The Phase Diagram of Neutral Quark Matter 41 2.1 Thephasediagramofmasslessquarks

Total Page:16

File Type:pdf, Size:1020Kb

The Phase Diagram of Neutral Quark Matter 41 2.1 Thephasediagramofmasslessquarks The Phase Diagram of Neutral Quark Matter Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Physik der Johann Wolfgang Goethe - Universit¨at in Frankfurt am Main von Stefan Bernhard Ruster¨ arXiv:nucl-th/0612090v1 20 Dec 2006 aus Alzenau in Ufr. Frankfurt 2006 (D 30) 2 vom Fachbereich Physik der Johann Wolfgang Goethe - Universit¨at als Dissertation angenommen. Dekan: Prof. Dr. Aßmus Gutachter: Prof. Dr. Rischke und HD PD Dr. Schaffner-Bielich Datum der Disputation: 14. Dezember 2006 Abstract In this thesis, I study the phase diagram of dense, locally neutral three-flavor quark matter as a function of the strange quark mass, the quark chemical potential, and the temperature, employing a general nine-parameter ansatz for the gap matrix. At zero temperature and small values of the strange quark mass, the ground state of quark matter corresponds to the color–flavor-locked (CFL) phase. At some critical value of the strange quark mass, this is replaced by the recently proposed gapless CFL (gCFL) phase. I also find several other phases, for instance, a metallic CFL (mCFL) phase, a so-called uSC phase where all colors of up quarks are paired, as well as the standard two-flavor color-superconducting (2SC) phase and the gapless 2SC (g2SC) phase. I also study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of a Nambu–Jona-Lasinio (NJL) model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark coupling strength. In addition, I study the effect of neutrino trapping on the phase diagram of dense, locally neutral three-flavor quark matter within the same NJL model. The phase diagrams in the plane of temperature and quark chemical potential, as well as in the plane of temperature and lepton- number chemical potential are presented. I show that neutrino trapping favors two-flavor color superconductivity and disfavors the color–flavor-locked phase at intermediate densities of matter. At the same time, the location of the critical line separating the two-flavor color-superconducting phase and the normal phase of quark matter is little affected by the presence of neutrinos. The implications of these results for the evolution of protoneutron stars are briefly discussed. 4 Acknowledgments I am very grateful to my advisor Prof. Dr. Dirk Rischke who suggested the topic for my thesis. He introduced me to quantum field theory and color superconductivity. I learnt a lot in his lectures and in private communication. I thank him for his suggestions and advices. I am very thankful to Prof. Dr. Igor Shovkovy. I thank him for the excellent cooperation, the discussions, suggestions, and advices. I am grateful to our colleagues Verena Werth and PD Dr. Michael Buballa from the Institut f¨ur Kernphysik at the Technische Universit¨at Darmstadt for the teamwork. I thank Hossein Malekzadeh for the cooperation concerning the spin-zero A-phase of color-superconducting quark matter. I am grateful to HD PD Dr. J¨urgen Schaffner-Bielich. I learnt a lot in his lectures, seminars, and in our astro group meetings. I also thank him and Matthias Hempel for the cooperation and discussions concerning the outer crust of nonaccreting cold neutron stars. I am grateful to the computer trouble team for removing computer problems. I am thankful for using the Center for Scientific Computing (CSC) of the Johann Wolfgang Goethe - Universit¨at. I am very grateful to my parents who supported me during the whole time of my study. 6 Contents Abstract 3 Acknowledgments 5 Contents 7 List of Figures 9 List of Tables 11 1 Introduction 13 1.1 The phase diagram of strongly interacting matter . ........ 13 1.2 Colorsuperconductivity .............................. ... 15 1.2.1 The2SCphase .................................. 17 1.2.2 TheCFLphase.................................. 18 1.2.3 Spin-one color superconductivity . .. 20 1.3 Stellar evolution . 21 1.3.1 Theformationofstars.............................. 21 1.3.2 Mainsequencestars ............................... 22 1.3.3 Redgiantsandredsupergiants. 24 1.3.4 Compactstars .................................. 25 1.4 Neutronstars..................................... .. 25 1.4.1 Pulsars ...................................... 27 1.4.2 Structureofneutronstars . ... 28 1.4.3 Propertiesofneutronstarmatter. .... 30 1.4.4 Toymodelsofneutralnormalquarkmatter . .... 33 1.5 Color superconductivity in neutron stars . ....... 36 1.5.1 Toy models of neutral color-superconducting quark matter . ......... 38 2 The phase diagram of neutral quark matter 41 2.1 Thephasediagramofmasslessquarks . ..... 42 2.1.1 Quantumchromodynamics ........................... 42 2.1.2 Theeffectiveactionofquarks . 45 2.1.3 Propagators and self-energies in projector representation ........... 49 2.1.4 The potential part of the effective action of quarks . ...... 49 2.1.5 The kinetic part of the effective action of quarks . .... 51 2.1.6 The pressure of color-superconducting quark matter . ........ 54 2.1.7 Resultsatzerotemperature. .. 58 2.1.8 Resultsatnonzerotemperature. ... 62 2.2 The phase diagram with a self-consistent treatment of quark masses ........ 66 2.2.1 Model....................................... 66 2.2.2 Results ...................................... 75 2.3 The phase diagram with the effect of neutrino trapping . ....... 83 8 CONTENTS 2.3.1 Model....................................... 84 2.3.2 Simplified considerations . 86 2.3.3 Results ...................................... 89 3 Conclusions 101 3.1 Summaryanddiscussion............................... 101 3.2 Openquestionsandoutlook.. .. .. .. .. .. .. .. .. .. .. .. 104 A Definitions of matrices 109 A.1 ThePaulimatrices................................... 109 A.1.1 Spinprojectors .................................. 109 A.2 MatricesinDiracspace ................................ 110 A.2.1 ProjectorsinDiracspace ............................ 110 A.3 The generators of the SU (3)group........................... 111 B Useful formulae 113 B.1 Non-interacting massless fermions and antifermions at nonzero temperature . 113 B.2 TheinverseDiracpropagator . .. 114 B.3 Thetree-levelquarkpropagator. ....... 114 B.4 TheFeynmangaugedgluonpropagator . ..... 115 B.5 The determinant of the inverse quark propagator . ......... 116 B.6 Thelogarithmofthedeterminant. .. 118 B.7 TheDiractrace..................................... 118 B.8 Thetraceofthelogarithm............................. 119 B.9 Cubicequations..................................... 120 B.10 Summation over the fermionic Matsubara frequencies . .......... 123 C Zusammenfassung 127 Bibliography 133 Lebenslauf 141 List of Figures 1.1 The knowledge about the phase diagram of strongly interacting matterin2003. 14 1.2 The one-gluon exchange interaction between two quarks in QCD. .......... 16 1.3 TheHertzsprung-Russelldiagram. ...... 22 1.4 Theproton-protoncycles. ..... 23 1.5 Thecarbon-nitrogen-oxygencycles. ........ 23 1.6 Theevolutionofneutronstars. ..... 26 1.7 Aschematicrepresentationofapulsar.. ....... 28 1.8 Cross-sectionsofneutronstars. ........ 29 1.9 The quark-hadron phase transition in neutron stars. .......... 30 1.10 The low-energy part of the dispersion relations. ......... 37 2.1 The sunset-type diagram, and the double-bubble diagram. .......... 46 2 2.2 The gap parameters as a function of ms/µ. ...................... 58 2 2.3 The chemical potentials of electric and color charge as a function of ms/µ...... 59 2.4 The gap parameters as a function of the quark chemical potential. 59 2.5 The quark number densities as a function of the quark chemical potential. 60 2.6 The quasiparticle dispersion relations. ..... 61 2.7 The temperature dependence of the gaps for a small strange quarkmass. 62 2.8 The near-critical temperature dependence of the gaps for a small ms......... 63 2.9 The temperature dependence of the gaps for a large strange quarkmass.. 63 2.10 The temperature dependence of the electrical and color chemical potentials. 64 2.11 The phase diagram of massless neutral three-flavor quark matter........... 65 3 2.12 The phase diagram of neutral quark matter without neutrinos for GD = 4 GS .... 76 2.13 The phase diagram of neutral quark matter without neutrinos for GD = GS . ... 76 3 2.14 Quark masses, gap parameters, and chemical potentials at GD = 4 GS ........ 77 2.15 Quark masses, gap parameters, and chemical potentials at GD = GS ......... 79 3 2.16 The number densities of quarks and electrons at T = 0 and GD = 4 GS. ...... 80 2.17 The number densities of quarks, electrons, and muons at T = 0 and GD = GS. .. 81 2.18 The pressures of different phases of neutral color-superconducting quark matter. 82 2.19 Ratio of down and up quark chemical potentials as a function of µLe /µ....... 87 2.20 The three-dimensional phase diagram of neutral three-flavorquarkmatter.. 90 2.21 The phase diagram of neutral quark matter at µLe =200MeV. ........... 91 2.22 The phase diagram of neutral quark matter at µLe =400MeV. ........... 91 2.23 Quark masses, gap parameters, and chemical potentials at µLe =200MeV. 92 2.24 Quark masses, gap parameters, and chemical potentials at µLe =400MeV. 93 2.25 The dependence of the electron family lepton fraction YLe on µ............ 94 2.26 Thephasediagramoftheouterstellarcore.
Recommended publications
  • The Positons of the Three Quarks Composing the Proton Are Illustrated
    The posi1ons of the three quarks composing the proton are illustrated by the colored spheres. The surface plot illustrates the reduc1on of the vacuum ac1on density in a plane passing through the centers of the quarks. The vector field illustrates the gradient of this reduc1on. The posi1ons in space where the vacuum ac1on is maximally expelled from the interior of the proton are also illustrated by the tube-like structures, exposing the presence of flux tubes. a key point of interest is the distance at which the flux-tube formaon occurs. The animaon indicates that the transi1on to flux-tube formaon occurs when the distance of the quarks from the center of the triangle is greater than 0.5 fm. again, the diameter of the flux tubes remains approximately constant as the quarks move to large separaons. • Three quarks indicated by red, green and blue spheres (lower leb) are localized by the gluon field. • a quark-an1quark pair created from the gluon field is illustrated by the green-an1green (magenta) quark pair on the right. These quark pairs give rise to a meson cloud around the proton. hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html Nucl. Phys. A750, 84 (2005) 1000000 QCD mass 100000 Higgs mass 10000 1000 100 Mass (MeV) 10 1 u d s c b t GeV HOW does the rest of the proton mass arise? HOW does the rest of the proton spin (magnetic moment,…), arise? Mass from nothing Dyson-Schwinger and Lattice QCD It is known that the dynamical chiral symmetry breaking; namely, the generation of mass from nothing, does take place in QCD.
    [Show full text]
  • 1 Standard Model: Successes and Problems
    Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles.
    [Show full text]
  • 7. Gamma and X-Ray Interactions in Matter
    Photon interactions in matter Gamma- and X-Ray • Compton effect • Photoelectric effect Interactions in Matter • Pair production • Rayleigh (coherent) scattering Chapter 7 • Photonuclear interactions F.A. Attix, Introduction to Radiological Kinematics Physics and Radiation Dosimetry Interaction cross sections Energy-transfer cross sections Mass attenuation coefficients 1 2 Compton interaction A.H. Compton • Inelastic photon scattering by an electron • Arthur Holly Compton (September 10, 1892 – March 15, 1962) • Main assumption: the electron struck by the • Received Nobel prize in physics 1927 for incoming photon is unbound and stationary his discovery of the Compton effect – The largest contribution from binding is under • Was a key figure in the Manhattan Project, condition of high Z, low energy and creation of first nuclear reactor, which went critical in December 1942 – Under these conditions photoelectric effect is dominant Born and buried in • Consider two aspects: kinematics and cross Wooster, OH http://en.wikipedia.org/wiki/Arthur_Compton sections http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551 3 4 Compton interaction: Kinematics Compton interaction: Kinematics • An earlier theory of -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of h or • The failure of the Thomson theory to describe high-energy photon scattering necessitated the • Inelastic collision • After the collision the electron departs
    [Show full text]
  • First Determination of the Electric Charge of the Top Quark
    First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge.
    [Show full text]
  • Glossary of Scientific Terms in the Mystery of Matter
    GLOSSARY OF SCIENTIFIC TERMS IN THE MYSTERY OF MATTER Term Definition Section acid A substance that has a pH of less than 7 and that can react with 1 metals and other substances. air The mixture of oxygen, nitrogen, and other gasses that is consistently 1 present around us. alchemist A person who practices a form of chemistry from the Middle Ages 1 that was concerned with transforming various metals into gold. Alchemy A type of science and philosophy from the Middle Ages that 1 attempted to perform unusual experiments, taking something ordinary and turning it into something extraordinary. alkali metals Any of a group of soft metallic elements that form alkali solutions 3 when they combine with water. They include lithium, sodium, potassium, rubidium, cesium, and francium. alkaline earth Any of a group of metallic elements that includes beryllium, 3 metals magnesium, calcium, strontium, barium, and radium. alpha particle A positively charged particle, indistinguishable from a helium atom 5, 6 nucleus and consisting of two protons and two neutrons. alpha decay A type of radioactive decay in which a nucleus emits 6 an alpha particle. aplastic anemia A disorder of the bone marrow that results in too few blood cells. 4 apothecary The person in a pharmacy who distributes medicine. 1 atom The smallest component of an element that shares the chemical 1, 2, 3, 4, 5, 6 properties of the element and contains a nucleus with neutrons, protons, and electrons. atomic bomb A bomb whose explosive force comes from a chain reaction based on 6 nuclear fission. atomic number The number of protons in the nucleus of an atom.
    [Show full text]
  • Properties of Baryons in the Chiral Quark Model
    Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results.
    [Show full text]
  • The Standard Model and Beyond Maxim Perelstein, LEPP/Cornell U
    The Standard Model and Beyond Maxim Perelstein, LEPP/Cornell U. NYSS APS/AAPT Conference, April 19, 2008 The basic question of particle physics: What is the world made of? What is the smallest indivisible building block of matter? Is there such a thing? In the 20th century, we made tremendous progress in observing smaller and smaller objects Today’s accelerators allow us to study matter on length scales as short as 10^(-18) m The world’s largest particle accelerator/collider: the Tevatron (located at Fermilab in suburban Chicago) 4 miles long, accelerates protons and antiprotons to 99.9999% of speed of light and collides them head-on, 2 The CDF million collisions/sec. detector The control room Particle Collider is a Giant Microscope! • Optics: diffraction limit, ∆min ≈ λ • Quantum mechanics: particles waves, λ ≈ h¯/p • Higher energies shorter distances: ∆ ∼ 10−13 cm M c2 ∼ 1 GeV • Nucleus: proton mass p • Colliders today: E ∼ 100 GeV ∆ ∼ 10−16 cm • Colliders in near future: E ∼ 1000 GeV ∼ 1 TeV ∆ ∼ 10−17 cm Particle Colliders Can Create New Particles! • All naturally occuring matter consists of particles of just a few types: protons, neutrons, electrons, photons, neutrinos • Most other known particles are highly unstable (lifetimes << 1 sec) do not occur naturally In Special Relativity, energy and momentum are conserved, • 2 but mass is not: energy-mass transfer is possible! E = mc • So, a collision of 2 protons moving relativistically can result in production of particles that are much heavier than the protons, “made out of” their kinetic
    [Show full text]
  • A Quark-Meson Coupling Model for Nuclear and Neutron Matter
    Adelaide University ADPT February A quarkmeson coupling mo del for nuclear and neutron matter K Saito Physics Division Tohoku College of Pharmacy Sendai Japan and y A W Thomas Department of Physics and Mathematical Physics University of Adelaide South Australia Australia March Abstract nucl-th/9403015 18 Mar 1994 An explicit quark mo del based on a mean eld description of nonoverlapping nucleon bags b ound by the selfconsistent exchange of ! and mesons is used to investigate the prop erties of b oth nuclear and neutron matter We establish a clear understanding of the relationship b etween this mo del which incorp orates the internal structure of the nucleon and QHD Finally we use the mo del to study the density dep endence of the quark condensate inmedium Corresp ondence to Dr K Saito email ksaitonuclphystohokuacjp y email athomasphysicsadelaideeduau Recently there has b een considerable interest in relativistic calculations of innite nuclear matter as well as dense neutron matter A relativistic treatment is of course essential if one aims to deal with the prop erties of dense matter including the equation of state EOS The simplest relativistic mo del for hadronic matter is the Walecka mo del often called Quantum Hadro dynamics ie QHDI which consists of structureless nucleons interacting through the exchange of the meson and the time comp onent of the meson in the meaneld approximation MFA Later Serot and Walecka extended the mo del to incorp orate the isovector mesons and QHDI I and used it to discuss systems like
    [Show full text]
  • Matter a Short One by Idris Goodwin June 2020 Version
    FOR EDUCATIONAL PURPOSES # Matter A short one by Idris Goodwin June 2020 Version FOR EDUCATIONAL PURPOSES ________________________________________________ ________________________________________________ KIM – A black woman, young adult, educated, progressive COLE – A white man, young adult, educated, progressive The Asides: The actors speak to us---sometimes in the midst of a scene They should also say the words in bold---who gets assigned what may be determined by director and ensemble ____________________________________________________ FOR EDUCATIONAL PURPOSES _________________________________________________ _________________________________________________ PRESENTATION HISTORY: #Matter has received staged readings and development with Jackalope Theatre, The Black Lives Black Words Series and Colorado College It was fully produced by Actors Theatre of Louisville in Jan 2017 and The Bush Theatre in the UK in March 2017 It is published in Black Lives, Black Words: 32 Short Plays edited by Reginald Edmund (Oberon) and also the forthcoming Papercuts Anthology: Year 2 (Cutlass Press) FOR EDUCATIONAL PURPOSES "Black lives matter. White lives matter. All lives matter." --Democratic Presidential Candidate Martin O’Malley, 2015 For Educational Purposes Only June 2020 Idris Goodwin Prologue COLE We lived next door to each other. As kids KIM And now---same city COLE We were never that close during any of it But we knew each other KIM I’d see him here and there COLE We were aware of one another KIM We kept our space Not consciously We just ran
    [Show full text]
  • A Modern View of the Equation of State in Nuclear and Neutron Star Matter
    S S symmetry Article A Modern View of the Equation of State in Nuclear and Neutron Star Matter G. Fiorella Burgio * , Hans-Josef Schulze , Isaac Vidaña and Jin-Biao Wei INFN Sezione di Catania, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; [email protected] (H.-J.S.); [email protected] (I.V.); [email protected] (J.-B.W.) * Correspondence: fi[email protected] Abstract: Background: We analyze several constraints on the nuclear equation of state (EOS) cur- rently available from neutron star (NS) observations and laboratory experiments and study the existence of possible correlations among properties of nuclear matter at saturation density with NS observables. Methods: We use a set of different models that include several phenomenological EOSs based on Skyrme and relativistic mean field models as well as microscopic calculations based on different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte Carlo techniques, and the variational method. Results: We find that almost all the models considered are compatible with the laboratory constraints of the nuclear matter properties as well as with the +0.10 largest NS mass observed up to now, 2.14−0.09 M for the object PSR J0740+6620, and with the upper limit of the maximum mass of about 2.3–2.5 M deduced from the analysis of the GW170817 NS merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal deformability and the value of the nuclear symmetry energy at saturation for any value of the NS mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and with the nuclear incompressibility.
    [Show full text]
  • Effective Field Theories of Heavy-Quark Mesons
    Effective Field Theories of Heavy-Quark Mesons A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy (PhD) in the faculty of Engineering and Physical Sciences Mohammad Hasan M Alhakami School of Physics and Astronomy 2014 Contents Abstract 10 Declaration 12 Copyright 13 Acknowledgements 14 1 Introduction 16 1.1 Ordinary Mesons......................... 21 1.1.1 Light Mesons....................... 22 1.1.2 Heavy-light Mesons.................... 24 1.1.3 Heavy-Quark Mesons................... 28 1.2 Exotic cc¯ Mesons......................... 31 1.2.1 Experimental and theoretical studies of the X(3872). 34 2 From QCD to Effective Theories 41 2.1 Chiral Symmetry......................... 43 2.1.1 Chiral Symmetry Breaking................ 46 2.1.2 Effective Field Theory.................. 57 2.2 Heavy Quark Spin Symmetry.................. 65 2.2.1 Motivation......................... 65 2.2.2 Heavy Quark Effective Theory.............. 69 3 Heavy Hadron Chiral Perturbation Theory 72 3.1 Self-Energies of Charm Mesons................. 78 3.2 Mass formula for non-strange charm mesons.......... 89 3.2.1 Extracting the coupling constant of even and odd charm meson transitions..................... 92 2 4 HHChPT for Charm and Bottom Mesons 98 4.1 LECs from Charm Meson Spectrum............... 99 4.2 Masses of the charm mesons within HHChPT......... 101 4.3 Linear combinations of the low energy constants........ 106 4.4 Results and Discussion...................... 108 4.5 Prediction for the Spectrum of Odd- and Even-Parity Bottom Mesons............................... 115 5 Short-range interactions between heavy mesons in frame- work of EFT 126 5.1 Uncoupled Channel........................ 127 5.2 Two-body scattering with a narrow resonance........
    [Show full text]
  • Quark Diagram Analysis of Bottom Meson Decays Emitting Pseudoscalar and Vector Mesons
    Quark Diagram Analysis of Bottom Meson Decays Emitting Pseudoscalar and Vector Mesons Maninder Kaur†, Supreet Pal Singh and R. C. Verma Department of Physics, Punjabi University, Patiala – 147002, India. e-mail: [email protected], [email protected] and [email protected] Abstract This paper presents the two body weak nonleptonic decays of B mesons emitting pseudoscalar (P) and vector (V) mesons within the framework of the diagrammatic approach at flavor SU(3) symmetry level. Using the decay amplitudes, we are able to relate the branching fractions of B PV decays induced by both b c and b u transitions, which are found to be well consistent with the measured data. We also make predictions for some decays, which can be tested in future experiments. PACS No.:13.25.Hw, 11.30.Hv, 14.40.Nd †Corresponding author: [email protected] 1. Introduction At present, several groups at Fermi lab, Cornell, CERN, DESY, KEK and Beijing Electron Collider etc. are working to ensure wide knowledge of the heavy flavor physics. In future, a large quantity of new and accurate data on decays of the heavy flavor hadrons is expected which calls for their theoretical analysis. Being heavy, bottom hadrons have several channels for their decays, categorized as leptonic, semi-leptonic and hadronic decays [1-2]. The b quark is especially interesting in this respect as it has W-mediated transitions to both first generation (u) and second generation (c) quarks. Standard model provides satisfactory explanation of the leptonic and semileptonic decays but weak hadronic decays confronts serious problem as these decays experience strong interactions interferences [3-6].
    [Show full text]