Download (10MB)

Total Page:16

File Type:pdf, Size:1020Kb

Download (10MB) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS QUÍMICAS “METABOLOMIC AND BIODIRECTED PHYTOCHEMICAL STUDY OF Hechtia glomerata, EVALUATION OF ITS ANTIBACTERIAL AND CYTOTOXIC ACTIVITY, AND DETERMINATION OF THE MECHANISM OF ACTION OF ONE ACTIVE COMPOUND” Presentada por: TOMMASO STEFANI Como requisito parcial para obtener el grado de DOCTOR EN CIENCIAS CON ORIENTACIÓN EN FARMACIA ENERO 2020 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTY OF CHEMICAL SCIENCES METABOLOMIC AND BIODIRECTED PHYTOCHEMICAL STUDY OF Hechtia glomerata, EVALUATION OF ITS ANTIBACTERIAL AND CYTOTOXIC ACTIVITY, AND DETERMINATION OF THE MECHANISM OF ACTION OF ONE ACTIVE COMPOUND By TOMMASO STEFANI, MSc As a partial requirement to obtain the Degree of DOCTOR IN SCIENCES with Orientation in Pharmacy January 2020 The experimental design and development of the present work was performed in the Laboratory of Natural and Synthetic Products, Faculty of Chemical Sciences at the Universidad Autónoma de Nuevo León. II III IV DEDICATION To my husband Mabiel To my parents To my brother To my grandparents V AKNOLEDGMENTS To the Faculty of CHemical Sciences of the U.A.N.L. for giving me the opportunity to carry out my Doctoral studies and the present research. To the National Council of Science and TecHnology (CONACyT) for the 621143 support grant provided during this project. To Dr. María Del Rayo Camacho Corona, Faculty of Chemical Sciences UANL. For the direction and support in the realization of this research project. Thank you for sharing your knowledge and experience with me, for your advice and the help given during these three years. To Dr. Edgar AbraHam García Zepeda, Faculty of Chemical Sciences UANL. For the provided advisory during the PhD project and thesis redaction. To my tutorial committee: Dr. Francisco G. Avalos Alanís, Dr. María Julia Verde Star and Dr. Verónica M. Rivas Galindo. For your observations and suggestions during the tutorial reunions and the seminars, which took part in the shaping of this project. VI To the biologist Mauricio González Ferrara, Faculty of Biology UANL. For collecting and providing the plant. To Dra. Elvira Garza González, Gastroenterology service, University Hospital Dr. José Eleuterio González. For the infrastructure and support provided in conducting antibacterial testing of the compounds obtained. To Dr. Verónica M. Rivas Galindo, Analytical department, Faculty of Medicine UANL. For the realization of the NMR spectra of isolated compounds. To Dr. Antonio Romo Mancillas, Faculty of Chemistry UAQ. For giving me the opportunity to join to his laboratory during my research stay. To Dr. Laura Alvarez Berber and Dr. María Yolanda Ríos Gomez, Chemical Investigation Center UAEM. For the GC-MS and UPLC-QTOF-MS analysis of the crude extracts. To Dr. Leticia González Maya, Faculty of Pharmacy UAEM. For the realization of the cytotoxicity assays of the crude extracts. To Dr. Lorena L. Garza Tovar, Faculty of Chemical Sciences UANL. For the realization of the X-ray analysis of an isolated compound. To Dr. Eder Ubaldo Arredondo Espinoza, Faculty of Chemical Sciences UANL. For the realization of the cytotoxicity screening of extracts, fractions and pure compounds and for the help in the extraction of total RNA. To Dr. María Pilar Morales San Claudio, Faculty of Chemical Sciences UANL. For the realization of the antibacterial assays against sensitive bacteria. VII To Dr. José Rodríguez Rodríguez, School of engineering and technology of information, Tecnológico de Monterrey. For the methylation of fraction 1 of the CHCl3/MeOH extract. To the professors, Dr. Lucía Guadalupe Cantú Cárdenas, Dr. María Elena Cantú Cárdenas, Dr. Verónica M. Rivas Galindo, Dr. María Araceli Hernández Ramírez. For all the help, the advice and support you gave me during my carrier. It means very much to me, thank you. To the professors, Dr. Mónica A. Ramírez Cabrera, and Dr. Isaías Balderas Rentería for taking part in my doctoral formation. To MSc Juan J. J. Carrizales Castillo and MSc Rodrigo Vázquez Briones for the help provided in the realization of the cytotoxicity assays and RNA extraction in the laboratory of INGGEN. To Kenya Guadalupe Flores Sandoval for the preparation of root extracts and the isolation of one compound. To my friends of the QPNS laboratory: Deyaní Nocedo Mena, Luis Fernando Méndez Lopéz, Reyna Martha Gallegos Alvarado and Bryan Alejandro Espinosa Rodríguez. To my friends Erikita, Mabiel and Magy. With you I have laughed and shared a lot, thank you so much for everything. To my friends of the laboratory of drug design assisted by computer and synthesis of the UAQ, Dr. Romo, Giovanni, Cesar, Ivonne, Fernanda, Alex, Ray, Sam, Jonny and Amelia. For accepting me as I am and being so nice and kind and making me part of your group. VIII ABSTRACT MSc. Tommaso Stefani Graduation date: MarcH 2020 Universidad Autónoma de Nuevo León Faculty of Chemical Sciences Title of the Study: METABOLOMIC AND BIODIRECTED PHYTOCHEMICAL STUDY OF Hechtia glomerata, EVALUATION OF ITS ANTIBACTERIAL AND CYTOTOXIC ACTIVITY, AND DETERMINATION OF THE MECHANISM OF ACTION OF ONE ACTIVE COMPOUND. Number of pages: 326 Candidate for the grade of Doctor in Science with Orientation in Pharmacy Purpose of the study: The pharmaceutical industry has left the active research and development of new antibiotics, and the lack of new molecules caused the antibacterial resistance to become an even more threatening issue. At the same time cancer resistance is also thriving, making old chemotherapeutic drugs useless. Therefore, there is the absolute need of new bioactive molecules to contrast these pathologies. Plants’ natural products have always been a source for bioactive and structurally complex compounds and could represent a solution to these emerging health problems. The majority of the world still relies on the use of ethnomedicine for the treatment and prevention of diseases. This is why in this work a Mexican medicinal plant: Hechtia glomerata Zucc. known as Guapilla was investigated for its curative properties. The goal of this study was to find out the actual antibacterial and cytotoxic activity of this plant’s extracts and its adequacy as source for biologically active compounds. Also, to isolate its major compounds and deeply investigate its secondary metabolites production. Finally, the mechanism of action of one of its bioactive constituents was investigated by microarray assay. IX Results and conclusions: The major constituents of H. glomerata’s leaf organic extracts (Hex and C/M) were isolated and characterized. Also, a metabolomic study on all H. glomerata’s leaf extracts was performed by UPLC-QTOF-MS analysis. This allowed the identification of the chemical profile of the plant accounting for a total of 226 compounds comprising a 38% of flavonoids and stilbenes, 31% of terpenes and steroids, a 15% of phenolic acids and derivatives, 10% of fatty acids and hydrocarbons, 6% of nitrogen containing compounds. The statistical analysis of the date permitted the visualization of the main differences among the extracts. It was also performed a pathway analysis showing which ones are the most predominant biosynthetic routes of H. glomerata. The antibacterial and cytotoxic activity of both leaf and root extracts was investigated. The MIC values for the extracts against resistant bacteria were ³ 500 µg/mL and were considered weak. Meanwhile of the isolated compounds only β-sitosteryl acetate had a MIC value of 100 µg/mL against carbapenem resistant Acinetobacter baumannii. The CHCl3/MeOH leaf extract had instead activity against two sensitive bacterial strains: Staphylococcus aureus and Enterobacter faecium with MIC values of 125 and 62.5 µg/mL respectively. Therefore, a bioassay-guided directed study was performed, testing against these two bacteria the fractions of CHCl3/MeOH extract. Fractions 1, 3 and 8 resulted to be the active ones, the most active being the fraction 8 with a MIC of 100 and 50 µg/mL against S. aureus and E. faecium respectively. The three active fractions were analyzed in order to identify their active components with GC-MS and/or HPLC-QTOF-MS. The extracts were also tested against cancer cells and only the organic leaf extracts resulted active (IC50: 24-32 µg/mL). The most active X was the Hex extract which accounted for the higher number in cell lines inhibited. These results highlighted the lack in specificity of this extract and also its major constituent (β-sitosterol) was already widely studied in the literature. For these reasons it was decided to focus on the CHCl3/MeOH extract, which presented activity against PC3 and was slightly active against MCF7 cell lines. A bioassay-guided directed study was also conducted on this extract showing fractions 3 and 4 as the most active ones. Hence their constituents were investigated giving a high similarity in their composition, especially they shared many hydroxycinnamic acid derivatives like p-coumaric and caffeic acid. Since these two compounds were found so abundant and were already isolated and characterized in the same extract, it was decided to test them against the two cancer cell lines. For the stability in culture medium of p-coumaric acid was selected for the microarray assay on PC3 cells. The results gave the up- and down-regulation of many genes involved in cancer, some of them specific for prostate cancer (PI3K/AKT, AMPK, MAPK, p53, RAS, and TNF among others). Some proteins of the pathways affected by p- coumaric acid treatment were modeled in silico and their probable binding sites identified by molecular docking. Finally, the complex ligand-proteins were submitted to molecular dynamic simulation and their binding energy calculated. The interactions leading to a negative binding energy confirm the spontaneous binding of the p-coumaric acid to its targets: MAPK8, MDM2, CCNB2, NTRK3, SLC2A4, MDM4 and the protein complex STK11-STRAD- CAB39. The results obtained in this research confirmed H. glomerata as a source of antibacterial and cytotoxic compounds and its use in the Mexican XI traditional medicine.
Recommended publications
  • Cross-Amplification of Nuclear Microsatellite Markers in Two
    Braz. J. Bot (2017) 40(2):475–480 DOI 10.1007/s40415-017-0362-7 ORIGINAL ARTICLE Cross-amplification of nuclear microsatellite markers in two species of Cryptanthus Otto & A. Dietr. (Bromeliaceae) 1 2 3 De´bora Maria Cavalcanti Ferreira • Jordana Neri • Clarisse Palma-Silva • 4 5 4 Diego Sotero Pinange´ • Ana Maria Benko-Iseppon • Rafael Batista Louzada Received: 1 June 2016 / Accepted: 16 January 2017 / Published online: 27 January 2017 Ó Botanical Society of Sao Paulo 2017 Abstract Thirty-eight nuclear microsatellite loci origi- Keywords Bromeliad Á Cryptanthus burle-marxii Á nally developed for Aechmea caudata Lindm., Orthophy- Cryptanthus zonatus Á Microsatellite Á Transferability tum ophiuroides Louzada & Wand., Pitcairnia albiflos Herb., Vriesea gigantea (Gaud.) and V. simplex (Vell.) Beer were tested in Cryptanthus burle-marxii Leme and C. Introduction zonatus (Vis.) Vis. Of the 38 loci tested, 13 were poly- morphic. Ten polymorphic microsatellite loci were selec- The genus Cryptanthus Otto & A. Dietr. (Bromeliaceae) ted to be amplified and genotyped in one population each comprises 78 species restricted to Brazil, where they occur of C. burle-marxii and C. zonatus. The observed and in the Atlantic Forest, ‘‘Caatinga’’ and ‘‘Cerrado’’ (Forzza expected heterozygosity per locus in the C. burle-marxii et al. 2016). These species belong to the Bromelioideae population ranged from 0.050 to 0.850 and 0.050 to 0.770, subfamily and are terrestrial and/or saxicolous herbs respectively. In C. zonatus, the observed and expected (Ramı´rez-Morillo 1996). Traditionally Cryptanthus has heterozygosity per locus ranged from 0.167 to 0.846 and been recognized as sister group to the genus Orthophytum 0.290 to 0.692, respectively.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Red Plants for Hawai'i Landscapes
    Ornamentals and Flowers Jan. 2010 OF-49 Red Plants for Hawai‘i Landscapes Melvin Wong Department of Tropical Plant and Soil Sciences his publication focuses on plants The plants with red coloration having red as their key color. In shown here are just a few of the pos- theT color wheel (see Wong 2006), sibilities. Their selection is based red is opposite to (and therefore the on my personal aesthetic preference “complement” of) green, which is the and is intended to give you a start in dominant color in landscapes because developing your own list of plants to it is the color of most foliage. The provide red highlights to a landscape. plants selected for illustration here Before I introduce a new plant can create exciting variation when species into my garden or landscape, I juxtaposed with green in landscapes want to know that it is not invasive in of tropical and subtropical regions. Hawai‘i. Some plants have the ability Lots of red can be used in landscapes to escape from their original plant- because equal amounts of red will bal- ing area and spread into disturbed or ance equal amounts of green. natural areas. Invasive plant species Many plants that can exist in a can establish populations that survive tropical or subtropical environment without human help and can expand do not necessarily give the feeling of a into nearby and in some cases even “tropical” theme. Examples, in my opinion, are plumerias, distant areas. These plants can outcompete native and bougainvilleas, rainbow shower trees, ixoras, and hibiscuses. agricultural species, causing negative impacts.
    [Show full text]
  • Generic Classification of Amaryllidaceae Tribe Hippeastreae Nicolás García,1 Alan W
    TAXON 2019 García & al. • Genera of Hippeastreae SYSTEMATICS AND PHYLOGENY Generic classification of Amaryllidaceae tribe Hippeastreae Nicolás García,1 Alan W. Meerow,2 Silvia Arroyo-Leuenberger,3 Renata S. Oliveira,4 Julie H. Dutilh,4 Pamela S. Soltis5 & Walter S. Judd5 1 Herbario EIF & Laboratorio de Sistemática y Evolución de Plantas, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile 2 USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Rd., Miami, Florida 33158, U.S.A. 3 Instituto de Botánica Darwinion, Labardén 200, CC 22, B1642HYD, San Isidro, Buenos Aires, Argentina 4 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Postal Code 6109, 13083-970 Campinas, SP, Brazil 5 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. Address for correspondence: Nicolás García, [email protected] DOI https://doi.org/10.1002/tax.12062 Abstract A robust generic classification for Amaryllidaceae has remained elusive mainly due to the lack of unequivocal diagnostic characters, a consequence of highly canalized variation and a deeply reticulated evolutionary history. A consensus classification is pro- posed here, based on recent molecular phylogenetic studies, morphological and cytogenetic variation, and accounting for secondary criteria of classification, such as nomenclatural stability. Using the latest sutribal classification of Hippeastreae (Hippeastrinae and Traubiinae) as a foundation, we propose the recognition of six genera, namely Eremolirion gen. nov., Hippeastrum, Phycella s.l., Rhodolirium s.str., Traubia, and Zephyranthes s.l. A subgeneric classification is suggested for Hippeastrum and Zephyranthes to denote putative subclades.
    [Show full text]
  • Low-Maintenance Landscape Plants for South Florida1
    ENH854 Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction regular watering, pruning, or spraying—to remain healthy and to maintain an acceptable aesthetic This publication was developed in response to quality. A low-maintenance plant has low fertilizer requests from participants in the Florida Yards & requirements and few pest and disease problems. In Neighborhoods (FYN) program in Miami-Dade addition, low-maintenance plants suitable for south County for a list of recommended landscape plants Florida must also be adapted to—or at least suitable for south Florida. The resulting list includes tolerate—our poor, alkaline, sand- or limestone-based over 350 low-maintenance plants. The following soils. information is included for each species: common name, scientific name, maximum size, growth rate An additional criterion for the plants on this list (vines only), light preference, salt tolerance, and was that they are not listed as being invasive by the other useful characteristics. Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws Criteria (Burks, 2000). Miami-Dade County does have restrictions for planting certain species within 500 This section will describe the criteria by which feet of native habitats they are known to invade plants were selected. It is important to note, first, that (Miami-Dade County, 2001); caution statements are even the most drought-tolerant plants require provided for these species. watering during the establishment period. Although this period varies among species and site conditions, Both native and non-native species are included some general rules for container-grown plants have herein, with native plants denoted by †.
    [Show full text]
  • Bromeliads Bromeliads Are a Family of Plants (Bromeliaceae, the Pineapple Family) Native to Tropical North and South America
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 19 March 2012 Bromeliads Bromeliads are a family of plants (Bromeliaceae, the pineapple family) native to tropical North and South America. Europeans fi rst found out about bromeliads on Columbus’ second trip to the New World in 1493, where the pineapple (Ananas sp.) was being cultivated by the Carib tribe in the West Indies. The commercial pineapple (Ananas comosus) is native to southern Brazil and Paraguay. After the colonization of the New World it was rapidly transported to all areas of the tropics, and now is widely grown in tropical and sub- tropical areas. The only A collection of bromeliads placed on a tree at Costa Flores, Costa Rica. bromeliad to occur north of the tropics is Spanish “moss” (Tillandsia usneoides). It is neither Spanish nor a moss, but an epiphytic bromeliad. It doesn’t look much like a typical Commercial pineapple, Ananas comosus, bromeliad, though, with its long scaly stems and reduced in the fi eld. fl owers. Bromeliads are monocots, many of which, like their grass relatives, have a special form of photosynthesis that uses a variation of the more usual biochemical pathways to allow them to use water more effi ciently. Even though they come from the tropics, this helps those that are epiphytes contend with life in the treetops where there is limited water and a real danger of drying out. There are about 2500 species Many bromeliads are tropical and several thousand hybrids epiphytes. and cultivars. Many have brightly colored leaves, fl owers or fruit, and range in size from moss-like species of Tillandsia to the enormous Puya raimondii from the Andes which produces a fl owering stem up to 15 feet tall.
    [Show full text]
  • Embriologia De Tillandsia Aeranthos (Lois.) L
    UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM AGROBIOLOGIA EMBRIOLOGIA DE TILLANDSIA AERANTHOS (LOIS.) L. B. SM. (TILLANDSIOIDEAE- BROMELIACEAE) DISSERTAÇÃO DE MESTRADO Cristiele Spat Santa Maria, RS, Brasil 2012 EMBRIOLOGIA DE TILLANDSIA AERANTHOS (LOIS.) L. B. SM. (TILLANDSIOIDEAE-BROMELIACEAE) Cristiele Spat Dissertação apresentada ao Curso de Mestrado do Programa de Pós-Graduação em Agrobiologia, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de Mestre em Agrobiologia Orientador: Prof. Dr. João Marcelo Santos de Oliveira Santa Maria, RS, Brasil 2012 AGRADECIMENTOS À minha família, pelo apoio, incentivo e por compreender as ausências durante esses dois anos. Ao meu Orientador, Prof. Dr. João Marcelo Santos de Oliveira, pela amizade e dedicação durante minha formação, os quais foram fundamentais na execução desse trabalho. Ao Glauber, pelo carinho, apoio e paciência. À Drª. Jaqueline Sarzi Sartori, pela amizade, dedicação, aprendizado e discussões, sempre valiosas, sobre Bromeliaceae Ao César Carvalho de Freitas, pela ajuda e disponibilidade na confecção do material botânico, indispensável na execução deste trabalho. À Marisa Binotto, pela amizade, companherismo e auxílio técnico no laboratório, muito importantes na execução deste estudo. Aos amigos e colegas do Laboratório de Botânica Estrutural, Patrícia, Merielen e Mariane, pelo convívio diário, incentivo e discussões acadêmicas, muito importantes para a realização deste trabalho. Às minhas amigas, Renata, Lara e Letícia, pelos encontros, momentos de descontração e por lembrarem, todos os dias, o valor de uma amizade. À Prof. Drª. Thais Scotti do Canto-Dorow, pela análise taxonômica e disponibilidade em realizar as coletas.
    [Show full text]
  • Taxonomic Revision of the Chilean Puya Species (Puyoideae
    Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Author(s): Georg Zizka, Julio V. Schneider, Katharina Schulte and Patricio Novoa Source: Brittonia , 1 December 2013, Vol. 65, No. 4 (1 December 2013), pp. 387-407 Published by: Springer on behalf of the New York Botanical Garden Press Stable URL: https://www.jstor.org/stable/24692658 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Brittonia This content downloaded from 146.244.165.8 on Sun, 13 Dec 2020 04:26:58 UTC All use subject to https://about.jstor.org/terms Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Georg Zizka1'2, Julio V. Schneider1'2, Katharina Schulte3, and Patricio Novoa4 1 Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung and Johann Wolfgang Goethe-Universität, Senckenberganlage 25, 60325, Frankfurt am Main, Germany; e-mail: [email protected]; e-mail: [email protected] 2 Biodiversity and Climate Research Center (BIK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany 3 Australian Tropical Herbarium and Tropical Biodiversity and Climate Change Centre, James Cook University, PO Box 6811, Caims, QLD 4870, Australia; e-mail: [email protected] 4 Jardin Botânico Nacional, Camino El Olivar 305, El Salto, Vina del Mar, Chile Abstract.
    [Show full text]
  • Water Relations of Bromeliaceae in Their Evolutionary Context
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants.
    [Show full text]
  • DELIMITAÇÃO DE ESPÉCIES E FILOGEOGRAFIA DO COMPLEXO Cryptanthus Zonatus (Vis.) Vis
    DÉBORA MARIA CAVALCANTI FERREIRA DELIMITAÇÃO DE ESPÉCIES E FILOGEOGRAFIA DO COMPLEXO Cryptanthus zonatus (Vis.) Vis. (BROMELIACEAE) RECIFE 2016 DÉBORA MARIA CAVALCANTI FERREIRA DELIMITAÇÃO DE ESPÉCIES E FILOGEOGRAFIA DO COMPLEXO Cryptanthus zonatus (Vis.) Vis. (BROMELIACEAE) Dissertação submetida ao Programa de Pós- Graduação em Biologia Vegetal (PPGBV) da Universidade Federal de Pernambuco (UFPE), como requisito para obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Rafael Batista Louzada Co-orientadora: Dra. Clarisse Palma da Silva Área de concentração: Florística e Sistemática Linha de Pesquisa: Florística e Sistemática de Angiospermas RECIFE 2016 DÉBORA MARIA CAVALCANTI FERREIRA “DELIMITAÇÃO DE ESPÉCIES E FILOGEOGRAFIA DO COMPLEXO Cryptanthus zonatus (Vis.) Vis. (Bromeliaceae)” APROVADA EM 29/02/2016 BANCA EXAMINADORA: ______________________________________________________________ Dr. Rafael Batista Louzada (Orientador) - UFPE ______________________________________________________________ Dr. Rodrigo Augusto Torres - UFPE ______________________________________________________________ Dra. Andrea Pedrosa Harand - UFPE RECIFE-PE 2016 AGRADECIMENTOS Agradeço ao meu orientador Rafael Batista Louzada pela atenção, confiança, parceria e oportunidade de estudar um grupo novo com uma abordagem diferente. À minha co-orientadora Clarisse Palma da Silva pela oportunidade de realizar o estágio em Rio Claro e por todos os ensinamentos e reuniões semanais. À colaboradora Ana Benko pela parceria e por ceder o laboratório para eu realizar a minha pesquisa. Ao colaborador Diego Sotero que me introduziu à genética vegetal me ensinando diversas técnicas. Pela amizade e por me entusiasmar a desenvolver esse projeto. À grande colaboradora Jordana Néri que me ensinou muito sobre a genética vegetal, e estava sempre disposta a me ajudar a utilizar os diversos programas computacionais. A maior parte desse projeto foi desenvolvido com a ajuda dela.
    [Show full text]
  • 2Do(). '!Phe . Famuy . Are Generally Con§Picu Mono
    Rev. Bio\. Trop., 46(3):493-513, 1998 Current. floristk and phytogeographk knowledge of Mexican Bromeliaceae Adolfo Espejo Serna yAna Rosa López-Ferrari1 I Herbario Metropolitano, Depart¡unento de Biología,C.B.S., Universidad Autónoma Metropolitana, Unidad Jztapalapa, Apartado Postal 55,535,09340 México, D. F.,Fax 7244688, e-m<'lil: [email protected] Rece.ived 6-XI-1997. Corrected 28-V-1998. Accepted 19-VI-1998. Abstract: A current floristicand phytogeographic knowledge of native Mexican Bromeliaceae is presented. There are 22 genera of Brorlleliaceae recorded from the country Iha! ¡nelude 326 species. The genus Ursulaea with 2 species is endemic to Mexico, wbíle Hechtiawith 48 oC its 50 specíesbas its principal centerof diversity in the country. 7illandsia (175 spp), Hechtia (48 spp) and Pitcairnia (46 spp) are tbe genera with tbe greatest number of species. We present a comparative análysisof Mexican Bromeliaceae with tbat of other American regions that buve recently published accounts Cor the Family, .particularlythe Mesomerican area,Venezu¡:la, Ecuador, and tbeGuianas.Our results ledus to the cOI1e1usiontbat alltbese floras sbould be considered as distinct. We obse,rve a progressive decre¡¡¡se ofthe Simpson index value related wit� tbe remoteness of the Mexican area. A general análysisof tlrpspeCies numbers of Mexican bromeliad genera shows adistinct preference oftbespeci es forconiferousand oakfo,rests'; folÍowed by t�opical caduci­ ' folious forests. There is also significan! r¡:presentation of tbe family ifi'o ther vegetation types such as doud forests and tropical perennifolious forests. Generally Mel\ican Bromeliacea¡: speeies hav¡: scárceand sparse populationsandin manyc ases they inbabit diffs,bluffs and scaIJÍs in restrlcted areas,Col1cerning tbe.
    [Show full text]
  • Departamento De Botánica Facultad De Ciencias Naturales Y Oceanográficas Universidad De Concepción VALOR ADAPTATIVO DE LA VÍ
    Departamento de Botánica Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción VALOR ADAPTATIVO DE LA VÍA FOTOSINTÉTICA CAM PARA ESPECIES CHILENAS DEL GÉNERO PUYA (BROMELIACEAE) Tesis para optar al grado de Doctor en Ciencias Biológicas, Área de especialización Botánica IVÁN MARCELO QUEZADA ARRIAGADA Profesor guía: Dr. Ernesto Gianoli M. Profesor co-tutor: Dr. Alfredo Saldaña M. Comisión evaluadora de tesis, para optar al grado de Doctor en Ciencias Biológicas Área Botánica “Valor adaptativo de la vía fotosintética CAM para especies chilenas del género Puya (Bromeliaceae)” Dr. Ernesto Gianoli ___________________________________ Profesor Guía Dr. Alfredo Saldaña ___________________________________ Co-tutor Dr. Carlos M. Baeza ___________________________________ Dra. María Fernanda Pérez ___________________________________ Evaluadora externa Dra. Fabiola Cruces ___________________________________ Directora (S) Programa Doctorado en Botánica Septiembre 2013 1 A Paula, Leonor y Julieta 2 AGRADECIMIENTOS El completar exitosamente una tarea de esta magnitud se debe, en gran medida, a todos quienes me brindaron su apoyo, consejo o ayuda en algún punto de este largo camino. En primer lugar debo agradecer a Paula, mi esposa, amiga y compañera, por soportar conmigo estos 4 años y medio de esfuerzo, sacrificios y más de alguna recompensa. No solo ha sido soporte para mi espíritu durante todo este tiempo, sino que además fue la mejor compañera de terreno que pude haber encontrado. Agradezco también a mi hija mayor, Leonor, inspirada dibujante, talentosa fotógrafa y la mejor asistente de muestreo que existe, cuya mirada de felicidad y asombro durante los largos viajes en los que me acompañó fue el mejor recordatorio de que la vida hay que disfrutarla, siempre. También, y aunque llegó al final de este largo camino, agradezco a Julieta, quien ha sido el impulso que necesitaba para darme a la tarea de concluír este trabajo.
    [Show full text]