New Therapeutic Targets in Rare Genetic Skeletal Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bone and Soft Tissue Tumors Have Been Treated Separately
EPIDEMIOLOGY z Sarcomas are rare tumors compared to other BONE AND SOFT malignancies: 8,700 new sarcomas in 2001, with TISSUE TUMORS 4,400 deaths. z The incidence of sarcomas is around 3-4/100,000. z Slight male predominance (with some subtypes more common in women). z Majority of soft tissue tumors affect older adults, but important sub-groups occur predominantly or exclusively in children. z Incidence of benign soft tissue tumors not known, but Fabrizio Remotti MD probably outnumber malignant tumors 100:1. BONE AND SOFT TISSUE SOFT TISSUE TUMORS TUMORS z Traditionally bone and soft tissue tumors have been treated separately. z This separation will be maintained in the following presentation. z Soft tissue sarcomas will be treated first and the sarcomas of bone will follow. Nowhere in the picture….. DEFINITION Histological z Soft tissue pathology deals with tumors of the classification connective tissues. of soft tissue z The concept of soft tissue is understood broadly to tumors include non-osseous tumors of extremities, trunk wall, retroperitoneum and mediastinum, and head & neck. z Excluded (with a few exceptions) are organ specific tumors. 1 Histological ETIOLOGY classification of soft tissue tumors tumors z Oncogenic viruses introduce new genomic material in the cell, which encode for oncogenic proteins that disrupt the regulation of cellular proliferation. z Two DNA viruses have been linked to soft tissue sarcomas: – Human herpes virus 8 (HHV8) linked to Kaposi’s sarcoma – Epstein-Barr virus (EBV) linked to subtypes of leiomyosarcoma z In both instances the connection between viral infection and sarcoma is more common in immunosuppressed hosts. -
Advances in the Pathogenesis and Possible Treatments for Multiple Hereditary Exostoses from the 2016 International MHE Conference
Connective Tissue Research ISSN: 0300-8207 (Print) 1607-8438 (Online) Journal homepage: https://www.tandfonline.com/loi/icts20 Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference Anne Q. Phan, Maurizio Pacifici & Jeffrey D. Esko To cite this article: Anne Q. Phan, Maurizio Pacifici & Jeffrey D. Esko (2018) Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference, Connective Tissue Research, 59:1, 85-98, DOI: 10.1080/03008207.2017.1394295 To link to this article: https://doi.org/10.1080/03008207.2017.1394295 Published online: 03 Nov 2017. Submit your article to this journal Article views: 323 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=icts20 CONNECTIVE TISSUE RESEARCH 2018, VOL. 59, NO. 1, 85–98 https://doi.org/10.1080/03008207.2017.1394295 PROCEEDINGS Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference Anne Q. Phana, Maurizio Pacificib, and Jeffrey D. Eskoa aDepartment of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; bTranslational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA ABSTRACT KEYWORDS Multiple hereditary exostoses (MHE) is an autosomal dominant disorder that affects about 1 in 50,000 Multiple hereditary children worldwide. MHE, also known as hereditary multiple exostoses (HME) or multiple osteochon- exostoses; multiple dromas (MO), is characterized by cartilage-capped outgrowths called osteochondromas that develop osteochondromas; EXT1; adjacent to the growth plates of skeletal elements in young patients. -
Exostoses, Enchondromatosis and Metachondromatosis; Diagnosis and Management
Acta Orthop. Belg., 2016, 82, 102-105 ORIGINAL STUDY Exostoses, enchondromatosis and metachondromatosis; diagnosis and management John MCFARLANE, Tim KNIGHT, Anubha SINHA, Trevor COLE, Nigel KIELY, Rob FREEMAN From the Department of Orthopaedics, Robert Jones Agnes Hunt Hospital, Oswestry, UK We describe a 5 years old girl who presented to the region of long bones and are composed of a carti- multidisciplinary skeletal dysplasia clinic following lage lump outside the bone which may be peduncu- excision of two bony lumps from her fingers. Based on lated or sessile, the knee is the most common clinical examination, radiolographs and histological site (1,10). An isolated exostosis is a common inci- results an initial diagnosis of hereditary multiple dental finding rarely requiring treatment. Disorders exostosis (HME) was made. Four years later she developed further lumps which had the radiological associated with exostoses include HME, Langer- appearance of enchondromas. The appearance of Giedion syndrome, Gardner syndrome and meta- both exostoses and enchondromas suggested a possi- chondromatosis. ble diagnosis of metachondromatosis. Genetic testing Enchondroma are the second most common be- revealed a splice site mutation at the end of exon 11 on nign bone tumour characterised by the formation of the PTPN11 gene, confirming the diagnosis of meta- hyaline cartilage in the medulla of a bone. It occurs chondromatosis. While both single or multiple exosto- most frequently in the hand (60%) and then the feet. ses and enchondromas occur relatively commonly on The typical radiological features are of a well- their own, the appearance of multiple exostoses and defined lucent defect with endosteal scalloping and enchondromas together is rare and should raise the differential diagnosis of metachondromatosis. -
SKELETAL DYSPLASIA Dr Vasu Pai
SKELETAL DYSPLASIA Dr Vasu Pai Skeletal dysplasia are the result of a defective growth and development of the skeleton. Dysplastic conditions are suspected on the basis of abnormal stature, disproportion, dysmorphism, or deformity. Diagnosis requires Simple measurement of height and calculation of proportionality [<60 inches: consideration of dysplasia is appropriate] Dysmorphic features of the face, hands, feet or deformity A complete physical examination Radiographs: Extremities and spine, skull, Pelvis, Hand Genetics: the risk of the recurrence of the condition in the family; Family evaluation. Dwarf: Proportional: constitutional or endocrine or malnutrition Disproportion [Trunk: Extremity] a. Height < 42” Diastrophic Dwarfism < 48” Achondroplasia 52” Hypochondroplasia b. Trunk-extremity ratio May have a normal trunk and short limbs (achondroplasia), Short trunk and limbs of normal length (e.g., spondylo-epiphyseal dysplasia tarda) Long trunk and long limbs (e.g., Marfan’s syndrome). c. Limb-segment ratio Normal: Radius-Humerus ratio 75% Tibia-Femur 82% Rhizomelia [short proximal segments as in Achondroplastics] Mesomelia: Dynschondrosteosis] Acromelia [short hands and feet] RUBIN CLASSIFICATION 1. Hypoplastic epiphysis ACHONDROPLASTIC Autosomal Dominant: 80%; 0.5-1.5/10000 births Most common disproportionate dwarfism. Prenatal diagnosis: 18 weeks by measuring femoral and humeral lengths. Abnormal endochondral bone formation: zone of hypertrophy. Gene defect FGFR fibroblast growth factor receptor 3 . chromosome 4 Rhizomelic pattern, with the humerus and femur affected more than the distal extremities; Facies: Frontal bossing; Macrocephaly; Saddle nose Maxillary hypoplasia, Mandibular prognathism Spine: Lumbar lordosis and Thoracolumbar kyphosis Progressive genu varum and coxa valga Wedge shaped gaps between 3rd and 4th fingers (trident hands) Trident hand 50%, joint laxity Pathology Lack of columnation Bony plate from lack of growth Disorganized metaphysis Orthopaedics 1. -
Imaging in Osteogenesis Imperfecta
Paediatr Croat. 2017;61:122-8 PREGLED / REVIEW www.paedcro.com http://dx.doi.org/10.13112/PC.2017.17 Imaging in osteogenesis imperfecta Igor Borić, Renata Prpić Vučković* Osteogenesis imperfecta (OI) is a congenital genetic disorder with skeletal or extra-skeletal manifestations. Phenotypic features and mode of inheritance, clinical features, and radiographic fi ndings make the basis for the currently accepted classifi cation system of OI. The antenatal and postnatal diagnosis of the disease using diff erent radiographic methods (plain radiography, ultrasonography, computed tomography and magnetic resonance imaging) is described and characteristic appearances of bone and other defor- mities are analyzed. Distinctive bone manifestations of OI are illustrated using typical examples. Finally, we give a comment on diff erential diagnosis. Key words: osteogenesis imperfecta, radiography, imaging Osteogenesis imperfecta (OI) is a congenital, genetic disor- od: radiography, ultrasonography (US), computed tomogra- der of collagen type I synthesis that involves connective tis- phy (CT) and magnetic resonance imaging (MRI) (3, 7, 8). sues and bones, and is characterized by increased bone The preferred radiographic examination for initial investiga- fragility and decreased bone density. There is extreme varia- tion of OI is plain radiography because most of the imaging tion in clinical symptoms based on genetics and subtypes characteristics of this disease are apparent on plain radio- including blue sclera, dental fragility, and hearing loss. De- graphs. pending on the disease severity, bone fragility may lead to Prenatal ultrasonography plays a role in the diagnosis of OI; perinatal death or can cause severe deformities that persist typical fi ndings include fractures, decreased calvarial ossifi ca- into adulthood (1, 2). -
Mackenzie's Mission Gene & Condition List
Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child. -
Multiple Hereditary Exostoses
Multiple Hereditary Exostoses Dror Paley MD, FRCSC Medical Director, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL David Feldman, MD Director, Spinal deformity center, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL Multiple hereditary exostoses (MHE), also known as multiple osteochondromas (MO), is an autosomal dominant skeletal disorder. Approximately 10–20% of individuals are a result of a spontaneous mutation while the rest are familial. The prevalence of MHE/MO is 1/50 000. There are two known genes found to cause MHE/MO, EXT1 located on chromosome 8q23-q24 and EXT2 located on chromosome 11p11-p12. In 10–15% of the patients, no mutation can be located by current methods of genetic testing.1–7 These mutations are scattered across both genes. EXT1/EXT2 is essential for the biosynthesis of heparan sulfate (HS). HS production in patients’ cells is reduced by 50% or more.8–19 MHE/MO is associated with characteristic progressive skeletal deformities of the extremities and shortening of one or both the sides, leading to limb length discrepancy (LLD) and short stature.20–28 Two bone segments, such as the lower leg or forearm, are at greater risk of problems due to either osteochondromas (OCs) from one or both bones impinging on or deforming the other bone or a primary issue of altered growth causing one bone to grow at a faster or slower rate. OCs can also affect joint motion due to impingement of an OC with the opposite side of the joint or subluxation/dislocation related to deformity, impingement, and incongruity.20,24,26,29,30 OCs can also cause nerve or vessel entrapment and/or compression, including the spinal cord and nerve roots. -
Osteochondroma: Ignore Or Investigate?
r e v b r a s o r t o p . 2 0 1 4;4 9(6):555–564 www.rbo.org.br Updating Article ଝ Osteochondroma: ignore or investigate? a b,c,∗ Antônio Marcelo Gonc¸alves de Souza , Rosalvo Zósimo Bispo Júnior a School of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil b School of Medicine, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil c University Center of João Pessoa (UNIPÊ), João Pessoa, PB, Brazil a r a t i b s c t l e i n f o r a c t Article history: Osteochondromas are bone protuberances surrounded by a cartilage layer. They generally Received 23 August 2013 affect the extremities of the long bones in an immature skeleton and deform them. They usu- Accepted 31 October 2013 ally occur singly, but a multiple form of presentation may be found. They have a very charac- Available online 27 October 2014 teristic appearance and are easily diagnosed. However, an atypical site (in the axial skeleton) and/or malignant transformation of the lesion may sometimes make it difficult to iden- Keywords: tify osteochondromas immediately by means of radiographic examination. In these cases, Osteochondroma/etiology imaging examinations that are more refined are necessary. Although osteochondromas Osteochondroma/physiopathology do not directly affect these patients’ life expectancy, certain complications may occur, with Osteochondroma/diagnosis varying degrees of severity. Bone neoplasms © 2014 Sociedade Brasileira de Ortopedia e Traumatologia. Published by Elsevier Editora Ltda. All rights reserved. Osteocondroma: ignorar ou investigar? r e s u m o Palavras-chave: Osteocondromas são protuberâncias ósseas envolvidas por uma camada de cartilagem. -
Fibrochondrogenesis
Fibrochondrogenesis Description Fibrochondrogenesis is a very severe disorder of bone growth. Affected infants have a very narrow chest, which prevents the lungs from developing normally. Most infants with this condition are stillborn or die shortly after birth from respiratory failure. However, some affected individuals have lived into childhood. Fibrochondrogenesis is characterized by short stature (dwarfism) and other skeletal abnormalities. Affected individuals have shortened long bones in the arms and legs that are unusually wide at the ends (described as dumbbell-shaped). People with this condition also have a narrow chest with short, wide ribs and a round and prominent abdomen. The bones of the spine (vertebrae) are flattened (platyspondyly) and have a characteristic pinched or pear shape that is noticeable on x-rays. Other skeletal abnormalities associated with fibrochondrogenesis include abnormal curvature of the spine and underdeveloped hip (pelvic) bones. People with fibrochondrogenesis also have distinctive facial features. These include prominent eyes, low-set ears, a small mouth with a long upper lip, and a small chin ( micrognathia). Affected individuals have a relatively flat-appearing midface, particularly a small nose with a flat nasal bridge and nostrils that open to the front rather than downward (anteverted nares). Vision problems, including severe nearsightedness (high myopia) and clouding of the lens of the eye (cataract), are common in those who survive infancy. Most affected individuals also have sensorineural hearing loss, which is caused by abnormalities of the inner ear. Frequency Fibrochondrogenesis appears to be a rare disorder. About 20 affected individuals have been described in the medical literature. Causes Fibrochondrogenesis can result from mutations in the COL11A1 or COL11A2 gene. -
Blueprint Genetics Comprehensive Skeletal Dysplasias and Disorders
Comprehensive Skeletal Dysplasias and Disorders Panel Test code: MA3301 Is a 251 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of disorders involving the skeletal system. About Comprehensive Skeletal Dysplasias and Disorders This panel covers a broad spectrum of skeletal disorders including common and rare skeletal dysplasias (eg. achondroplasia, COL2A1 related dysplasias, diastrophic dysplasia, various types of spondylo-metaphyseal dysplasias), various ciliopathies with skeletal involvement (eg. short rib-polydactylies, asphyxiating thoracic dysplasia dysplasias and Ellis-van Creveld syndrome), various subtypes of osteogenesis imperfecta, campomelic dysplasia, slender bone dysplasias, dysplasias with multiple joint dislocations, chondrodysplasia punctata group of disorders, neonatal osteosclerotic dysplasias, osteopetrosis and related disorders, abnormal mineralization group of disorders (eg hypopohosphatasia), osteolysis group of disorders, disorders with disorganized development of skeletal components, overgrowth syndromes with skeletal involvement, craniosynostosis syndromes, dysostoses with predominant craniofacial involvement, dysostoses with predominant vertebral involvement, patellar dysostoses, brachydactylies, some disorders with limb hypoplasia-reduction defects, ectrodactyly with and without other manifestations, polydactyly-syndactyly-triphalangism group of disorders, and disorders with defects in joint formation and synostoses. Availability 4 weeks Gene Set Description -
Bioengineering the Fracture Callus: Bone Repair Through Fracture Mimetics
Bioengineering The Fracture Callus: Bone Repair Through Fracture Mimetics By Wollis Jude Vas Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Division of Surgery and Interventional Science at University College London. November 2018 1 Acknowledgements Firstly, I would like to thank Dr Scott Roberts for providing me with the opportunity to peruse my PhD. His extensive knowledge of bone biology and tissue engineering has helped guide and shape this project, without whom this project would not be possible. I would also like to thank ORUK for providing me with the funding that supported my PhD programme and made this work possible. The members of the research group have also made massive contributions to the work being presented in this thesis, I would, especially, like to thank Dr Mittal Shah for supporting and guiding me through many of the challenges I faced. Dr Umber Cheema has also ensured that I experienced the full benefits of being the student at the division. Overall, I would like to extend my gratitude to the members of IOMS, who were there to show me the ropes as I started my journey as a PhD student. I would like to thank Prof Frank Luyten for his contribution of human periosteal stem cells, used extensively throughout my work. I would also like to thank Prof Duchen and Dr Blacker for lending me their support and expertise with the SHG/FLIM imaging. I would like to thank again the Co-Authors Dr Mittal Shah, Rawiya Al Hosni, Dr Helen C Owen and Dr Scott Roberts who contributed to my published literature review which was the basis for the introduction to my thesis. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.