Case Report. Eye Lesion Caused by Adult Brugia Malayi: a First

Total Page:16

File Type:pdf, Size:1020Kb

Case Report. Eye Lesion Caused by Adult Brugia Malayi: a First View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UM Digital Repository SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH CASE REPORT EYE LESION CAUSED BY ADULT BRUGIA MALAYI: A FIRST CASE REPORTED IN A CHILD FROM MALAYSIA M Rohela1, I Jamaiah1 and CC Yaw2 1Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur; 2Hospital Tengku Ampuan Afzan, Kuantan, Pahang, Malaysia Abstract. We are reporting a case of an eye lesion caused by an adult Brugia malayi. The patient was a 3-year-old Chinese boy from Kemaman District, Terengganu, Peninsular Malay- sia. He presented with a one week history of redness and palpebral swelling of his right eye. He claimed that he could see a worm in his right eye beneath the conjunctiva. He had no history of traveling overseas and the family kept dogs at home. He was referred from Kemaman Hospital to the eye clinic of Hospital Tengku Ampuan Afzan, Kuantan, Pahang, Malaysia. On examination by the ophthalmologist, he was found to have a subconjunctival worm in his right eye. Full blood count revealed eosinophilia (10%). Four worm fragments, each about 1cm long were removed from his right eye under general anesthesia. A thick blood smear stained with Giemsa was positive for microfilariae of Brugia malayi. A Brugia Rapid test done was positive. He was treated with diethylcarbamazine. INTRODUCTION ing infective in about 10 days. Patients con- tract the disease through repeated episodes Lymphatic filariasis caused by Brugia of mosquito bites. The infective larvae migrate malayi occurs in Southwest India, China, In- to the lymphatic system of the host and ma- donesia, Malaysia, Korea, the Philippines and ture in about one year, when microfilariae can Vietnam (Tsieh, 1988). Brugian filariasis is be detected in the peripheral blood. In en- mainly a rural disease. Recent estimates of demic areas, some people have no microfilariae lymphatic filariasis put the global prevalence and are asymptomatic, although they have the at 119 million cases (Schmidt and Roberts’, same chance of exposure to mosquito bites 2000). B. malayi is responsible for 10% of lym- as do people who become infected. A consid- phatic filariasis. The most prevalent form of erable number of infected inhabitants have only B. malayi infection is nocturnal periodic, be- microfilaremia and remain asymptomatic for ing transmitted by mosquitoes of the genera years. The clinical manifestations in the early Mansonia, Anopheles and Aedes. The microfi- stage are mainly acute adenolymphangitis, with lariae (the diagnostic stage) are ingested by fever, headache, myalgia and pain in the arms mosquitoes during a blood meal. They then and legs. The development of acute signs and migrate through the stomach, midgut, thoracic symptoms is probably triggered by an allergic muscles and, finally, the mouthparts, becom- reaction to the microfilariae, unfertilized ova, Correspondence: M Rohela, Department of Para- molting fluid and discarded sheath. Microfila- sitology, Faculty of Medicine, University of Malaya, remia and eosinophilia are usually encountered 50603 Kuala Lumpur, Malaysia. at this stage. The clinical manifestations in the Tel: 603-7967-4751; Fax: 603-7967-4754 chronic stage derive from obstruction of the E-mail: [email protected] lymphatic system as a result of a tissue reac- 652 Vol 37 No. 4 July 2006 A REPORT OF EYE LESION CAUSED BY ADULT B. MALAYI tion due to dead or dying adult worms. The CASE REPORT salient feature is elephantiasis (lymphedema) The patient is a 3-year-old Chinese boy which usually involves the limbs. Lymphatic from Kemaman, Terengganu, a district on the filariasis is diagnosed by detecting microfilariae East coast of Peninsular Malaysia. He pre- in the peripheral blood. In the nocturnal peri- sented with a one week history of redness and odic form, blood should be drawn between palpebral swelling of his right eye. He claimed 10:00 PM and 2:00 AM. In the sub-periodic that he could see a worm in his right eye. He form, microfilariae appear in the peripheral had no history of traveling overseas and the blood during the day time. In the chronic family kept dogs at home. From Kemaman stage, when microfilariae are no longer detect- Hospital, he was referred to the eye clinic of able in the blood, a serologic test becomes Hospital Tengku Ampuan Afzan, Kuantan, the major tool for diagnosis (Tsieh, 1988). Pahang, Malaysia. On examination, he was The first recorded case of B. malayi mi- clinically asymptomatic. His axillary and in- crofilaria in a patient with uveitis was reported guinal lymph nodes were enlarged. He was by Anandakannan and Gupta in 1977 in In- seen by an ophthalmologist, and was found dia. Rose (1966) reported an unproven case to have a subconjunctival worm in his right of Brugia malayi adult worm in the anterior eye. A full blood count revealed eosinophilia chamber of the eye of a man in Malaysia. Mak (10%). A peripheral blood film examination et al (1974) reported a case of human eye in- revealed microfilariae and was mistakenly di- fection caused by adult worms of B. malayi in agnosed as Dirofilaria immitis by the staff of Malaysia. Dissanaike et al (1974) recovered a Veterinary Department, Kuantan, Pahang. Two mature female filarial worm, probably Brugia days after being warded, four worm fragments, sp, from the conjunctiva of a man in Malaysia. each about 1cm long were removed from his In 1976, Mak and Sivanandam attempted to right eye under general anesthesia. No at- determine whether human ocular lesions due tempts were made to identify the worm. A to B. malayi were due to the site of entry of small piece of conjunctival tissue was biopsied the infective larvae. Cats were infected with for histological examination and sent to the infective larvae of B. malayi via ocular instilla- Department of Parasitology, Faculty of Medi- tion, subconjunctival inoculation and subcu- cine (FOM), University Malaya (UM). The tis- taneous inoculation. Although no conjunctival sue was later sent to the Department of Pa- lesions were seen, infections were produced thology, FOM, UM for histological examination. via ocular instillation, subconjunctival and sub- The histology report showed no eosinophil cutaneous inoculation. Adult worms were re- infiltration and no filarial parasite. Two of the covered from periorbital tissues and localized blood vessels showed vasculitis with neutro- mainly in the lymphatic system of the head and phil infiltration and mild perivascular infiltration neck regions of the cats. The results showed by lymphoid cells. The pathologist interpreted that the conjunctival lesions seen in humans the findings as vasculitis. A blood specimen might be due to the site of the bite of the was also sent to the Department of Parasitol- mosquito and thus entry of the infective lar- ogy, for confirmation of the microfilariae spe- vae (Mak and Sivanandam, 1976). Dissanaike cies. A thick blood smear was done and et al in 1977 recovered an immature adult of stained with Giemsa. The microfilariae de- Dirofilaria immitis from a human eye in Malay- tected were diagnosed to be that of B. malayi. sia. We now report a case of subconjunctival Figs 1 and 2 show the microfilariae detected infection of the eye caused by adult of B. in the patient’s blood. The microfilaria has a malayi. sheath which stained pink with Giemsa. It has Vol 37 No. 4 July 2006 653 SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH DISCUSSION The three previous case reports of B. malayi infection from Malaysia involving the human eye occurred among adult patients and the last re- ported case was 32 years ago. As far as we know, this is the first record of B. malayi infection of the human conjunctiva in a child from Malaysia. The thick blood film taken during the day from the patient was positive for B. malayi microfilaria. The parasite is probably a sub-periodic strain. Fig 1–Thick blood smear of patient showing microfilariae This is found in leaf-eating monkeys of Brugia malayi. Notice that the one on the right has and cats where it is a zoonosis. The a characteristic nucleus in the tip of its tail. Giemsa, normal habitat of the adult B. malayi x 400. is the lymphatic system. The pres- ence of the adult worm in the ec- topic site, which in this patient was found in the subconjunctival region, could be due to the site of the bite of the infective mosquito around the head and neck regions. The drug of choice for lymphatic filariasis is diethylcarbamazine (DEC). This regimen clears microfi- lariae from the blood and has a lim- ited but definite effect on adult para- sites. Ivermectin, a drug active in on- chocerciasis, has been used in tri- als for therapy for lymphatic filariasis; Fig 2–Microfilaria of Brugia malayi. Giemsa x 400. in a single dose it appears to be as effective as DEC at clearing microfi- lariae (Nutman and Weller, 1998). overlapping nuclei with two discrete nuclei at Karam and Ottesen in 2000 reported that the tail end. It does not have a smooth curve, combined treatment using albendazole plus instead it is kinky. The cephalic space is 2:1 ivermectin or albendazole plus diethylcarbam- (length:breadth). His serum tested positive azine has resulted in near-zero microfilaremia with a Brugia Rapid test kit. Since there was levels for at least one year. Based on these no attempt to identify the adult worm recov- new developments, the World Health Assem- ered, we assumed from the findings of B. bly adopted a resolution calling on member malayi microfilaria in the blood that the adult states to work for the elimination of lymphatic worm belongs to B. malayi.
Recommended publications
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • "Structure, Function and Evolution of the Nematode Genome"
    Structure, Function and Advanced article Evolution of The Article Contents . Introduction Nematode Genome . Main Text Online posting date: 15th February 2013 Christian Ro¨delsperger, Max Planck Institute for Developmental Biology, Tuebingen, Germany Adrian Streit, Max Planck Institute for Developmental Biology, Tuebingen, Germany Ralf J Sommer, Max Planck Institute for Developmental Biology, Tuebingen, Germany In the past few years, an increasing number of draft gen- numerous variations. In some instances, multiple alter- ome sequences of multiple free-living and parasitic native forms for particular developmental stages exist, nematodes have been published. Although nematode most notably dauer juveniles, an alternative third juvenile genomes vary in size within an order of magnitude, com- stage capable of surviving long periods of starvation and other adverse conditions. Some or all stages can be para- pared with mammalian genomes, they are all very small. sitic (Anderson, 2000; Community; Eckert et al., 2005; Nevertheless, nematodes possess only marginally fewer Riddle et al., 1997). The minimal generation times and the genes than mammals do. Nematode genomes are very life expectancies vary greatly among nematodes and range compact and therefore form a highly attractive system for from a few days to several years. comparative studies of genome structure and evolution. Among the nematodes, numerous parasites of plants and Strikingly, approximately one-third of the genes in every animals, including man are of great medical and economic sequenced nematode genome has no recognisable importance (Lee, 2002). From phylogenetic analyses, it can homologues outside their genus. One observes high rates be concluded that parasitic life styles evolved at least seven of gene losses and gains, among them numerous examples times independently within the nematodes (four times with of gene acquisition by horizontal gene transfer.
    [Show full text]
  • Molecular Phylogenetic Studies of the Genus Brugia Hong Xie Yale Medical School
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 1994 Molecular Phylogenetic Studies of the Genus Brugia Hong Xie Yale Medical School O. Bain Biologie Parasitaire, Protistologie, Helminthologie, Museum d’Histoire Naturelle Steven A. Williams Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Xie, Hong; Bain, O.; and Williams, Steven A., "Molecular Phylogenetic Studies of the Genus Brugia" (1994). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/37 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/1994013255 MOLECULAR PHYLOGENETIC STUDIES ON BRUGIA FILARIAE USING HHA I REPEAT SEQUENCES XIE H.*, BAIN 0.** and WILLIAMS S. A.*,*** Summary : Résumé : ETUDES PHYLOGÉNÉTIQUES MOLÉCULAIRES DES FILAIRES DU GENRE BRUGIA À L'AIDE DE: LA SÉQUENCE RÉPÉTÉE HHA I This paper is the first molecular phylogenetic study on Brugia para• sites (family Onchocercidae) which includes 6 of the 10 species Cet article est la première étude plylogénétique moléculaire sur les of this genus : B. beaveri Ash et Little, 1964; B. buckleyi filaires du genre Brugia (Onchocercidae); elle inclut six des 10 Dissanaike et Paramananthan, 1961 ; B. malayi (Brug,1927) espèces du genre : B. beaveri Ash et Little, 1964; B. buckleyi Buckley, 1960 ; B. pohangi, (Buckley et Edeson, 1956) Buckley, Dissanaike et Paramananthan, 1961; B. malayi (Brug, 1927) 1960; B. patei (Buckley, Nelson et Heisch,1958) Buckley, 1960 Buckley, 1960; B.
    [Show full text]
  • Filarial Genomics Steven A
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 11-2004 Filarial Genomics Steven A. Williams Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Williams, Steven A., "Filarial Genomics" (2004). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/45 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] GLOBAL PROGRAM TO ELIMINATE LF 37 3.3 FILARIAL GENOMICS Steven A. Williams Summary of Prioritized Research Needs but few genes were cloned and identified. By the end of 1994, only 60 Brugia genes had been submitted to the Genbank 1) Collecting materials database. It was clear that a new approach for studying the a) Before the opportunity is lost to preserve their ge- filarial genome was needed to make rapid progress in under- nomes, collect geographically representative isolates of standing the biology and biochemistry of these parasites. The the various species and strains of the human filarial genome project approach represented a complete departure parasites, from the way parasite genes had been studied in the past. 2) Constructing libraries Genome projects are typically not directed at the identifica- a) Construct updated and additional genomic and cDNA tion of individual genes, but instead at the identification, clon- libraries to represent completely the different stages ing, and sequencing of all the organism’s genes. and species of filarial parasites, At the first meeting of the Filarial Genome Project (1994), 3) Sequencing B.
    [Show full text]
  • Genomics of Loa Loa, a Wolbachia-Free Filarial Parasite of Humans
    ARTICLES OPEN Genomics of Loa loa, a Wolbachia-free filarial parasite of humans Christopher A Desjardins1, Gustavo C Cerqueira1, Jonathan M Goldberg1, Julie C Dunning Hotopp2, Brian J Haas1, Jeremy Zucker1, José M C Ribeiro3, Sakina Saif1, Joshua Z Levin1, Lin Fan1, Qiandong Zeng1, Carsten Russ1, Jennifer R Wortman1, Doran L Fink4,5, Bruce W Birren1 & Thomas B Nutman4 Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, L. loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4-Mb genome of L. loa and that of the related filarial parasite Wuchereria bancrofti and predict 14,907 L. loa genes on the basis of microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to those of several other nematodes, we demonstrate synteny among filariae but not with nonparasitic nematodes. The L. loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for use in humans. Despite lacking Wolbachia, L. loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role of Wolbachia in filarial biology is more subtle All rights reserved. than previously thought and reveal marked differences between parasitic and nonparasitic nematodes. Filarial nematodes dwell within the lymphatics and subcutaneous (but not the worm itself) have shown efficacy in treating humans tissues of up to 170 million people worldwide and are responsible with these infections4,5. Through genomic analysis, Wolbachia have for notable morbidity, disability and socioeconomic loss1.
    [Show full text]
  • Lymphatic Filariasis
    BiologyPUBLIC HEALTH IMPORTANCE 29 In areas with low or moderate transmission of malaria, in those with advanced health services with well trained and experienced personnel, and in priority areas such as those with development projects, attempts may be made to reduce the prevalence of malaria by community-wide mosquito control measures. In areas subject to epidemic risk, quick-acting and timely vector control mea- sures, such as insecticide spraying, play an important role in the control or prevention of epidemics. Apart from the input of health services in the planning and management of activities, it is also important for communities to participate in control efforts. Sufficient resources have to be ensured for the long-term maintenance of improve- ments obtained. In developed countries with advanced professional capabilities and sufficient resources, it is possible to aim at a countrywide eradication of malaria. Eradication has been achieved in southern Europe, most Caribbean islands, the Maldives, large parts of the former USSR and the USA. As most anopheline mosquitos enter houses to bite and rest, malaria control programmes have focused primarily on the indoor application of residual insecti- cides to the walls and ceilings of houses. House spraying is still important in some tropical countries but in others its significance is diminishing because of a number of problems (see Chapter 9), which, in certain areas, have led to the interruption or termination of malaria control programmes. There has been increased interest in other control methods that would avoid some of the problems related to house spraying. Methods that are less costly and easier to organize, such as community-wide use of impregnated bednets, and methods that bring about long- lasting or permanent improvements by eliminating breeding places are now being increasingly considered.
    [Show full text]
  • Anisakis Simplex
    Cavallero et al. Parasites & Vectors (2018) 11:31 DOI 10.1186/s13071-017-2585-7 RESEARCH Open Access Tissue-specific transcriptomes of Anisakis simplex (sensu stricto) and Anisakis pegreffii reveal potential molecular mechanisms involved in pathogenicity Serena Cavallero1*, Fabrizio Lombardo1, Xiaopei Su2, Marco Salvemini3, Cinzia Cantacessi2† and Stefano D’Amelio1† Abstract Background: Larval stages of the sibling species of parasitic nematodes Anisakis simplex (sensu stricto)(s.s.) (AS) and Anisakis pegreffii (AP) are responsible for a fish-borne zoonosis, known as anisakiasis, that humans aquire via the ingestion of raw or undercooked infected fish or fish-based products. These two species differ in geographical distribution, genetic background and peculiar traits involved in pathogenicity. However, thus far little is known of key molecules potentially involved in host-parasite interactions. Here, high-throughput RNA-Seq and bioinformatics analyses of sequence data were applied to the characterization of the whole sets of transcripts expressed by infective larvae of AS and AP, as well as of their pharyngeal tissues, in a bid to identify transcripts potentially involved in tissue invasion and host-pathogen interplay. Results: Approximately 34,000,000 single-end reads were generated from cDNA libraries for each species. Transcripts identified in AS and AP encoded 19,403 and 10,424 putative peptides, respectively, and were classified based on homology searches, protein motifs, gene ontology and biological pathway mapping. Differential gene expression analysis yielded 226 and 339 transcripts upregulated in the pharyngeal regions of AS and AP, respectively, compared with their corresponding whole-larvae datasets. These included proteolytic enzymes, molecules encoding anesthetics, inhibitors of primary hemostasis and virulence factors, anticoagulants and immunomodulatory peptides.
    [Show full text]
  • Influential Papers in Filariasis Made Possible by the FR3 Website April
    Filariasis papers made possible by the FR3. (Number of times cited) Current as of April 2011. Animal Model/Culture McCall JW, Malone JB, Ah H-S, Thompson PE. 1973. Mongolian jirds (Meriones unguiculatus) infected with Brugia pahangi by the intraperitoneal route: A rich source of developing larvae, adult filariae, and microfilariae. The Journal of Parasitology 59:436. (57) Yates JA, Schmitz KA, Nelson FK, Rajan TV. 1994. Infectivity and normal development of third stage Brugia malayi maintained in vitro. Journal of parasitology. 80:891-894. (13) Smith HL, Paciorkowski N, Babu S, Rajan TV. 2000. Development of a serum-free system for the in Vitro cultivation of Brugia malayi infective-stage larvae. Experimental parasitology. 95:253-264. (11) Higazi TB, Shu L, Unnasch TR. 2004. Development and transfection of short-term primary cell cultures from Brugia malayi. Molecular and biochemical parasitology. 137:345-348. (4) Ramesh M, McGuiness C, Rajan TV. 2005. The L3 to L4 molt of Brugia malayi: real time visualization by video microscopy. Journal of parasitology. 91:1028-1033. (2) Diagnosis/Treatment Smith HL, Rajan TV. 2000. Tetracycline inhibits development of the infective-stage larvae of filarial nematodes in Vitro. Experimental parasitology. 95:265-270. (45) Rao R, Weil GJ. 2002. In vitro effects of antibiotics on Brugia malayi worm survival and reproduction. Journal of Parasitology. 88:605-611. (25) Kanesa-thasan N, Douglas JG, Kazura JW. 1991. Diethylcarbamazine inhibits endothelial and microfilarial prostanoid metabolism in vitro. Molecular and biochemical parasitology. 49:11-20. (19) Rajan TV. 2004. Relationship of anti-microbial activity of tetracyclines to their ability to block the L3 to L4 molt of the human filarial parasite Brugia malayi.
    [Show full text]
  • Identification of Protective Immune Responses and the Immunomodulatory Capacity of Litomosoides Sigmodontis
    Identification of protective immune responses and the immunomodulatory capacity of Litomosoides sigmodontis Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von JESUTHAS AJENDRA aus Dillingen/Saar Bonn 2016 i Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Achim Hörauf 2. Gutachter: Prof. Dr. Waldemar Kolanus Tag der Promotion: 25.08.2016 ii Erscheinungsjahr: 2016 Erklärung Die hier vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfsmittel angefertigt. Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen Institution eingereicht. Es wurden keine vorherigen oder erfolglosen Promotionsversuche unternommen. Bonn, 23.03.2016 Teile dieser Arbeit wurden vorab veröffentlicht in folgenden Publikationen: “ST2 deficiency does not impair type 2 immune responses during chronic filarial infection but leads to an increased microfilaremia due to an impaired splenic microfilarial clearance.” Ajendra J, Specht S, Neumann AL, Gondorf F, Schmidt D, Gentil K, Hoffmann WH, Taylor MJ, Hoerauf A, Hübner MP. PLoS One. 2014 Mar 24;9(3):e93072. doi: 10.1371/journal.pone.0093072. eCollection 2014. “Development of patent Litomosoides sigmodontis infections in semi-susceptible C57BL/6 mice in the absence of adaptive immune responses.” Layland LE, Ajendra J, Ritter M, Wiszniewsky A, Hoerauf A, Hübner MP. Parasit Vectors. 2015 Jul 25;8:396. doi: 10.1186/s13071-015-1011-2. “Combination of worm antigen and proinsulin prevents type 1 diabetes in NOD mice after the onset of insulitis.” Ajendra J, Berbudi A, Hoerauf A, Hübner MP. Clin Immunol. 2016 Feb 16; 164:119- 122.
    [Show full text]
  • DNA of Brugia Malayi Detected in Several Mosquito Species Collected from Balangan District, South Borneo Province, Indonesia
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.13/May-2020/24.pdf Open Access DNA of Brugia malayi detected in several mosquito species collected from Balangan District, South Borneo Province, Indonesia Supriyono Supriyono1 and Suriyani Tan2 1. Division of Parasitology and Medical Entomology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, West Java, Indonesia; 2. Department of Parasitology, Faculty of Medicine, Trisakti University, Jakarta, Indonesia. Corresponding author: Suriyani Tan, e-mail: [email protected] Co-author: SS: [email protected] Received: 17-01-2020, Accepted: 21-04-2020, Published online: 30-05-2020 doi: www.doi.org/10.14202/vetworld.2020.996-1000 How to cite this article: Supriyono S, Tan S (2020) DNA of Brugia malayi detected in several mosquito species collected from Balangan District, South Borneo Province, Indonesia, Veterinary World, 13(5): 996-1000. Abstract Background and Aim: Lymphatic filariasis (LF) is a lesser-known parasitic disease, which contributes to significant decreases in overall health. This study investigated the presence of Brugia malayi in mosquitoes collected in the South Borneo Province, Indonesia. Materials and Methods: Mosquitoes were collected through bare leg collection methods after sunset in several areas of the Hukai and Gulinggang villages in the Balangan District. The collected mosquitoes were identified based on morphological features and dissected to find microfilaria and then pooled through species for polymerase chain reaction (PCR) microfilaria detection. Results: A total of 837 female mosquitoes consisting of at least 14 species were selected; they were dissected, and no microfilariae were found. Mosquitoes were divided into 69 pools for PCR analysis.
    [Show full text]
  • Host Plant Preference of Mansonia Mosquitoes
    J. Aquat. Plant Manage. 44: 142-144 Host Plant Preference of Mansonia Mosquitoes GOUTAM CHANDRA1, A. GHOSH, D. BISWAS1 AND S. N. CHATTERJEE1 INTRODUCTION Mansonioides were obtained from a laboratory colony main- tained in the Mosquito Research Unit, Department of. Zool- Human brugian filariasis, which is caused by Brugia malayi ogy, The University of Burdwan. The colony was maintained and B. timori, affects 13 million people in the oriental region at 25 to 30°C, a pH of 6.95 to 7.03 and dissolved oxygen from (WHO 2002) and is most common in India and China (Otte- 5.5 to 6.1 mg/l in the laboratory and was kept free from ex- sen et al. 1997). The most important vectors of B. malayi, in posure to pathogens, insecticides, or repellents. Mosquito the endemic countries of South-east Asia, are different Man- larvae were fed on a fine-ground dog biscuit. The adult colo- sonia species in the subgenus Mansonioides. The vectors of the ny was provided with 10% sucrose and 10% multivitamin syr- parasite causing brugian filariasis in the Western Pacific and up, and was periodically blood-fed on restrained rats. South-east Asian regions were reviewed by Chow in 1973 and During the lab based experiment, pond water (500 ml) Ramaliangam in 1975, while Ma. annulifera was reported by was placed in each of 5 enamel bowls (bowl No. 1-5). Pond Iyengar in 1938, as an agent for transmission of B. malayi in water was sieved through a net (>500 mesh) to exclude lar- Travancore, India.
    [Show full text]
  • 1 Localization and Rnai-Driven Inhibition of a Brugia Malayi Encoded
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443627; this version posted May 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Localization and RNAi-driven inhibition of a Brugia malayi encoded 2 Interleukin-5 Receptor Binding protein 3 Rojelio Mejia1, Sasisekhar Bennuru1, Yelena Oksov2 Sara Lustigman2, 4 Gnanasekar Munirathinam3, Ramaswamy Kalyanasundaram3, Thomas B. 5 Nutman1* 6 1Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious 7 Diseases, Bethesda, Maryland, USA. 2Lindsay F. Kimball Research Institute, 8 New York Blood Center, New York, NY, and 3Department of Biomedical 9 Sciences, College of Medicine, University of Illinois, Rockford, IL, USA. 10 Running title: Brugia malayi RNAi in L3 11 Corresponding author: Thomas B. Nutman [email protected] 12 Keywords: Brugia malayi, RNAi, Host-parasite defense, Interleukin 5 13 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443627; this version posted May 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 14 Abstract 15 A molecule termed BmIL5Rbp (aka Bm8757) was identified from Brugia malayi 16 filarial worms and found to competitively inhibit human IL-5 binding to its human 17 receptor. After the expression and purification of a recombinant BmIL5Rbp and 18 generation of BmIL5Rbp-specific rabbit antibody, we localized the molecule on B. 19 malayi worms through immunohistochemistry and immunoelectron microscopy. 20 RNA interference was used to inhibit BmIL5Rbp mRNA and protein production.
    [Show full text]