Neurobehavioral and Neuroendocrine Assessment of Rats Perinatally

Total Page:16

File Type:pdf, Size:1020Kb

Neurobehavioral and Neuroendocrine Assessment of Rats Perinatally NEUROBEHAVIORAL AND NEUROENDOCRINE ASSESSMENT OF RATS PERINATALLY EXPOSED TO POLYCHLORINATED BIPHENYLS: A POSSIBLE MODEL FOR AUTISM Dena N. Krishnan A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2007 Committee: Lee A. Meserve, Advisor Howard Casey Cromwell Mike Geusz Luke Tsai ii ABSTRACT Lee A. Meserve, Advisor Several studies have shown that perinatal exposure to xenobiotic mixtures such as polychlorinated biphenyls (PCBs) can cause physiological and behavioral disruption. These studies demonstrate that PCB-exposed rats are a possible model for understanding motor and social deficits in childhood developmental disorders like autism spectrum disorder (ASD). The mixture PCB 47/77 at 0 ppm, 12.5 ppm, or 25 ppm (w/w) of the diet was fed to pregnant Sprague-Dawley rats impacting offspring both indirectly and directly from GD 1 to PND 21. Motor functioning of offspring was tested at PND 14-16, 28-32, and 60-64 with measures of general motor activity and stereotypic repetitive behavior. Subsequently, t-maze learning acquisition and reversal was tested in males 25-29 days old and circulating levels of the hormone vasopressin were measured at 29 days of age by enzyme immunoassay. Numerous motoric impairments were found in PCB-exposed rats compared to controls including: 1) altered rates of activity, 2) significant delay in the formation of grooming chain syntax, 3) a longer latency in pup righting reflex, and 4) depressed ability to complete the hang and negative geotaxis tests at various stages of development. PCB-exposed rats showed a significant delay in t-maze learning aquisition and reversal in a dose dependent manner relative to controls. These consequences likely stem from neuroendocrine disruption despite no change in systemic circulating vasopressin concentration. The different results in animals given 12.5 ppm and 25 ppm PCB suggest use of this animal model to reveal a range of motoric disruption similar to the broad autistic phenotype. iii DEDICATION To all the challenges and disappointments that make success worth striving for. iv ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Dr. Lee Meserve, for helping me grow as a graduate student, teacher, and researcher. It is by his example, support, encouragement, and sense of humor that I have developed a true passion for neuroendocrine research. I thank my other committee members: Dr. Howard Casey Cromwell for inspiring my behavioral work, Dr. Mike Geusz for his insightful suggestions, and Dr. Luke Tsai for his advice in making appropriate clinical connections. I would like to acknowledge my fellow lab associates, Banafsheh Jolous- Jamshidi, Avanti Desai, and Christina Asbrock for their companionship; and to the many undergraduate scholars, especially Trang Tran and Travis Beckwith for their meticulous involvement with the collection and scoring of my behavioral data. I wish to thank Matt Hoostal because without his coaching and expertise, I would still be grappling with my statistics. I extend my sincerest gratitude to the faculty, staff, and graduate students of the Department of Biological Sciences for making my time at Bowling Green State University so enjoyable. In particular, I must thank Lorraine DeVenney for making me an offer I could not refuse and will never forget. Lastly, I acknowledge my parents, family, and friends near and far for their love and support. I especially want to thank my brothers: Josh for teaching me more about neuroscience than I ever wanted and Anoop for being my number one fan. Thank you all for enriching my life and helping me achieve this important goal. v TABLE OF CONTENTS INTRODUCTION………………………………………………….....…………………1 MATERIAL AND METHODS……………………………………………………...….15 RESULTS NEUROBEHAVIORAL ASSESSMENT: Developmental Motor Activity: Open Field………………………………………………………..24 Hang Test…………...……………………………………………26 Negative Geotaxis Response……………………………………..27 Righting Reflex…….……………….……………………………29 Stereotypic Repetitive Behavior: Grooming………………………………………………………...30 T-maze Acquisition and Reversal…………………………….….34 Summary of Behavioral Results………………………………………....37 NEUROENDOCRINE STATUS: Circulating Vasopressin Concentrations………………………………....38 DISCUSSION………………………………………..…………………………………..39 REFERENCES……………….……………………………………………...…………..52 APPENDICES……………………………………………………………………...……61 vi LIST OF FIGURES Figure Page 1. Conceptual Idea of Term “Autism Spectrum Disorder” (ASD)……..….…….1 2. Structure of Polychlorinated Biphenyl (PCB) Molecule………..….…………5 3. The Neurohypophysis……………………………….……………...………..11 4. Choreographed “Syntactic Chain” Sequence of Grooming Actions………...19 5. Effect of PCB on Mean Horizontal Movement during Development……….24 6. Effect of PCB on Mean Rearing during Development………………………25 7. Effect of PCB on Development Mean Rear Time.……………………….….25 8. Effect of PCB on Development Mean Hang Test…………………..….…….27 9. Effect of PCB on Developmental Mean Negative Geotaxis Response……...28 10. Effect of PCB on Developmental Mean Righting Reflex.. ………….………29 11. Mean Total Grooming/ Rat ………………………………………………….31 12. Mean Chains Initiated/ Rat…………………………………………………..31 13. Percent Complete Perfect Chains ……………………………………………32 14. Percent Incomplete Chains…………………………………………………..32 15. Percent Complete Imperfect Chains…………………………………………33 16. Effect of PCB on Mean T-maze Acquisition in Juvenile male rats………….34 17. Effect of PCB on Mean T-maze Reversal Learning in Juvenile male rats…..36 18. Effect of PCB 47/77 on Mean Circulating Serum Vasopressin Concentrations in 29-Day Old Male Rats. ……………………………………………………….38 vii LIST OF TABLES Table No. Page 1. Timeline for first set of litters tested…………………………………….…...16 2. Timeline for second set of litters tested……………………………….……..16 3. Sample Size for all Open Field Parameters Tested…………………………..26 4. Sample Size for Mean Hang Score…………………………………………..27 5. Sample Size for Mean Negative Geotaxis Response………………………...28 6. Sample Size for Mean Righting Reflex……………………………………...29 7. Sample Size for all Grooming Parameters Tested…………………………...33 8. Sample Size for Mean Learning Days……………………………………….34 9. % Rats Meeting Acquisition Criteria ………………………………………..35 10. Sample Size for T-maze Reversal……………………………………………36 11. Summary of Behavioral Results in Rats Exposed to PCB 47/77 at 0, 12.5 and 25 ppm ……………………………………………………....37 12. Sample Size for Serum Vasopressin Analysis……………………………….38 13. Comparison of PCB Congeners/ Doses and Motor Outcomes……..………..40 14. PCB Exposure as a Possible Animal Model for ASD……………….………51 1 INTRODUCTION Autism spectrum disorder (ASD) is a term used to describe a group of developmental disorders associated with substantial deficits in three specific areas: (1) reciprocal social interaction, (2) communication, and (3) the presence of repetitive and stereotyped behaviors and unusual interests (DSM-IV; American Psychiatric Association, 1994). These core clinical features generally appear before age 3 and last throughout a lifetime. ASD occurs in all racial, ethnic, and socioeconomic groups and is four times more likely to occur in boys than girls (CDC, 2007; Tsai 1999). The definition of ASD has evolved since Kanner first described the disorder in 1943 (Kanner, 1943), and now encompasses a wide range of behavioral severity with varying levels of cognitive and linguistic functioning (Tsai and Ghaziuddin, 1996). The term ASD includes the commonly recognized disorder autism, as well as Asperger’s syndrome, and pervasive developmental disorders not otherwise specified (PDDNOS). Since the etiology of ASD is unknown, the heterogeneity originally described on a continuum or “spectrum,” is presented here as different syndromes with overlapping clinical features (Figure 1). Autism Asperger’s PDDNOS Figure 1: Conceptual Idea of the term “autism spectrum disorder” (ASD). (Adapted and modified from Tsai, 1999) 2 Across ASD, the social domain may range from a complete absence of interest in interacting with others to more subtle difficulties managing complex social interactions that take into account the intentions of other people (Pelphrey et al., 2004). Individuals with Asperger’s syndrome tend to be argumentative and aggressive with a condescending affect, features rarely seen in individuals with autism (Ghaziuddin et al., 1991). Stereotypic repetitive behaviors may range from abnormal gait and preference for sameness to more complex elaborate rituals (Tsai and Ghaziuddin, 1996). Language deficits, while marked in some autistic individuals who are deemed completely nonverbal, can be mild and limited to the presence of pragmatic language deficits in higher functioning individuals with autism (Hollander, 2003; Koger et al., 2005). Several studies have implicated environmental factors as acting synergistically with genetic factors to cause the broad autistic phenotype (Hollander, 2003). Much of this literature focuses on heavy metals such as mercury and lead and commercial chemicals such as polychlorinated biphenyls (PCB) because of their direct neurotoxic, endocrine disrupting potential (Hubbs-Tait et al., 2005). Young children often encounter higher levels of toxicants than adults due to what Weiss (2000) calls the unique “spatial ecology” of childhood. Young children spend considerably more time on the floor breathing dust, drink breast milk, and ingest more juice, fruit and water, giving them increased exposure to pesticide residues and contaminants than adults (Koger et al., 2005). It is well
Recommended publications
  • Transferrin Variants and Conjugates
    (19) TZZ Z ¥ T (11) EP 2 604 623 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.06.2013 Bulletin 2013/25 C07K 14/79 (2006.01) A61K 47/48 (2006.01) A61K 38/40 (2006.01) C12N 5/10 (2006.01) (21) Application number: 12189421.6 (22) Date of filing: 08.08.2008 (84) Designated Contracting States: • Friis, Esben Peter AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 2730 Herlev (DK) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Hay, Joanna RO SE SI SK TR Nottingham, Nottinghamshire NG2 6QW (GB) • Finnis, Christopher John Arthur (30) Priority: 08.08.2007 EP 07114012 Nottingham, Nottinghamshire NG7 1JB (GB) 02.04.2008 EP 08153938 (74) Representative: Williams, Rachel Clare (62) Document number(s) of the earlier application(s) in Novozymes Biopharma UK Limited accordance with Art. 76 EPC: Castle Court 08787067.1 / 2 201 036 59 Castle Boulevard Nottingham (71) Applicant: Novozymes Biopharma DK A/S Nottinghamshire NG7 1FD (GB) 2880 Bagsvaerd (DK) Remarks: (72) Inventors: This application was filed on 22-10-2012 as a • Sleep, Darrell divisional application to the application mentioned Nottingham, Nottinghamshire NG2 5DS (GB) under INID code 62. (54) Transferrin variants and conjugates (57) Based on the three-dimensional structure of "thiotransferrin"). The variant polypeptide may be conju- transferrin, the inventors have designed variant polypep- gated through the sulphur atom of the Cysteine residue tides (muteins) which have one or more Cysteine resi- to a bioactive compound. dues with a free thiol group (hereinafter referred to as EP 2 604 623 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 604 623 A2 Description Reference to sequence listing 5 [0001] This application contains a Sequence Listing in computer readable form.
    [Show full text]
  • Human Neurophysin II Antibody
    Human Neurophysin II Antibody Monoclonal Mouse IgG2B Clone # 62865 Catalog Number: MAB009 DESCRIPTION Species Reactivity Human Specificity Detects human Neurophysin II in direct ELISAs. Source Monoclonal Mouse IgG2B Clone # 62865 Purification Protein A or G purified from ascites Immunogen Synthetic peptide containing human Neurophysin II Accession # P01186 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (-SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Immunohistochemistry 5-25 µg/mL See Below DATA Immunohistochemistry Neurophysin II in Human Brain Hippocampus Tissue. Neurophysin II was detected in immersion fixed paraffin- embedded sections of human brain hippocampus tissue using Mouse Anti- Human Neurophysin II Monoclonal Antibody (Catalog # MAB009) at 5 µg/mL for 1 hour at room temperature followed by incubation with the Anti-Mouse IgG VisUCyte™ HRP Polymer Antibody (Catalog # VC001). Before incubation with the primary antibody, tissue was subjected to heat-induced epitope retrieval using Antigen Retrieval Reagent- Basic (Catalog # CTS013). Tissue was stained using DAB (brown) and counterstained with hematoxylin (blue). Specific staining was localized to neurons. View our protocol for IHC Staining with VisUCyte HRP Polymer Detection Reagents. PREPARATION AND STORAGE Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (-SP) is shipped with polar packs.
    [Show full text]
  • Diversity of Central Oxytocinergic Projections
    Cell and Tissue Research (2019) 375:41–48 https://doi.org/10.1007/s00441-018-2960-5 REVIEW Diversity of central oxytocinergic projections Gustav F. Jirikowski1 Received: 21 September 2018 /Accepted: 6 November 2018 /Published online: 29 November 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Localization and distribution of hypothalamic neurons expressing the nonapeptide oxytocin has been extensively studied. Their projections to the neurohypophyseal system release oxytocin into the systemic circulation thus controlling endocrine events associated with reproduction in males and females. Oxytocinergic neurons seem to be confined to the ventral hypothalamus in all mammals. Groups of such cells located outside the supraoptic and the paraventricular nuclei are summarized as Baccessory neurons.^ Although evolutionary probably associated with the classical magocellular nuclei, accessory oxytocin neurons seem to consist of rather heterogenous groups: Periventricular oxytocin neurons may gain contact to the third ventricle to secrete the peptide into the cerebrospinal fluid. Perivascular neurons may be involved in control of cerebral blood flow. They may also gain access to the portal circulation of the anterior pituitary lobe. Central projections of oxytocinergic neurons extend to portions of the limbic system, to the mesencephalon and to the brain stem. Such projections have been associated with control of behaviors, central stress response as well as motor and vegetative functions. Activity of the different oxytocinergic systems seems to be malleable to functional status, strongly influenced by systemic levels of steroid hormones. Keywords Hypothalamo neurohypophyseal system . Circumventricular organs . Liquor contacting neurons . Perivascular system . Limbic system Introduction been shown to occur in prostate, gonads, or skin, OTexpression in the brain seems to be confined to the hypothalamus.
    [Show full text]
  • Pnas11138correction 14002..14003
    Corrections MEDICAL SCIENCES Correction for “Regulation of bone remodeling by vasopressin New, Alberta Zallone, and Mone Zaidi, which appeared in issue 46, explains the bone loss in hyponatremia,” by Roberto Tamma, November 12, 2013, of Proc Natl Acad Sci USA (110:18644–18649; Li Sun, Concetta Cuscito, Ping Lu, Michelangelo Corcelli, first published October 28, 2013; 10.1073/pnas.1318257110). Jianhua Li, Graziana Colaianni, Surinder S. Moonga, Adriana The authors note that Fig. 1 appeared incorrectly. The cor- Di Benedetto, Maria Grano, Silvia Colucci, Tony Yuen, Maria I. rected figure and its legend appear below. Fig. 1. Bone cells express Avprs. Immunofluorescence micrographs (A) and Western immunoblotting (B) show the expression of Avpr1α in osteoblasts and osteoclasts, and as a function of osteoblast (mineralization) and osteoclast (with Rankl) differentiation. The expression of Avp (ligand) and Avpr1α (receptor) in osteoblasts is regulated by 17β-estradiol, as determined by quantitative PCR (C) and Western immunoblotting (D). (Magnification: A,63×.) Because Avp is a small peptide, its precursor neurophysin II is measured. Statistics: Student t test, P values shown compared with 0 h. Stimulation of Erk phosphorylation − (p-Erk) as a function of total Erk (t-Erk) by Avp (10 8 M) in osteoclast precursors (preosteoclasts), osteoclasts (OC), and osteoblasts establishes functionality of − the Avpr1α in the presence or absence of the receptor inhibitor SR49059 (10 8 M) (E). Western immunoblotting showing the expression of Avpr2 in pre- −/− osteoclasts, OCs (F), and osteoblasts (G) isolated from Avpr1α mice, as well as in MC3T3.E1 osteoblast precursors (G). Functionality of Avpr2 was confirmed −/− by the demonstration that cells from Avpr1α mice remained responsive to AVP in reducing the expression of osteoblast differentiation genes, namely Runx2, Osx, Bsp, Atf4, Opn, and Osteocalcin (quantitative PCR, P values shown) (H).
    [Show full text]
  • Recent Applications of Retro-Inverso Peptides
    International Journal of Molecular Sciences Review Recent Applications of Retro-Inverso Peptides Nunzianna Doti 1, Mario Mardirossian 2, Annamaria Sandomenico 1 , Menotti Ruvo 1,* and Andrea Caporale 3,* 1 Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80134 Napoli, Italy; [email protected] (N.D.); [email protected] (A.S.) 2 Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; [email protected] 3 Institute of Crystallography (IC), National Research Council (CNR), 34149 Trieste, Italy * Correspondence: [email protected] (M.R.); [email protected] (A.C.) Abstract: Natural and de novo designed peptides are gaining an ever-growing interest as drugs against several diseases. Their use is however limited by the intrinsic low bioavailability and poor stability. To overcome these issues retro-inverso analogues have been investigated for decades as more stable surrogates of peptides composed of natural amino acids. Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case. Here, we review the application of retro-inverso peptides in anticancer therapies, in immunology, in neurodegenerative diseases, and as antimicrobials, analyzing pros and cons of this interesting subclass of molecules. Keywords: retro-inverso peptides; anticancer peptides; drug delivery; peptide antigens; Aβ; IAPP; Citation: Doti, N.; Mardirossian, M.; antimicrobial peptides Sandomenico, A.; Ruvo, M.; Caporale, A.
    [Show full text]
  • Immunological Identification of High Molecular Weight Forms Common To
    Proc. Nati. Acad. Sci. USA Vol. 77, No. 5, pp. 2587-2591, May 1980 Biochemistry Immunological identification of high molecular weight forms common to bovine neurophysin and vasopressin (prohormones/radioimmunoassay/affinity chromatography/proteolytic enzymes/neurohypophysis) PIERRE NICOLAS*, MARYSE CAMIER*, MARC LAUBER*, MARIE-J. 0. MASSE*, JAN MOHRINGt*, AND PAUL COHEN* Groupe de Neurobiochimie Cellulaire et Mol6culaire, Universite Pierre et Marie Curie, 96 boulevard Raspail, 75006 Paris, France; and tCentre de Recherches Merell International, 67000 Strasbourg, France Communicated by I. Robert Lehman, February 19,1980 ABSTRACT Extracts of bovine neurohypophysis made in the same precursor or else that the biosynthesis of both com- acid/ethanol solution containing protease inhibitors were pounds might be controlled by the same genetic unit. fractionated by two successive filtrations on Sephadex G-75 columns equilibrated in the presence and then in the absence Although a wealth of genetic, cytochemical, and pharma- of 4 M urea. Analysis of the pattern of neurophysin-like immu- cological observations suggested close relationships between noreactivity in the eluate, with two different antibodies, indi- the biosynthetic pathWays of both compounds (for a discussion, cated the presence of high M, forms of neurophysin (apparent see ref. 8), this hypothesis was never proved or supported by any sizes, _70,000 and 20,000-25,000, respectively) besides the Mr direct chemical evidence. Pulse-chase experiments in the rat, 10,000 neurophysin. [8-Arginine]vasopressin-like immuno- reactivity was also detected, coeluting with the neurophysin-like together with the use of the vasopressin-deficient Brattleboro species, in the material recovered in the exclusion and Mr species (9, 10), provided further biosynthetic arguments in favor 20,000-25,000 elution volumes of the same molecular sieve of the biogenesis of neurophysins via 20,000-dalton precursor fractionation of neurohypophyseal extracts.
    [Show full text]
  • Lec. 1+2 Physiology
    LEC. 1+2 PHYSIOLOGY 2nd year students BY DR. AHMED HAMED ATAIMISH 1 Lec. 1+2 Physiology Hormones and Endocrine Glands. Introduction Two major regulatory systems make important contributions to homeostasis: the nervous system and the endocrine system. In order to maintain relatively constant conditions in the internal environment of the body, each of these systems influences the activity of all the other organ systems. The nervous system coordinates fast, precise responses, such as muscle contraction. Electrical impulses generated by this system are very rapid and of short duration (milliseconds). The endocrine system regulates metabolic activity within the cells of organs and tissues. In contrast to the nervous system, endocrine system coordinates activities that require longer duration (hours, days) rather than speed. Examples of such activities include growth; long-term regulation of blood pressure; and coordination of menstrual cycles in females. What is a Gland? Gland is an organized collection of secretory epithelial cells. Most glands are formed during development by proliferation of epithelial cells so that they project into the underlying connective tissue. Some glands retain their continuity with the surface via a duct and are known as EXOCRINE GLANDS (as in sweat gland). Other glands lose this direct continuity with the surface when their ducts degenerate during development, these glands are known as ENDOCRINE glands. You may be puzzled to see some organs—the heart, for instance—that clearly have other functions yet are listed as part of the endocrine system represented by releasing atrial natriuretic peptide (ANP), a hormone that 2 Lec. 1+2 Physiology maintain Na excretion by the kidney and maintain blood pressure.
    [Show full text]
  • Neuroanatomical Distribution of Androgen and Estrogen Receptors in the Brain of a Urodele Amphibian, the Roughskin Newt, Taricha Granulosa
    AN ABSTRACT OF THE THESIS OF Glen A. Davis for the degree of Master of Science in Zoology presented on December 7, 1994. Title: Neuroanatomical Distribution of Androgen and Estrogen Receptors in the Brain of the Roughskin Newt, Taricha granulosa Abstract approved: Redacted for Privacy Frank L. Moore The gonadal steroids, testosterone and estradiol, are known to be important modulators of neuronal functions and behaviors in most vertebrate species. These steroid hormones also elicit changes in neuropeptide synthesis and secretion, alter specific neurohormone receptor levels, and alter neuronal morphology and electrophysiology. Many of the actions of androgens and estrogen are mediated by specific intracellular receptors found in certain regions of the brain. But where are these neuronal targets for androgens and estrogen found? The research in this thesis investigates the neuroanatomical distribution of androgen and estrogen receptors in the brain of a urodele amphibian, the roughskin newt, Taricha granulosa. Using immunocytochemistry with antibodies against these receptors, the distribution of both androgen and estrogen receptor-immunoreactive cells is described in the brain of this species. This study found brain regions that contain immunoreactive androgen receptors that have not previously been reported in poikilothermic vertebrates using other techniques. In addition, the distribution of estrogen receptor-immunoreactive cells in most brain areas, and the distribution of androgen receptor-immunoreactive cells in several brain areas, were found to be similar in this amphibian to those described in studies that employed in vivo autoradiographic techniques in other vertebrate species. This study suggests that the neuroanatomical distribution of gonadal steroid receptors is a relatively conserved trait in vertebrates.
    [Show full text]
  • Content Outline
    ® THE AMERICAN BOARD OF PEDIATRICS CONTENT OUTLINE Pediatric Endocrinology Subspecialty In-training, Certification, and Maintenance of Certification Examinations i INTRODUCTION This document was prepared by the American Board of Pediatrics Subboard of Pediatric Endocrinology for the purpose of developing in-training, certification, and maintenance of certification examinations. The outline defines the body of knowledge from which the Subboard samples to prepare its examinations. The content specification statements located under each category of the outline are used by item writers to develop questions for the examinations; they broadly address the specific elements of knowledge within each section of the outline. ii EXAMINATION PERCENTAGE LIST Approximate Percent in Examination Page I. Carbohydrate Metabolism..................................................16.0...................1 II. Bone and Mineral Metabolism ..........................................10.0.................13 III. Thyroid Hormones (Thyroxine [T4] and Triiodothyronine [T3]) ............14.0.................30 IV. Adrenal Disorders..............................................................12.0.................43 V. Pituitary/Hypothalamus .....................................................10.0.................58 VI. Growth...............................................................................10.0.................73 VII. Reproductive Endocrine System........................................12.0.................85 VIII. Other Hormones...................................................................2.0...............105
    [Show full text]
  • Zelena Et Al. 1 Zelena D, Stocker B, Barna I, Tóth ZE, Makara GB
    Zelena et al. Zelena D, Stocker B, Barna I, Tóth ZE, Makara GB Vasopressin deficiency diminishes acute and long-term consequences of maternal deprivation in male rat pups, Psychoneuronedocrinology 2015 Jan;51:378-91. doi: 10.1016/j.psyneuen.2014.10.018. Epub 2014 Oct 24 Manuscript as accepted Vasopressin deficiency diminishes acute and long-term consequences of maternal deprivation in male rat pups Dóra Zelenaa, Berhard Stockera, István Barnaa, Zsuzsanna E. Tóthb, Gábor B.Makaraa aInstitute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary bDepartment of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary Corresponding author: Dóra Zelena 1083 Budapest Szigony 43. Hungary Tel: +36-1-2109400/290 Fax.: +36-1-2109951 e-mail: [email protected] Short title: Long term consequences of maternal deprivation in Brattleboro rats 1 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) Zelena et al. Abstract Early life events have special importance in the development as postnatal environmental alterations may permanently affect the lifetime vulnerability to diseases. For the interpretation of the long-term consequences it is important to understand the immediate effects. As the role of vasopressin in hypothalamic-pituitary-adrenal axis regulation as well as in affective disorders seem to be important we addressed the question whether the congenital lack of vasopressin will modify the stress reactivity of the pups and will influence the later consequences of single 24h maternal deprivation (MD) on both stress-reactivity and stress-related behavioral changes. Vasopressin-producing (di/+) and deficient (di/di) Brattleboro rat were used.
    [Show full text]
  • Minimization of Exogenous Signals in ES Cell Culture Induces Rostral Hypothalamic Differentiation
    Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation Takafumi Wataya*†, Satoshi Ando‡, Keiko Muguruma*, Hanako Ikeda*, Kiichi Watanabe*, Mototsugu Eiraku*, Masako Kawada*, Jun Takahashi†, Nobuo Hashimoto†, and Yoshiki Sasai*§¶ *Organogenesis and Neurogenesis Group and ‡Division of Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; and Departments of †Neurosurgery and §Medical Embryology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan Edited by Shigetada Nakanishi, Osaka Bioscience Institute, Osaka, Japan, and approved June 6, 2008 (received for review March 28, 2008) Embryonic stem (ES) cells differentiate into neuroectodermal progen- 4, 6, 8, 11), contains bioactive (growth) factors such as a high itors when cultured as floating aggregates in serum-free conditions. concentration of insulin (6.7 ␮g/ml in 10% KSR) and lipid-rich Here, we show that strict removal of exogenous patterning factors albumin partially purified from bovine serum (6) (PCT patent no. during early differentiation steps induces efficient generation of WO 98/30679). rostral hypothalamic-like progenitors (Rax؉/Six3؉/Vax1؉) in mouse In this report, we show that ES cell-derived neuroectodermal ES cell-derived neuroectodermal cells. The use of growth factor-free cells robustly differentiate into cells expressing regional markers of chemically defined medium is critical and even the presence of the embryonic rostral hypothalamus when cultured in a strictly exogenous insulin, which is commonly used in cell culture, strongly chemically defined medium (CDM; growth factor-free chemically inhibits the differentiation via the Akt-dependent pathway. The ES defined medium is gfCDM hereafter), free of KSR and other .cell-derived Rax؉ progenitors generate Otp؉/Brn2؉ neuronal precur- growth factors including insulin sors (characteristic of rostral–dorsal hypothalamic neurons) and sub- sequently magnocellular vasopressinergic neurons that efficiently Results release the hormone upon stimulation.
    [Show full text]
  • Fourth Joint LWPESJESPE Meeting 1993 Final Program
    003 1-399819313305-0000$03.00/0 Vol. 33, No. 5, 1993 PEDIATRIC RESEARCH Printed in U.S.A. Copyright O 1993 International Pediatric Research Foundation, Inc. Fourth Joint LWPESJESPE Meeting 1993 Final Program FRIDAY, JUNE 4,1993 MORNING 9. Hormonal Monitoring and Side Effects of 8: 15 Opening ceremony Prenatal Dexamethasone Treatment for 21 - Fairmont Grand Ballroom Hydroxylase Deficiency Congenital Adrenal Melvin M. Grumbach, Chairman, Hyperplasia Organizing Committee SongyaPang Jo Anne Brasel, President, LWPES Department of Pediatrics Ieuan A. Hughes, President, ESPE University of Illinois College of Medicine, Chicago, IL PLENARY SESSION, I Fairmont Grand Ballroom 10. Prenatal Treatment of Congenital Adrenal 8:30 1. Lawson Wilkins Lecture: Hyperplasia Due to 21 -Hydroxylase Diabetes Mellitus, Type I - Islet Cell Deficiency: European Experience in 223 Destruction and Growth Studied in Pregnancies at Risk Transgenic Animal Models M. G. Forest Nora Sarvetnick I.N.S.E.R.M., Hopital Debrousse, Lyon, Department of Neuropharmacology France Scripps Research Institute, and LaJolla, CA H. G. Dorr Klinik fur Kinder and Jugendliche, 9:30 BREAK University Erlangen-Nurnberg, Erlangen, Germany CONCURRENT SYMPOSIA, I 11. Prenatal Treatment of Congenital Adrenal 10:OO-11:30 A.M. Hyperplasia SESSION A: Prenatal Diagnosis and P. Speiser Treatment of CAH Department of Pediatrics Fairmont Grand Ballroom The New York Hospital 10:OO 7. Molecular Pathology of 21 -Hydroxylase Cornell Medical Center, Deficiency New York, NY Tom Strachan Division of Human Genetics SESSION B: IDDM - Pharmacologic and University of Newcastle upon Tyne, UK Transplant Approaches to Therapy 10:20 8. Prenatal Diagnosis of Congenital Adrenal Mark Hopkins Peacock Court Hyperplasia Due to 21 -Hydroxylase 10:OO 12.
    [Show full text]