds Beth P. Davis, DPT, MBA, and popliteal fossae FNAP; Amir Barzin, DO, MS; Cristen Page, MD, – Positive Galeazzi test MPH Emory University School of Medicine, Department of Rehabilitation Medicine, Division of Physical Therapy, Atlanta, Ga (Dr. Davis); Department of Family Medicine, School of Medicine, University of North Carolina at Chapel THE CASE Hill (Drs. Barzin and Page) A healthy 6-month-old girl born via spontaneous vaginal delivery to a 33-year-old mother [email protected] presented to her family physician (FP) for a routine well-child examination. The mother’s The authors reported no prenatal anatomy scan, delivery, and personal and family history were unremarkable. The potential conflict of interest patient was not firstborn or breech, and there was no family history of hip dysplasia. On prior relevant to this article. infant well-child examinations, Ortolani and Barlow maneuvers were negative, and the pa- tient demonstrated spontaneous movement of both legs. There was no evidence of hip dys- plasia, lower extremity weakness, musculoskeletal abnormalities, or abnormal skin markings. The patient had normal growth and development (50th percentile for height and weight, average Ages & Stages Questionnaire scores) and no history of infection or trauma. At the current presentation, the FP noted a leg-length discrepancy while palpating the bony (patellar and malleolar) landmarks of the lower extremities, but the right and left an- terior superior iliac spine was symmetrical. The gluteal folds and popliteal fossae were asym- metric, a Galeazzi test was positive, and the right leg measured approximately 2 cm shorter than the left leg.
    [Show full text]