Differential Diagnosis of Cartilaginous Lesions of Bone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Copy 2020 09 29 Mania
This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Maniaki, Evangelia Title: Risk factors, activity monitoring and quality of life assessment in cats with early degenerative joint disease General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. RISK FACTORS, ACTIVITY MONITORING AND QUALITY OF LIFE ASSESSMENT IN CATS WITH EARLY DEGENERATIVE JOINT DISEASE Evangelia Maniaki A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master’s in Research in the Faculty of Health Sciences Bristol Veterinary School, June 2020 Twenty-nine thousand two hundred and eighteen words 1. -
Ch07 Final.Qxd 7/2/07 13:55 Page 87
Ch07 final.qxd 7/2/07 13:55 Page 87 87 CHAPTER 7 ARTHROLOGY Feline arthrology has been an overlooked subject in term osteoarthritis is reserved for the specific type of the past with most reviews of joint disease in small DJD that affects diarthrodial synovial articulations. animals focusing on the dog. However, cats are now Diseases of synovial joints can conveniently be known to suffer from many different types of joint divided into degenerative arthritis and inflammatory disease and, although there are many similarities with arthritis on the basis of the predominant pathologic the dog, there are also many features that are unique process (Table 20). Degenerative arthropathies are the to the feline patient. most common types and include traumatic arthritis and osteoarthritis. Inflammatory arthropathies are less CLASSIFICATION OF JOINT DISEASE common than degenerative arthropathies and have The terms arthritis and arthropathy literally mean joint either an infective or immune-mediated etiology. inflammation and joint disease, respectively. These terms Infective arthritis caused by bacterial infection (septic are used interchangeably in this chapter to describe arthritis) is the commonest type of inflammatory arthritis a number of well defined joint diseases characterized in the cat. Septic arthritis is classed as an erosive type of by a combination of inflammatory and degenerative arthritis because there is destruction of articular cartilage changes. The terms degenerative joint disease (DJD) in joints infected by bacteria. Immune-mediated and osteoarthritis are also often used synonymously. In arthropathies can be subdivided into both erosive this chapter, DJD is used as a general descriptive term to and nonerosive forms. -
Ollier Disease: a Case Report
Case Report Ollier Disease: A Case Report Bajracharya L*, Shrestha M**, Paudel S***, Shrestha PS*** *Teaching Assistant, **Assistant Professor, Department of Paediatrics, ***Assistant Professor, Department of Radiology, ****Professor, Department of Paediatrics, TUTH, Kathmandu, Nepal. ABSTRACT Ollier disease is a rare disease featuring multi ple enchondromas mainly aff ecti ng limbs. We describe a boy who presented in our OPD with multi ple painless joint deformiti es mostly in the both upper and lower limbs. Conventi onal X-ray evaluati on revealed typical multi ple radiolucent, homogenous oval and elongated shapes in the deformed limbs. : Ollier Disease , Enchondromatosis INTRODUCTION Enchondromas are common, benign, usually deformity of limbs. There is no history of weight asymptomati c carti lage tumours that develop in loss or traumati c injury. There is no similar family metaphyses and may also involve the diaphysis of history . He is acti ve , appropriate in all domains of long tubular bones.1 Ollier disease is defi ned by the development except delayed motor milestones, short presence of multi ple enchondromas and characterized limb gait and postural lumbar scoliosis. His vitals are by an asymmetric distributi on of carti lage lesions which stable. Weight is 20kg and height is 106cm (both less can be extremely variable. 2 The prevalence of Ollier’s than 3rd percenti le of NCHS). His head circumference disease is esti mated to be 1/100000 .1Children with is 52cm (50th percenti le). Upper segment to lower symptomati c enchondromatosis cases usually present segment rati o is 0.89cm. Multi ple joints are swollen before puberty with deformity, growth disorders and but nontender and non-erythematous. -
Multiple Hereditary Exostoses
Multiple Hereditary Exostoses Dror Paley MD, FRCSC Medical Director, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL David Feldman, MD Director, Spinal deformity center, Paley Orthopedic and spine Institute, St. Mary’s Medical Center, West palm Beach, FL Multiple hereditary exostoses (MHE), also known as multiple osteochondromas (MO), is an autosomal dominant skeletal disorder. Approximately 10–20% of individuals are a result of a spontaneous mutation while the rest are familial. The prevalence of MHE/MO is 1/50 000. There are two known genes found to cause MHE/MO, EXT1 located on chromosome 8q23-q24 and EXT2 located on chromosome 11p11-p12. In 10–15% of the patients, no mutation can be located by current methods of genetic testing.1–7 These mutations are scattered across both genes. EXT1/EXT2 is essential for the biosynthesis of heparan sulfate (HS). HS production in patients’ cells is reduced by 50% or more.8–19 MHE/MO is associated with characteristic progressive skeletal deformities of the extremities and shortening of one or both the sides, leading to limb length discrepancy (LLD) and short stature.20–28 Two bone segments, such as the lower leg or forearm, are at greater risk of problems due to either osteochondromas (OCs) from one or both bones impinging on or deforming the other bone or a primary issue of altered growth causing one bone to grow at a faster or slower rate. OCs can also affect joint motion due to impingement of an OC with the opposite side of the joint or subluxation/dislocation related to deformity, impingement, and incongruity.20,24,26,29,30 OCs can also cause nerve or vessel entrapment and/or compression, including the spinal cord and nerve roots. -
This Guide to Chondrosarcoma Was Authored By
This Guide to chondrosarcoma was authored by DAVIDE DONATI M.D. LUCA SANGIORGI M.D., PH.D., Rizzoli Orthopaedic Institute, Bologna Italy & The MHE Research Foundation. What is chondrosarcoma? The term chondrosarcoma is used to define an heterogeneous group of lesions with diverse features and clinical behavior. Chondrosarcoma is a malignant cancer that results in abnormal bone and cartilage growth. People who have chondrosarcoma have a tumor growth starting from the medullary canal of a long and flat bone. However, in some cases the lesion can occur as an abnormal bony type of bump, which can vary in size and location. Primary chondrosarcoma (or conventional chondrosarcoma) usually develops centrally in a previously normal bone. Secondary chondrosarcoma is a chondrosarcoma arising from a benign precursor such as Exostoses, Osteochondromas or Enchondromas. Although rare, chondrosarcoma is the second most common primary bone cancer. The malignant cartilage cells begin growing within or on the bone (central chondrosarcoma) or, rarely, secondarily within the cartilaginous cap of a pre-existing Exostoses (peripheral chondrosarcoma). Cartilage is a type of dense connective tissue. It is composed of cells called chondrocytes which are dispersed in a firm gel-like substance, called the matrix. Cartilage is normally found in the joints, the rib cage, the ear, the nose, in the throat and between intervertebral disks. There are three main types of cartilage: hyaline, elastic and fibrocartilage. It is important to understand the difference between a benign and malignant cartilage tumor. Chondrosarcoma is a sarcoma, (i.e.) a malignant tumor of connective tissue. A chondroma, is the benign counterpart. Benign bone tumors do not spread to other tissues and organs, and are not life threatening. -
Midterm MRI Follow-Up of Untreated Enchondroma and Atypical Cartilaginous Tumors in the Long Bones
cancers Article Midterm MRI Follow-Up of Untreated Enchondroma and Atypical Cartilaginous Tumors in the Long Bones Claudia Deckers 1,*, Jacky W. J. de Rooy 2, Uta Flucke 3, H. W. Bart Schreuder 1, Edwin F. Dierselhuis 1 and Ingrid C. M. van der Geest 1 1 Department of Orthopedics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; [email protected] (H.W.B.S.); [email protected] (E.F.D.); [email protected] (I.C.M.v.d.G.) 2 Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; [email protected] 3 Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; [email protected] * Correspondence: [email protected] Simple Summary: Over the last decade the incidence of enchondroma and atypical cartilaginous bone tumors (ACTs) increased enormously. Management of these tumors in the long bones is shifting towards active surveillance, as negative side effects of surgical treatment seem to outweigh the potential benefits. To support development of evidence-based guidelines for active surveillance, we studied the natural course of enchondroma and ACTs in the long bones. In this study, MRI analysis of 128 cases was performed with a minimum interval of 24 months between baseline and last MRI. Our data showed that the majority of the cartilaginous tumors (87%) remained stable or Citation: Deckers, C.; Rooy, J.W.J.d.; showed regression on MRI. Only 13% showed some progression on MRI, although none of the tumors Flucke, U.; Schreuder, H.W.B.; developed characteristics of high-grade chondrosarcoma. -
21362 Arthritis Australia a to Z List
ARTHRITISINFORMATION SHEET Here is the A to Z of arthritis! A D Goodpasture’s syndrome Achilles tendonitis Degenerative joint disease Gout Achondroplasia Dermatomyositis Granulomatous arteritis Acromegalic arthropathy Diabetic finger sclerosis Adhesive capsulitis Diffuse idiopathic skeletal H Adult onset Still’s disease hyperostosis (DISH) Hemarthrosis Ankylosing spondylitis Discitis Hemochromatosis Anserine bursitis Discoid lupus erythematosus Henoch-Schonlein purpura Avascular necrosis Drug-induced lupus Hepatitis B surface antigen disease Duchenne’s muscular dystrophy Hip dysplasia B Dupuytren’s contracture Hurler syndrome Behcet’s syndrome Hypermobility syndrome Bicipital tendonitis E Hypersensitivity vasculitis Blount’s disease Ehlers-Danlos syndrome Hypertrophic osteoarthropathy Brucellar spondylitis Enteropathic arthritis Bursitis Epicondylitis I Erosive inflammatory osteoarthritis Immune complex disease C Exercise-induced compartment Impingement syndrome Calcaneal bursitis syndrome Calcium pyrophosphate dehydrate J (CPPD) F Jaccoud’s arthropathy Crystal deposition disease Fabry’s disease Juvenile ankylosing spondylitis Caplan’s syndrome Familial Mediterranean fever Juvenile dermatomyositis Carpal tunnel syndrome Farber’s lipogranulomatosis Juvenile rheumatoid arthritis Chondrocalcinosis Felty’s syndrome Chondromalacia patellae Fibromyalgia K Chronic synovitis Fifth’s disease Kawasaki disease Chronic recurrent multifocal Flat feet Kienbock’s disease osteomyelitis Foreign body synovitis Churg-Strauss syndrome Freiberg’s disease -
Orphanet Journal of Rare Diseases Biomed Central
Orphanet Journal of Rare Diseases BioMed Central Review Open Access Ollier disease Caroline Silve*1 and Harald Jüppner2 Address: 1INSERM U. 773, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75018 Paris, France and 2Endocrine Unit, Department of Medicine, and Pediatric Neprology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA Email: Caroline Silve* - [email protected]; Harald Jüppner - [email protected] * Corresponding author Published: 22 September 2006 Received: 31 July 2006 Accepted: 22 September 2006 Orphanet Journal of Rare Diseases 2006, 1:37 doi:10.1186/1750-1172-1-37 This article is available from: http://www.OJRD.com/content/1/1/37 © 2006 Silve and Jüppner; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Enchondromas are common intraosseous, usually benign cartilaginous tumors, that develop in close proximity to growth plate cartilage. When multiple enchondromas are present, the condition is called enchondromatosis also known as Ollier disease (WHO terminology). The estimated prevalence of Ollier disease is 1/100,000. Clinical manifestations often appear in the first decade of life. Ollier disease is characterized by an asymmetric distribution of cartilage lesions and these can be extremely variable (in terms of size, number, location, evolution of enchondromas, age of onset and of diagnosis, requirement for surgery). Clinical problems caused by enchondromas include skeletal deformities, limb-length discrepancy, and the potential risk for malignant change to chondrosarcoma. -
Craniofacial Chondrosarcomas: Imaging Findings in 15 Untreated Cases
165 Craniofacial Chondrosarcomas: Imaging Findings in 15 Untreated Cases Ya-Yen Lee1 Radiographic findings of 15 untreated chondrosarcomas of the cranial and facial Pamela Van Tassel bones were reviewed. These tumors have a propensity to occur in the wall of a maxillary sinus, at the junction of sphenoid and ethmoid sinuses and vomer, and at the undersur face of the sphenoid bone. Because of its slow-growing nature, chondrosarcomas tend to be large, multi lobulated, and sharply demarcated when detected. Frequent bone changes are a combination of erosion and destruction, with sharp transitional zones and absent periosteal reaction. Tumor matrix calcifications, not necessarily chondroid, are almost always present. Both CT and MR may be necessary for thorough evaluation of tumor extent. Chondrosarcoma, a malignant but usually slow-growing cartilaginous tumor, constitutes approximately 11 % of malignant bone tumors [1] but rarely occurs in the craniofacial region . Because of its propensity to occur in the deep facial structures or base of the skull, the true extent and origin of the tumor may be overlooked if not properly evaluated radiographically. We review a relatively large series of craniofacial chondrosarcomas and discuss the differential diagnosis and choice of imaging technique. Materials and Methods This retrospective radiologic review was based on the pretreatment radiographic studies of 15 patients with craniofacial chondrosarcomas seen at our institution over a period of 40 years , excluding three intracranial dural chondrosarcomas, which are to be reported sepa rately. An attempt was also made to correlate the radiographic findings with the hi stologic grades of the tumors. The ages of the patients ranged from 10 to 73 years , with a mean of 40 years. -
Conventional Chondrosarcoma James C
Conventional Chondrosarcoma James C. Wittig, MD SSSarcoma Surgeon Orthopedic Oncologist General Information Ma lignant mesenc hyma l tumor o f cart ilag inous different iat ion. Conventional Chondrosarcoma is the most common type of chondrosarcoma (malignant cartilage tumor) Neoplastic cells form hyaline type cartilage or chondroid type tissue (Chondroid Matrix) but not osteoid If lesion arises de novo, it is a primary chondrosarcoma If superimposed on a preexisting benign neoplasm, it is considered a secondary chondrosarcoma Central chondrosarcomas arise from an intramedullary location. They may grow, destroy the cortex and form a soft tissue component. Peripheral chondrosarcomas extend outward from the cortex of the bone and can invade the medullary cavity. Peripheral chondrosarcomas most commonly arise from preexisting osteochondromas. Juxtacortical chondrosarcomas arise from the inner layer of the periosteum on the surface of the bone. It is technically considered a peripheral chondrosarcoma. Chondrosarcoma Heterogeneous group of tumors with varying biological behavior depending on grade, size and location Cartilage tumors can have similar histology and behave differently depending on location. For instance a histologically benign appearing cartilage tumor in the pelvis will behave aggressively as a low grade chondrosarcoma. Likewise, a histologically more aggressive hypercellular cartilag e tumor localized in a p halanx of a dig it may behave in an indolent, non aggressive or benign manner. There are low (grade I), intermediate (grade II) and high grade (grade III) types of conventional chondrosarcoma. Low grade lesions are slow growing and rarely metastasize . Low grade chondrosarcomas can be difficult to differentiate from benign tumors histologically. Clinical features and radiographic studies are important to help differentiate. -
The Orthopaedic Manifestations of Osteogenesis Imperfecta: a Collective Review
The Orthopaedic manifestations of Osteogenesis Imperfecta: A Collective Review By Bhatta A D Department of Orthopedic surgery Nelson Mandela School of Medicine KZN, South Africa Submitted in partial fulfilment of the academic requirements For the degree of MMed in the Department of Orthopaedics School of Clinical Medicine College of Health Sciences University of KwaZulu-Natal Durban 2016 (year) As the candidate’s supervisor I have approved this thesis for submission. Signed: Name: Prof M N Rasool Date: 24/02/2017 1 Declaration I Dr. AABASH DEV BHATTA declare that - (i) The research reported in this dissertation, except where otherwise indicated, and is my original work. (ii) This dissertation has not been submitted for any degree or examination at any other university. (iii) This dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. (iv) This dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a) Their words have been re-written but the general information attributed to them has been referenced; b) Where their exact words have been used, their writing has been placed inside quotation marks, and referenced. (v) Where I have reproduced a publication of which I am an author, co-author or editor, I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications. (vi) This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the References sections. -
Musculoskeletal
MUSCULOSKELETAL Dr. Dean Bruce University of Alberta DISCLOSURES… Member of the Royal College Examination Committee in Diagnostic Radiology. Lectures given to the Workman’s Compensation Board and Siemens MRI Symposium. Learning Objectives 1. Better understand Bone and Soft Tissue Tumors through individual cases. 2. Assess Internal Derangement of Joints through individual cases. 3. Improve your CanMEDS roles as a Scholar and Collaborator CASES 19 year old male Foot pain while running 1 Axial STIR Axial T1 Sagittal T1 22 year old male 2 months of elbow pain 2 Sagittal T1 Sagittal PD FS Coronal STIR Sagittal CT Recon Axial CT 9 year old male Growing ankle mass 3 Sagittal STIR Sagittal T1 AXIAL T2 52 year old female Slowly growing painless lump in triceps 4 Coronal T1 Coronal STIR COR T1 FS + GAD Ultrasound CASE REVIEW Case 1: DIFFUSE PIGMENTED VILLONODULAR SYNOVITIS (PVNS) OF CALCANEOCUBOID JOINT 1 Axial STIR Axial T1 Sagittal T1 1 Key Points NOTABLE: Mono-articular benign neoplasm, which is treated by synovectomy, but high-recurrence rates (50%) CLASSIC DESCRIPTOR: Low T1 and T2 lobulated tissue throughout the joint, with blooming on the gradient sequences due to hemosiderin PEARL: Almost never calcifies Cystic bone changes are usually in small joints Preserved joint space until late Case 1: PVNS of Calcaneocuboid Joint Companion Case – PVNS Wrist Coronal T2 Coronal GRE T2 Coronal T1 1 Differential Diagnosis 1. Amyloid Arthropathy a. Multiple joints (Systemic) 2. Chronic Hemorrhagic Effusions a. Rheumatoid arthritis b. Hemophilia c. Intra-articular Hemangioma, Sarcoma (very rare) 3. Synovial Chondromatosis a. Round or ovoid lesion, usually with calcification 4.