Immunological Identification of High Molecular Weight Forms Common To

Total Page:16

File Type:pdf, Size:1020Kb

Immunological Identification of High Molecular Weight Forms Common To Proc. Nati. Acad. Sci. USA Vol. 77, No. 5, pp. 2587-2591, May 1980 Biochemistry Immunological identification of high molecular weight forms common to bovine neurophysin and vasopressin (prohormones/radioimmunoassay/affinity chromatography/proteolytic enzymes/neurohypophysis) PIERRE NICOLAS*, MARYSE CAMIER*, MARC LAUBER*, MARIE-J. 0. MASSE*, JAN MOHRINGt*, AND PAUL COHEN* Groupe de Neurobiochimie Cellulaire et Mol6culaire, Universite Pierre et Marie Curie, 96 boulevard Raspail, 75006 Paris, France; and tCentre de Recherches Merell International, 67000 Strasbourg, France Communicated by I. Robert Lehman, February 19,1980 ABSTRACT Extracts of bovine neurohypophysis made in the same precursor or else that the biosynthesis of both com- acid/ethanol solution containing protease inhibitors were pounds might be controlled by the same genetic unit. fractionated by two successive filtrations on Sephadex G-75 columns equilibrated in the presence and then in the absence Although a wealth of genetic, cytochemical, and pharma- of 4 M urea. Analysis of the pattern of neurophysin-like immu- cological observations suggested close relationships between noreactivity in the eluate, with two different antibodies, indi- the biosynthetic pathWays of both compounds (for a discussion, cated the presence of high M, forms of neurophysin (apparent see ref. 8), this hypothesis was never proved or supported by any sizes, _70,000 and 20,000-25,000, respectively) besides the Mr direct chemical evidence. Pulse-chase experiments in the rat, 10,000 neurophysin. [8-Arginine]vasopressin-like immuno- reactivity was also detected, coeluting with the neurophysin-like together with the use of the vasopressin-deficient Brattleboro species, in the material recovered in the exclusion and Mr species (9, 10), provided further biosynthetic arguments in favor 20,000-25,000 elution volumes of the same molecular sieve of the biogenesis of neurophysins via 20,000-dalton precursor fractionation of neurohypophyseal extracts. Upon subsequent molecules. Immunochemical and biochemical analysis of mouse Sephadex G-150 filtration, the immunoreactive material re- and bovine hypothalamic extracts revealed the presence of high covered in the exclusion volume of the Sephadex G-75 filtration showed an apparent Mr of approximately 140,000. Both neu- molecular weight neurophysin-like and [8-arginine]vasopressin rophysin-like and vasopressin-ike immunoreactivities coeluted (AVP)-like species (11-13) with Mrs of _30,000 and t17,000, in the same volume. The elution profile of this Mr 140,000 ma- respectively. These forms were interpreted as precursors of the terial was unmodified when reanalyzed by the same molecular neurosecretory components. sieve filtration after exposure to 8 M urea. When these Mr Analysis of the translation products of hypothalamic mRNA, 140,000 immunoreactive forms of vasopressin and neurophysin were submitted to affinity chromatography on anti-neurophysin immunoprecipitated with anti-neurophysin antisera, indicated antibodies immobilized on Sepharose, both immunoreactivities the synthesis of neurophysin-like material with Mr estimated were selectively coadsorbed to the immunoadsorbent. Similarly, as 20,000-25,000 (14, 15) and 17,000 (16) in the case of bovine the neurophysin and vasopressin immunoreactivities associated and rat or mouse, respectively. Because similar higher molec- with Mr t25,000 were retained together on the same anti-neu- ular weight immunoreactive forms could also be detected in rophysin immunoadsorbent. The Mr 140,000 and Mr 25,000 the species having both neurophysin and [8-arginineivasopressin lysate of neurosecretory granules purified from bovine antigenic determinants generated the two neurosecretory neurohypophysis (ref. 12; unpublished data), preparation of components when exposed to proteolytic activities. This in vitro these putative pro-hormones was undertaken starting from processing was inhibited in acid medium, at low temperature, acetone-dried bovine pituitaries. and in the presence of a mixture of protease inhibitors. It is In the present report we show that two large forms (Mr concluded that these two large forms of proteins containing both 140,000 and 25,000) can be identified by successive molecular neurophysin and vasopressin may represent common biosyn- thetic precursors of these two neurohypophyseal compo- sieve fractionations and immunoadsorption steps. These large nents. species react with both anti-neurophysin and anti-vasopressin antibodies and, by proteolysis, can yield both neurophysin and The neurohypophyseal nonapeptide hormones ocytocin and AVP. They may represent common biosynthetic precursors of vasopressin are synthesized in the magnocellular system of the the two neurohypophyseal components. supraoptic and paraventricular nuclei of the hypothalamus. Their associated protein components, the neurophysins (for EXPERIMENTAL recent reviews, see refs. 1-4), are produced together with these PROCEDURE peptides in the perikarya of the specialized neurons. Under Materials. Bovine serum albumin, phenylmethylsulfonyl normal physiological conditions, the neurosecretory compounds fluoride (PhMeSO2F), Trasylol (aprotinin), and chloroquine are axonally transported via membrane-limited granules to the were purchased from Sigma. Human serum albumin was from nerve endings situated in the posterior hypophysis where they Behring (Marburg, W. Germany), and the soybean trypsin in- are either stored or secreted. In 1964, Sachs and Takabatake (5, hibitor was from Calbiochem. Urea (recrystalized from ethanol, 6) reported in vivo/in vitro evidence that vasopressin might stored in the dark, and known to be free of cyanate), spectro- be synthesized in the guinea pig, or dog, hypothalamo-neu- scopic-grade ethanol, and analytical grade ether, acetone, and rohypophyseal tract as an inactive precursor that is later pro- N-benzoyl-DL-arginine 4-nitroanilide hydrochloride were from cessed into the biologically active hormone. The hypothesis was Merck. Sephadex G-75 and G-150 and Sephacryl S-300 were subsequently made (7) that neurophysin might also be part of from Pharmacia. AVP was a generous gift from Ferring Lab- oratories (Malms, Sweden). The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "ad- Abbreviations: PheMeSO2F, phenylmethylsulfonyl fluoride; AVP, vertisement" in accordance with 18 U. S. C. §1734 solely to indicate [8-arginine]vasopressin. this fact. * Deceased. 2587 Downloaded by guest on September 27, 2021 2588 Biochemistry: Nicolas et al. Proc. Natl. Acad. Sc. USA 77 (1980) .Frationation of Bovine Neurohypophysis Extracts. All reactivity was not due to either degradation of the labeled tracer oertqons were run at 4VC unless otherwise indicated. Bovine or to its sticking to a protein component (13). Postertor hypophysis was collected immediately after sacrifice Affinity Chromatography by Immunoadsorption. The and tr4psported in cold peroxide-free acetone. The solvent was immunoadsorbent was prepared with 160 mg of SI1O3 previ- cPiigehl three times, and the vacuum-dried glands were ground ously precipitated by ammonium sulfate and covalently witt Sorvall Omnimixer. To 1 g of this acetone powder was crosslinked to CH-activated Sepharose 4B (2 g) by the proce- iIdded 10 ml of solvent (40% ethanol/0.2 M formic acid/5 mM dure recommended by the manufacturer (Pharmacia). The t~ihieO2F) and the mixture was stirred for 6 hr; then, the samples were adsorbed at 4VC for 1 hr in 0.1 M sodium phos- ilti~t~ was centrifuged for 15 min at 5000 X g. This extraction phate, pH 7.8/0.1 M NaCl containing 0.1 mg of human serum w.as.,reeated once on the pellet by overnight contact with 10 albumin per ml and a mixture of protease inhibitors (pepstatin ml ofsolvent. The pooled supernatants (20 ml) were made 82% at 1 mg/liter; 130 kallikrein inhibitor units of aprotinin per ml). ineUhtiol by slow addition of 100% ethanol at -20'C, stirred This was followed by washing the complex with 0.01 M sodium 30 mii, and then let stand overnight. The precipitate was phosphate buffer at the same pH and containing the same in- cenifiuged 30 min at 20,000 X g, and the pellet was washed hibitors. Desorption of the immunoadsorbed material was withi 400% ethanol and with ether and then vacuum-dried. Use achieved with 1 M acetic acid. of '1-labeled neurophysin as internal marker indicated that In all experiments iodinated neurophysin tracer was added 196% pf the 125I radioactivity remained in the supernatant as internal marker. Under these conditions, _90% of the total durinithe ethanol precipitation step. The pellet was redissolved neurophysin radioactivity was retained on the column. Controls irin .2 M formic acid/8 M urea/0.5 mM chloroquine/1 mM indicated that <1.5% of 125I-AVP and ;5% of AVP standard P "e§02F containing 50 Mig of soybean trypsin inhibitor per were adsorbed on the column. Measurements with a synthetic HI Aaad applied to a Sephadex G-75 column equilibrated in 0.2 substrate (benzoylarginine nitroanilide) indicated that both the M tofitic acid/4 M urea. The columns were calibrated with the antiserum (SIIO3), before or after ammonium sulfate precipi- follovking ' I-labeled markers: immunoglobulin (150,000), tation, and the immunoadsorbent, exhibited discrete but ovalbdnin (45,000), human growth hormone (22,000), and measurable proteolytic activity. 125I labeling of the bovine b6vi4e neurophysin (10,000). The molecular sizes are given neurophysin II, or of other protein materials, was
Recommended publications
  • Transferrin Variants and Conjugates
    (19) TZZ Z ¥ T (11) EP 2 604 623 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.06.2013 Bulletin 2013/25 C07K 14/79 (2006.01) A61K 47/48 (2006.01) A61K 38/40 (2006.01) C12N 5/10 (2006.01) (21) Application number: 12189421.6 (22) Date of filing: 08.08.2008 (84) Designated Contracting States: • Friis, Esben Peter AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 2730 Herlev (DK) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Hay, Joanna RO SE SI SK TR Nottingham, Nottinghamshire NG2 6QW (GB) • Finnis, Christopher John Arthur (30) Priority: 08.08.2007 EP 07114012 Nottingham, Nottinghamshire NG7 1JB (GB) 02.04.2008 EP 08153938 (74) Representative: Williams, Rachel Clare (62) Document number(s) of the earlier application(s) in Novozymes Biopharma UK Limited accordance with Art. 76 EPC: Castle Court 08787067.1 / 2 201 036 59 Castle Boulevard Nottingham (71) Applicant: Novozymes Biopharma DK A/S Nottinghamshire NG7 1FD (GB) 2880 Bagsvaerd (DK) Remarks: (72) Inventors: This application was filed on 22-10-2012 as a • Sleep, Darrell divisional application to the application mentioned Nottingham, Nottinghamshire NG2 5DS (GB) under INID code 62. (54) Transferrin variants and conjugates (57) Based on the three-dimensional structure of "thiotransferrin"). The variant polypeptide may be conju- transferrin, the inventors have designed variant polypep- gated through the sulphur atom of the Cysteine residue tides (muteins) which have one or more Cysteine resi- to a bioactive compound. dues with a free thiol group (hereinafter referred to as EP 2 604 623 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 604 623 A2 Description Reference to sequence listing 5 [0001] This application contains a Sequence Listing in computer readable form.
    [Show full text]
  • Human Neurophysin II Antibody
    Human Neurophysin II Antibody Monoclonal Mouse IgG2B Clone # 62865 Catalog Number: MAB009 DESCRIPTION Species Reactivity Human Specificity Detects human Neurophysin II in direct ELISAs. Source Monoclonal Mouse IgG2B Clone # 62865 Purification Protein A or G purified from ascites Immunogen Synthetic peptide containing human Neurophysin II Accession # P01186 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (-SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Immunohistochemistry 5-25 µg/mL See Below DATA Immunohistochemistry Neurophysin II in Human Brain Hippocampus Tissue. Neurophysin II was detected in immersion fixed paraffin- embedded sections of human brain hippocampus tissue using Mouse Anti- Human Neurophysin II Monoclonal Antibody (Catalog # MAB009) at 5 µg/mL for 1 hour at room temperature followed by incubation with the Anti-Mouse IgG VisUCyte™ HRP Polymer Antibody (Catalog # VC001). Before incubation with the primary antibody, tissue was subjected to heat-induced epitope retrieval using Antigen Retrieval Reagent- Basic (Catalog # CTS013). Tissue was stained using DAB (brown) and counterstained with hematoxylin (blue). Specific staining was localized to neurons. View our protocol for IHC Staining with VisUCyte HRP Polymer Detection Reagents. PREPARATION AND STORAGE Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (-SP) is shipped with polar packs.
    [Show full text]
  • Diversity of Central Oxytocinergic Projections
    Cell and Tissue Research (2019) 375:41–48 https://doi.org/10.1007/s00441-018-2960-5 REVIEW Diversity of central oxytocinergic projections Gustav F. Jirikowski1 Received: 21 September 2018 /Accepted: 6 November 2018 /Published online: 29 November 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Localization and distribution of hypothalamic neurons expressing the nonapeptide oxytocin has been extensively studied. Their projections to the neurohypophyseal system release oxytocin into the systemic circulation thus controlling endocrine events associated with reproduction in males and females. Oxytocinergic neurons seem to be confined to the ventral hypothalamus in all mammals. Groups of such cells located outside the supraoptic and the paraventricular nuclei are summarized as Baccessory neurons.^ Although evolutionary probably associated with the classical magocellular nuclei, accessory oxytocin neurons seem to consist of rather heterogenous groups: Periventricular oxytocin neurons may gain contact to the third ventricle to secrete the peptide into the cerebrospinal fluid. Perivascular neurons may be involved in control of cerebral blood flow. They may also gain access to the portal circulation of the anterior pituitary lobe. Central projections of oxytocinergic neurons extend to portions of the limbic system, to the mesencephalon and to the brain stem. Such projections have been associated with control of behaviors, central stress response as well as motor and vegetative functions. Activity of the different oxytocinergic systems seems to be malleable to functional status, strongly influenced by systemic levels of steroid hormones. Keywords Hypothalamo neurohypophyseal system . Circumventricular organs . Liquor contacting neurons . Perivascular system . Limbic system Introduction been shown to occur in prostate, gonads, or skin, OTexpression in the brain seems to be confined to the hypothalamus.
    [Show full text]
  • Pnas11138correction 14002..14003
    Corrections MEDICAL SCIENCES Correction for “Regulation of bone remodeling by vasopressin New, Alberta Zallone, and Mone Zaidi, which appeared in issue 46, explains the bone loss in hyponatremia,” by Roberto Tamma, November 12, 2013, of Proc Natl Acad Sci USA (110:18644–18649; Li Sun, Concetta Cuscito, Ping Lu, Michelangelo Corcelli, first published October 28, 2013; 10.1073/pnas.1318257110). Jianhua Li, Graziana Colaianni, Surinder S. Moonga, Adriana The authors note that Fig. 1 appeared incorrectly. The cor- Di Benedetto, Maria Grano, Silvia Colucci, Tony Yuen, Maria I. rected figure and its legend appear below. Fig. 1. Bone cells express Avprs. Immunofluorescence micrographs (A) and Western immunoblotting (B) show the expression of Avpr1α in osteoblasts and osteoclasts, and as a function of osteoblast (mineralization) and osteoclast (with Rankl) differentiation. The expression of Avp (ligand) and Avpr1α (receptor) in osteoblasts is regulated by 17β-estradiol, as determined by quantitative PCR (C) and Western immunoblotting (D). (Magnification: A,63×.) Because Avp is a small peptide, its precursor neurophysin II is measured. Statistics: Student t test, P values shown compared with 0 h. Stimulation of Erk phosphorylation − (p-Erk) as a function of total Erk (t-Erk) by Avp (10 8 M) in osteoclast precursors (preosteoclasts), osteoclasts (OC), and osteoblasts establishes functionality of − the Avpr1α in the presence or absence of the receptor inhibitor SR49059 (10 8 M) (E). Western immunoblotting showing the expression of Avpr2 in pre- −/− osteoclasts, OCs (F), and osteoblasts (G) isolated from Avpr1α mice, as well as in MC3T3.E1 osteoblast precursors (G). Functionality of Avpr2 was confirmed −/− by the demonstration that cells from Avpr1α mice remained responsive to AVP in reducing the expression of osteoblast differentiation genes, namely Runx2, Osx, Bsp, Atf4, Opn, and Osteocalcin (quantitative PCR, P values shown) (H).
    [Show full text]
  • Recent Applications of Retro-Inverso Peptides
    International Journal of Molecular Sciences Review Recent Applications of Retro-Inverso Peptides Nunzianna Doti 1, Mario Mardirossian 2, Annamaria Sandomenico 1 , Menotti Ruvo 1,* and Andrea Caporale 3,* 1 Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80134 Napoli, Italy; [email protected] (N.D.); [email protected] (A.S.) 2 Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; [email protected] 3 Institute of Crystallography (IC), National Research Council (CNR), 34149 Trieste, Italy * Correspondence: [email protected] (M.R.); [email protected] (A.C.) Abstract: Natural and de novo designed peptides are gaining an ever-growing interest as drugs against several diseases. Their use is however limited by the intrinsic low bioavailability and poor stability. To overcome these issues retro-inverso analogues have been investigated for decades as more stable surrogates of peptides composed of natural amino acids. Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case. Here, we review the application of retro-inverso peptides in anticancer therapies, in immunology, in neurodegenerative diseases, and as antimicrobials, analyzing pros and cons of this interesting subclass of molecules. Keywords: retro-inverso peptides; anticancer peptides; drug delivery; peptide antigens; Aβ; IAPP; Citation: Doti, N.; Mardirossian, M.; antimicrobial peptides Sandomenico, A.; Ruvo, M.; Caporale, A.
    [Show full text]
  • Lec. 1+2 Physiology
    LEC. 1+2 PHYSIOLOGY 2nd year students BY DR. AHMED HAMED ATAIMISH 1 Lec. 1+2 Physiology Hormones and Endocrine Glands. Introduction Two major regulatory systems make important contributions to homeostasis: the nervous system and the endocrine system. In order to maintain relatively constant conditions in the internal environment of the body, each of these systems influences the activity of all the other organ systems. The nervous system coordinates fast, precise responses, such as muscle contraction. Electrical impulses generated by this system are very rapid and of short duration (milliseconds). The endocrine system regulates metabolic activity within the cells of organs and tissues. In contrast to the nervous system, endocrine system coordinates activities that require longer duration (hours, days) rather than speed. Examples of such activities include growth; long-term regulation of blood pressure; and coordination of menstrual cycles in females. What is a Gland? Gland is an organized collection of secretory epithelial cells. Most glands are formed during development by proliferation of epithelial cells so that they project into the underlying connective tissue. Some glands retain their continuity with the surface via a duct and are known as EXOCRINE GLANDS (as in sweat gland). Other glands lose this direct continuity with the surface when their ducts degenerate during development, these glands are known as ENDOCRINE glands. You may be puzzled to see some organs—the heart, for instance—that clearly have other functions yet are listed as part of the endocrine system represented by releasing atrial natriuretic peptide (ANP), a hormone that 2 Lec. 1+2 Physiology maintain Na excretion by the kidney and maintain blood pressure.
    [Show full text]
  • Neuroanatomical Distribution of Androgen and Estrogen Receptors in the Brain of a Urodele Amphibian, the Roughskin Newt, Taricha Granulosa
    AN ABSTRACT OF THE THESIS OF Glen A. Davis for the degree of Master of Science in Zoology presented on December 7, 1994. Title: Neuroanatomical Distribution of Androgen and Estrogen Receptors in the Brain of the Roughskin Newt, Taricha granulosa Abstract approved: Redacted for Privacy Frank L. Moore The gonadal steroids, testosterone and estradiol, are known to be important modulators of neuronal functions and behaviors in most vertebrate species. These steroid hormones also elicit changes in neuropeptide synthesis and secretion, alter specific neurohormone receptor levels, and alter neuronal morphology and electrophysiology. Many of the actions of androgens and estrogen are mediated by specific intracellular receptors found in certain regions of the brain. But where are these neuronal targets for androgens and estrogen found? The research in this thesis investigates the neuroanatomical distribution of androgen and estrogen receptors in the brain of a urodele amphibian, the roughskin newt, Taricha granulosa. Using immunocytochemistry with antibodies against these receptors, the distribution of both androgen and estrogen receptor-immunoreactive cells is described in the brain of this species. This study found brain regions that contain immunoreactive androgen receptors that have not previously been reported in poikilothermic vertebrates using other techniques. In addition, the distribution of estrogen receptor-immunoreactive cells in most brain areas, and the distribution of androgen receptor-immunoreactive cells in several brain areas, were found to be similar in this amphibian to those described in studies that employed in vivo autoradiographic techniques in other vertebrate species. This study suggests that the neuroanatomical distribution of gonadal steroid receptors is a relatively conserved trait in vertebrates.
    [Show full text]
  • Content Outline
    ® THE AMERICAN BOARD OF PEDIATRICS CONTENT OUTLINE Pediatric Endocrinology Subspecialty In-training, Certification, and Maintenance of Certification Examinations i INTRODUCTION This document was prepared by the American Board of Pediatrics Subboard of Pediatric Endocrinology for the purpose of developing in-training, certification, and maintenance of certification examinations. The outline defines the body of knowledge from which the Subboard samples to prepare its examinations. The content specification statements located under each category of the outline are used by item writers to develop questions for the examinations; they broadly address the specific elements of knowledge within each section of the outline. ii EXAMINATION PERCENTAGE LIST Approximate Percent in Examination Page I. Carbohydrate Metabolism..................................................16.0...................1 II. Bone and Mineral Metabolism ..........................................10.0.................13 III. Thyroid Hormones (Thyroxine [T4] and Triiodothyronine [T3]) ............14.0.................30 IV. Adrenal Disorders..............................................................12.0.................43 V. Pituitary/Hypothalamus .....................................................10.0.................58 VI. Growth...............................................................................10.0.................73 VII. Reproductive Endocrine System........................................12.0.................85 VIII. Other Hormones...................................................................2.0...............105
    [Show full text]
  • Zelena Et Al. 1 Zelena D, Stocker B, Barna I, Tóth ZE, Makara GB
    Zelena et al. Zelena D, Stocker B, Barna I, Tóth ZE, Makara GB Vasopressin deficiency diminishes acute and long-term consequences of maternal deprivation in male rat pups, Psychoneuronedocrinology 2015 Jan;51:378-91. doi: 10.1016/j.psyneuen.2014.10.018. Epub 2014 Oct 24 Manuscript as accepted Vasopressin deficiency diminishes acute and long-term consequences of maternal deprivation in male rat pups Dóra Zelenaa, Berhard Stockera, István Barnaa, Zsuzsanna E. Tóthb, Gábor B.Makaraa aInstitute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary bDepartment of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary Corresponding author: Dóra Zelena 1083 Budapest Szigony 43. Hungary Tel: +36-1-2109400/290 Fax.: +36-1-2109951 e-mail: [email protected] Short title: Long term consequences of maternal deprivation in Brattleboro rats 1 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) Zelena et al. Abstract Early life events have special importance in the development as postnatal environmental alterations may permanently affect the lifetime vulnerability to diseases. For the interpretation of the long-term consequences it is important to understand the immediate effects. As the role of vasopressin in hypothalamic-pituitary-adrenal axis regulation as well as in affective disorders seem to be important we addressed the question whether the congenital lack of vasopressin will modify the stress reactivity of the pups and will influence the later consequences of single 24h maternal deprivation (MD) on both stress-reactivity and stress-related behavioral changes. Vasopressin-producing (di/+) and deficient (di/di) Brattleboro rat were used.
    [Show full text]
  • Minimization of Exogenous Signals in ES Cell Culture Induces Rostral Hypothalamic Differentiation
    Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation Takafumi Wataya*†, Satoshi Ando‡, Keiko Muguruma*, Hanako Ikeda*, Kiichi Watanabe*, Mototsugu Eiraku*, Masako Kawada*, Jun Takahashi†, Nobuo Hashimoto†, and Yoshiki Sasai*§¶ *Organogenesis and Neurogenesis Group and ‡Division of Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; and Departments of †Neurosurgery and §Medical Embryology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan Edited by Shigetada Nakanishi, Osaka Bioscience Institute, Osaka, Japan, and approved June 6, 2008 (received for review March 28, 2008) Embryonic stem (ES) cells differentiate into neuroectodermal progen- 4, 6, 8, 11), contains bioactive (growth) factors such as a high itors when cultured as floating aggregates in serum-free conditions. concentration of insulin (6.7 ␮g/ml in 10% KSR) and lipid-rich Here, we show that strict removal of exogenous patterning factors albumin partially purified from bovine serum (6) (PCT patent no. during early differentiation steps induces efficient generation of WO 98/30679). rostral hypothalamic-like progenitors (Rax؉/Six3؉/Vax1؉) in mouse In this report, we show that ES cell-derived neuroectodermal ES cell-derived neuroectodermal cells. The use of growth factor-free cells robustly differentiate into cells expressing regional markers of chemically defined medium is critical and even the presence of the embryonic rostral hypothalamus when cultured in a strictly exogenous insulin, which is commonly used in cell culture, strongly chemically defined medium (CDM; growth factor-free chemically inhibits the differentiation via the Akt-dependent pathway. The ES defined medium is gfCDM hereafter), free of KSR and other .cell-derived Rax؉ progenitors generate Otp؉/Brn2؉ neuronal precur- growth factors including insulin sors (characteristic of rostral–dorsal hypothalamic neurons) and sub- sequently magnocellular vasopressinergic neurons that efficiently Results release the hormone upon stimulation.
    [Show full text]
  • Fourth Joint LWPESJESPE Meeting 1993 Final Program
    003 1-399819313305-0000$03.00/0 Vol. 33, No. 5, 1993 PEDIATRIC RESEARCH Printed in U.S.A. Copyright O 1993 International Pediatric Research Foundation, Inc. Fourth Joint LWPESJESPE Meeting 1993 Final Program FRIDAY, JUNE 4,1993 MORNING 9. Hormonal Monitoring and Side Effects of 8: 15 Opening ceremony Prenatal Dexamethasone Treatment for 21 - Fairmont Grand Ballroom Hydroxylase Deficiency Congenital Adrenal Melvin M. Grumbach, Chairman, Hyperplasia Organizing Committee SongyaPang Jo Anne Brasel, President, LWPES Department of Pediatrics Ieuan A. Hughes, President, ESPE University of Illinois College of Medicine, Chicago, IL PLENARY SESSION, I Fairmont Grand Ballroom 10. Prenatal Treatment of Congenital Adrenal 8:30 1. Lawson Wilkins Lecture: Hyperplasia Due to 21 -Hydroxylase Diabetes Mellitus, Type I - Islet Cell Deficiency: European Experience in 223 Destruction and Growth Studied in Pregnancies at Risk Transgenic Animal Models M. G. Forest Nora Sarvetnick I.N.S.E.R.M., Hopital Debrousse, Lyon, Department of Neuropharmacology France Scripps Research Institute, and LaJolla, CA H. G. Dorr Klinik fur Kinder and Jugendliche, 9:30 BREAK University Erlangen-Nurnberg, Erlangen, Germany CONCURRENT SYMPOSIA, I 11. Prenatal Treatment of Congenital Adrenal 10:OO-11:30 A.M. Hyperplasia SESSION A: Prenatal Diagnosis and P. Speiser Treatment of CAH Department of Pediatrics Fairmont Grand Ballroom The New York Hospital 10:OO 7. Molecular Pathology of 21 -Hydroxylase Cornell Medical Center, Deficiency New York, NY Tom Strachan Division of Human Genetics SESSION B: IDDM - Pharmacologic and University of Newcastle upon Tyne, UK Transplant Approaches to Therapy 10:20 8. Prenatal Diagnosis of Congenital Adrenal Mark Hopkins Peacock Court Hyperplasia Due to 21 -Hydroxylase 10:OO 12.
    [Show full text]
  • Endocrinology
    THE AMERICAN BOARD OF PEDIATRICS® CONTENT OUTLINE Pediatric Endocrinology Subspecialty In-Training, Certification, and Maintenance of Certification (MOC) Examinations INTRODUCTION This document was prepared by the American Board of Pediatrics Subboard of Pediatric Endocrinology for the purpose of developing in-training, certification, and maintenance of certification examinations. The outline defines the body of knowledge from which the Subboard samples to prepare its examinations. The content specification statements located under each category of the outline are used by item writers to develop questions for the examinations; they broadly address the specific elements of knowledge within each section of the outline. Pediatric Endocrinology Each Pediatric Endocrinology exam is built to the same specifications, also known as the blueprint. This blueprint is used to ensure that, for the initial certification and in-training exams, each exam measures the same depth and breadth of content knowledge. Similarly, the blueprint ensures that the same is true for each Maintenance of Certification exam form. The table below shows the percentage of questions from each of the content domains that will appear on an exam. Please note that the percentages are approximate; actual content may vary. Initial Maintenance Certificatio of Content Categories n and Certification In-Training (MOC) 1. Carbohydrate Metabolism 16% 16% 2. Bone and Mineral Metabolism 8% 8% Thyroid Hormones (Thyroxine 3. [T4] and Triiodothyronine [T3]) 13% 14% 4. Adrenal Disorders 12% 12% 5. Pituitary/Hypothalamus 10% 10% 6. Growth 12% 14% 7. Reproductive Endocrine System 12% 12% 8. Other Hormones 3% 3% 9. Lipoproteins and Lipids 3% 3% Multiple endocrine neoplasia and 10. polyglandular autoimmune disease 2% 2% 11.
    [Show full text]