Osteochondroma: Radiological Diagnosis, Complications and Variants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bone and Soft Tissue Tumors Have Been Treated Separately
EPIDEMIOLOGY z Sarcomas are rare tumors compared to other BONE AND SOFT malignancies: 8,700 new sarcomas in 2001, with TISSUE TUMORS 4,400 deaths. z The incidence of sarcomas is around 3-4/100,000. z Slight male predominance (with some subtypes more common in women). z Majority of soft tissue tumors affect older adults, but important sub-groups occur predominantly or exclusively in children. z Incidence of benign soft tissue tumors not known, but Fabrizio Remotti MD probably outnumber malignant tumors 100:1. BONE AND SOFT TISSUE SOFT TISSUE TUMORS TUMORS z Traditionally bone and soft tissue tumors have been treated separately. z This separation will be maintained in the following presentation. z Soft tissue sarcomas will be treated first and the sarcomas of bone will follow. Nowhere in the picture….. DEFINITION Histological z Soft tissue pathology deals with tumors of the classification connective tissues. of soft tissue z The concept of soft tissue is understood broadly to tumors include non-osseous tumors of extremities, trunk wall, retroperitoneum and mediastinum, and head & neck. z Excluded (with a few exceptions) are organ specific tumors. 1 Histological ETIOLOGY classification of soft tissue tumors tumors z Oncogenic viruses introduce new genomic material in the cell, which encode for oncogenic proteins that disrupt the regulation of cellular proliferation. z Two DNA viruses have been linked to soft tissue sarcomas: – Human herpes virus 8 (HHV8) linked to Kaposi’s sarcoma – Epstein-Barr virus (EBV) linked to subtypes of leiomyosarcoma z In both instances the connection between viral infection and sarcoma is more common in immunosuppressed hosts. -
Advances in the Pathogenesis and Possible Treatments for Multiple Hereditary Exostoses from the 2016 International MHE Conference
Connective Tissue Research ISSN: 0300-8207 (Print) 1607-8438 (Online) Journal homepage: https://www.tandfonline.com/loi/icts20 Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference Anne Q. Phan, Maurizio Pacifici & Jeffrey D. Esko To cite this article: Anne Q. Phan, Maurizio Pacifici & Jeffrey D. Esko (2018) Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference, Connective Tissue Research, 59:1, 85-98, DOI: 10.1080/03008207.2017.1394295 To link to this article: https://doi.org/10.1080/03008207.2017.1394295 Published online: 03 Nov 2017. Submit your article to this journal Article views: 323 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=icts20 CONNECTIVE TISSUE RESEARCH 2018, VOL. 59, NO. 1, 85–98 https://doi.org/10.1080/03008207.2017.1394295 PROCEEDINGS Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference Anne Q. Phana, Maurizio Pacificib, and Jeffrey D. Eskoa aDepartment of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; bTranslational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA ABSTRACT KEYWORDS Multiple hereditary exostoses (MHE) is an autosomal dominant disorder that affects about 1 in 50,000 Multiple hereditary children worldwide. MHE, also known as hereditary multiple exostoses (HME) or multiple osteochon- exostoses; multiple dromas (MO), is characterized by cartilage-capped outgrowths called osteochondromas that develop osteochondromas; EXT1; adjacent to the growth plates of skeletal elements in young patients. -
Exostoses, Enchondromatosis and Metachondromatosis; Diagnosis and Management
Acta Orthop. Belg., 2016, 82, 102-105 ORIGINAL STUDY Exostoses, enchondromatosis and metachondromatosis; diagnosis and management John MCFARLANE, Tim KNIGHT, Anubha SINHA, Trevor COLE, Nigel KIELY, Rob FREEMAN From the Department of Orthopaedics, Robert Jones Agnes Hunt Hospital, Oswestry, UK We describe a 5 years old girl who presented to the region of long bones and are composed of a carti- multidisciplinary skeletal dysplasia clinic following lage lump outside the bone which may be peduncu- excision of two bony lumps from her fingers. Based on lated or sessile, the knee is the most common clinical examination, radiolographs and histological site (1,10). An isolated exostosis is a common inci- results an initial diagnosis of hereditary multiple dental finding rarely requiring treatment. Disorders exostosis (HME) was made. Four years later she developed further lumps which had the radiological associated with exostoses include HME, Langer- appearance of enchondromas. The appearance of Giedion syndrome, Gardner syndrome and meta- both exostoses and enchondromas suggested a possi- chondromatosis. ble diagnosis of metachondromatosis. Genetic testing Enchondroma are the second most common be- revealed a splice site mutation at the end of exon 11 on nign bone tumour characterised by the formation of the PTPN11 gene, confirming the diagnosis of meta- hyaline cartilage in the medulla of a bone. It occurs chondromatosis. While both single or multiple exosto- most frequently in the hand (60%) and then the feet. ses and enchondromas occur relatively commonly on The typical radiological features are of a well- their own, the appearance of multiple exostoses and defined lucent defect with endosteal scalloping and enchondromas together is rare and should raise the differential diagnosis of metachondromatosis. -
Final Copy 2020 09 29 Mania
This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Maniaki, Evangelia Title: Risk factors, activity monitoring and quality of life assessment in cats with early degenerative joint disease General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. RISK FACTORS, ACTIVITY MONITORING AND QUALITY OF LIFE ASSESSMENT IN CATS WITH EARLY DEGENERATIVE JOINT DISEASE Evangelia Maniaki A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master’s in Research in the Faculty of Health Sciences Bristol Veterinary School, June 2020 Twenty-nine thousand two hundred and eighteen words 1. -
Ch07 Final.Qxd 7/2/07 13:55 Page 87
Ch07 final.qxd 7/2/07 13:55 Page 87 87 CHAPTER 7 ARTHROLOGY Feline arthrology has been an overlooked subject in term osteoarthritis is reserved for the specific type of the past with most reviews of joint disease in small DJD that affects diarthrodial synovial articulations. animals focusing on the dog. However, cats are now Diseases of synovial joints can conveniently be known to suffer from many different types of joint divided into degenerative arthritis and inflammatory disease and, although there are many similarities with arthritis on the basis of the predominant pathologic the dog, there are also many features that are unique process (Table 20). Degenerative arthropathies are the to the feline patient. most common types and include traumatic arthritis and osteoarthritis. Inflammatory arthropathies are less CLASSIFICATION OF JOINT DISEASE common than degenerative arthropathies and have The terms arthritis and arthropathy literally mean joint either an infective or immune-mediated etiology. inflammation and joint disease, respectively. These terms Infective arthritis caused by bacterial infection (septic are used interchangeably in this chapter to describe arthritis) is the commonest type of inflammatory arthritis a number of well defined joint diseases characterized in the cat. Septic arthritis is classed as an erosive type of by a combination of inflammatory and degenerative arthritis because there is destruction of articular cartilage changes. The terms degenerative joint disease (DJD) in joints infected by bacteria. Immune-mediated and osteoarthritis are also often used synonymously. In arthropathies can be subdivided into both erosive this chapter, DJD is used as a general descriptive term to and nonerosive forms. -
Ollier Disease: a Case Report
Case Report Ollier Disease: A Case Report Bajracharya L*, Shrestha M**, Paudel S***, Shrestha PS*** *Teaching Assistant, **Assistant Professor, Department of Paediatrics, ***Assistant Professor, Department of Radiology, ****Professor, Department of Paediatrics, TUTH, Kathmandu, Nepal. ABSTRACT Ollier disease is a rare disease featuring multi ple enchondromas mainly aff ecti ng limbs. We describe a boy who presented in our OPD with multi ple painless joint deformiti es mostly in the both upper and lower limbs. Conventi onal X-ray evaluati on revealed typical multi ple radiolucent, homogenous oval and elongated shapes in the deformed limbs. : Ollier Disease , Enchondromatosis INTRODUCTION Enchondromas are common, benign, usually deformity of limbs. There is no history of weight asymptomati c carti lage tumours that develop in loss or traumati c injury. There is no similar family metaphyses and may also involve the diaphysis of history . He is acti ve , appropriate in all domains of long tubular bones.1 Ollier disease is defi ned by the development except delayed motor milestones, short presence of multi ple enchondromas and characterized limb gait and postural lumbar scoliosis. His vitals are by an asymmetric distributi on of carti lage lesions which stable. Weight is 20kg and height is 106cm (both less can be extremely variable. 2 The prevalence of Ollier’s than 3rd percenti le of NCHS). His head circumference disease is esti mated to be 1/100000 .1Children with is 52cm (50th percenti le). Upper segment to lower symptomati c enchondromatosis cases usually present segment rati o is 0.89cm. Multi ple joints are swollen before puberty with deformity, growth disorders and but nontender and non-erythematous. -
Immunopathologic Studies in Relapsing Polychondritis
Immunopathologic Studies in Relapsing Polychondritis Jerome H. Herman, Marie V. Dennis J Clin Invest. 1973;52(3):549-558. https://doi.org/10.1172/JCI107215. Research Article Serial studies have been performed on three patients with relapsing polychondritis in an attempt to define a potential immunopathologic role for degradation constituents of cartilage in the causation and/or perpetuation of the inflammation observed. Crude proteoglycan preparations derived by disruptive and differential centrifugation techniques from human costal cartilage, intact chondrocytes grown as monolayers, their homogenates and products of synthesis provided antigenic material for investigation. Circulating antibody to such antigens could not be detected by immunodiffusion, hemagglutination, immunofluorescence or complement mediated chondrocyte cytotoxicity as assessed by 51Cr release. Similarly, radiolabeled incorporation studies attempting to detect de novo synthesis of such antibody by circulating peripheral blood lymphocytes as assessed by radioimmunodiffusion, immune absorption to neuraminidase treated and untreated chondrocytes and immune coprecipitation were negative. Delayed hypersensitivity to cartilage constituents was studied by peripheral lymphocyte transformation employing [3H]thymidine incorporation and the release of macrophage aggregation factor. Positive results were obtained which correlated with periods of overt disease activity. Similar results were observed in patients with classical rheumatoid arthritis manifesting destructive articular changes. This study suggests that cartilage antigenic components may facilitate perpetuation of cartilage inflammation by cellular immune mechanisms. Find the latest version: https://jci.me/107215/pdf Immunopathologic Studies in Relapsing Polychondritis JERoME H. HERmAN and MARIE V. DENNIS From the Division of Immunology, Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45229 A B S T R A C T Serial studies have been performed on as hematologic and serologic disturbances. -
SKELETAL DYSPLASIA Dr Vasu Pai
SKELETAL DYSPLASIA Dr Vasu Pai Skeletal dysplasia are the result of a defective growth and development of the skeleton. Dysplastic conditions are suspected on the basis of abnormal stature, disproportion, dysmorphism, or deformity. Diagnosis requires Simple measurement of height and calculation of proportionality [<60 inches: consideration of dysplasia is appropriate] Dysmorphic features of the face, hands, feet or deformity A complete physical examination Radiographs: Extremities and spine, skull, Pelvis, Hand Genetics: the risk of the recurrence of the condition in the family; Family evaluation. Dwarf: Proportional: constitutional or endocrine or malnutrition Disproportion [Trunk: Extremity] a. Height < 42” Diastrophic Dwarfism < 48” Achondroplasia 52” Hypochondroplasia b. Trunk-extremity ratio May have a normal trunk and short limbs (achondroplasia), Short trunk and limbs of normal length (e.g., spondylo-epiphyseal dysplasia tarda) Long trunk and long limbs (e.g., Marfan’s syndrome). c. Limb-segment ratio Normal: Radius-Humerus ratio 75% Tibia-Femur 82% Rhizomelia [short proximal segments as in Achondroplastics] Mesomelia: Dynschondrosteosis] Acromelia [short hands and feet] RUBIN CLASSIFICATION 1. Hypoplastic epiphysis ACHONDROPLASTIC Autosomal Dominant: 80%; 0.5-1.5/10000 births Most common disproportionate dwarfism. Prenatal diagnosis: 18 weeks by measuring femoral and humeral lengths. Abnormal endochondral bone formation: zone of hypertrophy. Gene defect FGFR fibroblast growth factor receptor 3 . chromosome 4 Rhizomelic pattern, with the humerus and femur affected more than the distal extremities; Facies: Frontal bossing; Macrocephaly; Saddle nose Maxillary hypoplasia, Mandibular prognathism Spine: Lumbar lordosis and Thoracolumbar kyphosis Progressive genu varum and coxa valga Wedge shaped gaps between 3rd and 4th fingers (trident hands) Trident hand 50%, joint laxity Pathology Lack of columnation Bony plate from lack of growth Disorganized metaphysis Orthopaedics 1. -
Imaging in Osteogenesis Imperfecta
Paediatr Croat. 2017;61:122-8 PREGLED / REVIEW www.paedcro.com http://dx.doi.org/10.13112/PC.2017.17 Imaging in osteogenesis imperfecta Igor Borić, Renata Prpić Vučković* Osteogenesis imperfecta (OI) is a congenital genetic disorder with skeletal or extra-skeletal manifestations. Phenotypic features and mode of inheritance, clinical features, and radiographic fi ndings make the basis for the currently accepted classifi cation system of OI. The antenatal and postnatal diagnosis of the disease using diff erent radiographic methods (plain radiography, ultrasonography, computed tomography and magnetic resonance imaging) is described and characteristic appearances of bone and other defor- mities are analyzed. Distinctive bone manifestations of OI are illustrated using typical examples. Finally, we give a comment on diff erential diagnosis. Key words: osteogenesis imperfecta, radiography, imaging Osteogenesis imperfecta (OI) is a congenital, genetic disor- od: radiography, ultrasonography (US), computed tomogra- der of collagen type I synthesis that involves connective tis- phy (CT) and magnetic resonance imaging (MRI) (3, 7, 8). sues and bones, and is characterized by increased bone The preferred radiographic examination for initial investiga- fragility and decreased bone density. There is extreme varia- tion of OI is plain radiography because most of the imaging tion in clinical symptoms based on genetics and subtypes characteristics of this disease are apparent on plain radio- including blue sclera, dental fragility, and hearing loss. De- graphs. pending on the disease severity, bone fragility may lead to Prenatal ultrasonography plays a role in the diagnosis of OI; perinatal death or can cause severe deformities that persist typical fi ndings include fractures, decreased calvarial ossifi ca- into adulthood (1, 2). -
Multiple Hereditary Exostoses
Multiple Hereditary Exostoses Dror Paley MD, FRCSC Medical Director, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL David Feldman, MD Director, Spinal deformity center, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL Multiple hereditary exostoses (MHE), also known as multiple osteochondromas (MO), is an autosomal dominant skeletal disorder. Approximately 10–20% of individuals are a result of a spontaneous mutation while the rest are familial. The prevalence of MHE/MO is 1/50 000. There are two known genes found to cause MHE/MO, EXT1 located on chromosome 8q23-q24 and EXT2 located on chromosome 11p11-p12. In 10–15% of the patients, no mutation can be located by current methods of genetic testing.1–7 These mutations are scattered across both genes. EXT1/EXT2 is essential for the biosynthesis of heparan sulfate (HS). HS production in patients’ cells is reduced by 50% or more.8–19 MHE/MO is associated with characteristic progressive skeletal deformities of the extremities and shortening of one or both the sides, leading to limb length discrepancy (LLD) and short stature.20–28 Two bone segments, such as the lower leg or forearm, are at greater risk of problems due to either osteochondromas (OCs) from one or both bones impinging on or deforming the other bone or a primary issue of altered growth causing one bone to grow at a faster or slower rate. OCs can also affect joint motion due to impingement of an OC with the opposite side of the joint or subluxation/dislocation related to deformity, impingement, and incongruity.20,24,26,29,30 OCs can also cause nerve or vessel entrapment and/or compression, including the spinal cord and nerve roots. -
Osteochondroma: Ignore Or Investigate?
r e v b r a s o r t o p . 2 0 1 4;4 9(6):555–564 www.rbo.org.br Updating Article ଝ Osteochondroma: ignore or investigate? a b,c,∗ Antônio Marcelo Gonc¸alves de Souza , Rosalvo Zósimo Bispo Júnior a School of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil b School of Medicine, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil c University Center of João Pessoa (UNIPÊ), João Pessoa, PB, Brazil a r a t i b s c t l e i n f o r a c t Article history: Osteochondromas are bone protuberances surrounded by a cartilage layer. They generally Received 23 August 2013 affect the extremities of the long bones in an immature skeleton and deform them. They usu- Accepted 31 October 2013 ally occur singly, but a multiple form of presentation may be found. They have a very charac- Available online 27 October 2014 teristic appearance and are easily diagnosed. However, an atypical site (in the axial skeleton) and/or malignant transformation of the lesion may sometimes make it difficult to iden- Keywords: tify osteochondromas immediately by means of radiographic examination. In these cases, Osteochondroma/etiology imaging examinations that are more refined are necessary. Although osteochondromas Osteochondroma/physiopathology do not directly affect these patients’ life expectancy, certain complications may occur, with Osteochondroma/diagnosis varying degrees of severity. Bone neoplasms © 2014 Sociedade Brasileira de Ortopedia e Traumatologia. Published by Elsevier Editora Ltda. All rights reserved. Osteocondroma: ignorar ou investigar? r e s u m o Palavras-chave: Osteocondromas são protuberâncias ósseas envolvidas por uma camada de cartilagem. -
Periapical Radiopacities
2016 self-study course two course The Ohio State University College of Dentistry is a recognized provider for ADA CERP credit. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry. Concerns or complaints about a CE provider may be directed to the provider or to the Commission for Continuing Education Provider Recognition at www.ada.org/cerp. The Ohio State University College of Dentistry is approved by the Ohio State Dental Board as a permanent sponsor of continuing dental education. This continuing education activity has been planned and implemented in accordance with the standards of the ADA Continuing Education Recognition Program (ADA CERP) through joint efforts between The Ohio State University College of Dentistry Office of Continuing Dental Education and the Sterilization Monitoring Service (SMS). ABOUT this COURSE… FREQUENTLY asked QUESTIONS… . READ the MATERIALS. Read and Q: Who can earn FREE CE credits? review the course materials. COMPLETE the TEST. Answer the A: EVERYONE - All dental professionals eight question test. A total of 6/8 in your office may earn free CE questions must be answered correctly credits. Each person must read the contact for credit. course materials and submit an online answer form independently. SUBMIT the ANSWER FORM ONLINE. You MUST submit your answers ONLINE at: Q: What if I did not receive a confirmation ID? us http://dentistry.osu.edu/sms-continuing-education A: Once you have fully completed your .