A Quark-Meson Coupling Model for Nuclear and Neutron Matter

Total Page:16

File Type:pdf, Size:1020Kb

A Quark-Meson Coupling Model for Nuclear and Neutron Matter Adelaide University ADPT February A quarkmeson coupling mo del for nuclear and neutron matter K Saito Physics Division Tohoku College of Pharmacy Sendai Japan and y A W Thomas Department of Physics and Mathematical Physics University of Adelaide South Australia Australia March Abstract nucl-th/9403015 18 Mar 1994 An explicit quark mo del based on a mean eld description of nonoverlapping nucleon bags b ound by the selfconsistent exchange of ! and mesons is used to investigate the prop erties of b oth nuclear and neutron matter We establish a clear understanding of the relationship b etween this mo del which incorp orates the internal structure of the nucleon and QHD Finally we use the mo del to study the density dep endence of the quark condensate inmedium Corresp ondence to Dr K Saito email ksaitonuclphystohokuacjp y email athomasphysicsadelaideeduau Recently there has b een considerable interest in relativistic calculations of innite nuclear matter as well as dense neutron matter A relativistic treatment is of course essential if one aims to deal with the prop erties of dense matter including the equation of state EOS The simplest relativistic mo del for hadronic matter is the Walecka mo del often called Quantum Hadro dynamics ie QHDI which consists of structureless nucleons interacting through the exchange of the meson and the time comp onent of the meson in the meaneld approximation MFA Later Serot and Walecka extended the mo del to incorp orate the isovector mesons and QHDI I and used it to discuss systems like neutron stars with N Z QHD has proven to b e a very p owerful to ol for the treatment of a wide range of nuclear phenomena However it should b e noted that a strong excitation of nucleonantinucleon pairs due to the meson elds is somewhat unlikely from the p oint of view of the quark mo del b ecause the meson elds create only one quarkantiquark pair at a time An extension of such a mo del to include the structure of the nucleon may provide some new insight into the prop erties of hadronic matter A quarkmeson coupling QMC mechanism for the saturation of nuclear matter was initially prop osed by Guichon In his simple mo del nuclear matter consists of non overlapping nucleon bags b ound by the selfconsistent exchange of scalar and vector mesons in the MFA This mo del has b een generalised to include nucleon Fermi motion as well as the centerofmass cm correction to the bag energy Using this mo del it has proven p ossible to investigate b oth the change of nucleon prop erties in nuclear matter and nuclear structure functions An alternative version of this mo del based on the color dielectric soliton mo del has b een developed by Naar and Birse who also applied it to deepinelastic scattering To treat asymmetric nuclear matter ie N Z the mo del requires some extension In this work we show that it is p ossible to include the contribution of the isovector vector meson in the study of such systems We shall see that it is very interesting to compare this new mo del with QHDI I and to investigate the prop erties of hadronic matter in terms of quark degrees of freedom Let the meaneld values for the the time comp onent and the time comp onent in the third direction of isospin elds in uniformly distributed nuclear matter with N Z b e and b resp ectively The nucleon is describ ed by the static spherical MIT bag in which quarks interact with those mean elds The Dirac equation for a quark 1 eld in a bag is then given by q 0 z i m V V V q q q q q q q q where V g V g and V g b with the quarkmeson coupling constants g g q z and g The bare quark mass is denoted by m and is the third comp onent of the Pauli q q matrix Here we deal with u and d quarks qu or d only The normalized ground state for a quark in the nucleon is then given by j xr R q 0 i tR q p r t N e q i r j xr R q 1 where u quark V for RV q q d 2 3 2 2 N R j x Rm x q q 0 q v u u Rm q q t q Rm q q q 2 2 with x Rm and the quark spinor The eective quark mass m is q q q q dened by q m V m g m q q q The b oundary condition at the surface provides the equation for the eigenvalue x j x j x 0 q 1 E p Using the SU spinavor nucleon wave function the nucleon energy is given by n X p p z E V E V bag N q n n q proton V for E V bag neutron 1 The sign of the eld value in this pap er is opp osite to that in Ref in order to simplify the comparison with QHD Here the bag energy is P z q 0 q 3 E B R bag R with B the bag constant and z the usual parameter which accounts for zerop oint motion 0 In order to correct for spurious cm motion in the bag the mass of the nucleon at rest is taken to b e q 2 2 M E hp i N bag cm P 2 2 2 hp i and hp i is the exp ectation value of the quark momentum squared where hp i q q q cm 2 xR Inside nuclear matter the eective nucleon mass M is also given by minimizing N eq with resp ect to R To test the sensitivity of our results to the radius of the free nucleon R we vary B and z to x R f m and the free nucleon mass 0 0 0 M MeV The values of B and z for several choices of radius for the free nucleon N 0 14 Table B and z for some bag radii m MeV 0 q R f m 0 14 B MeV z 0 are summarized in table The Pauli principle induces Fermi motion of the nucleon Since the energy of a moving bag with momentum k is q proton 2 2 k M k V V for N neutron the total energy p er nucleon at the nuclear density is given by B q Z Z k k F F n p V 3 2 2 2 2 2 2 2 2 k V M dk m m m b E tot N 3 B B B Here is the dierence b etween the proton and neutron densities and k and 3 p n F p k are the Fermi momenta for protons and neutrons resp ectively F n 3 3 and k k n B p n p F F p n 3 3 The eld created by uniformly distributed nucleons is determined by baryon number conservation to b e q V g g B B q 2 2 g m m q where we dene a new coupling constant g g while the and meanelds are given by the thermo dynamic conditions E E tot tot and b R R B B Since the eld value is expressed by g b 3 2 m q where we take g g the total energy p er nucleon can b e rewritten as Z Z q 2 2 2 k k F F g p n m g 2 2 2 2 dk k M E B 3 tot N 3 2 2 m m B B B Therefore using eq the value of the eld is given by Z Z k k F F p n M M N N q dk 2 3 m 2 2 R M k N We should note that the expression for the total energy eq is identical to that of QHDI I The eect of the internal quark structure enters entirely through the eective nucleon mass eqs and and the selfconsistency condition SCC for the eld eq Let us consider the SCC further The eective quark mass m is given by eq If q the nucleon were simply made of three massive constituent quarks the nucleon mass in vacuum and that in matter would satisfy M m and M m N q N q and hence using eq the eective nucleon mass could b e M M g N N q where we dened g g Since one nds M N g from eq the SCC gives q g g Z Z 2 k k F F p n g M N q dk 2 3 m 2 2 M k N Together with eq we then nd the SCC in the heavy quark mass limit M g M N N Z Z 2 k k F F p n M g N q dk M N 2 3 m 2 2 k M N This is exactly the SCC for QHDI I However in the more realistic case of light quarks the internal structure of the nucleon signicantly alters the SCC In particular the u and d quarks in the bag mo del like current quarks have very small masses and must therefore b e treated in a fully relativistic manner Using eqs and one nds E V M q bag N g S M E R E bag bag N R g C where S is the scalar density of the nucleon bag in matter Z Rm q q q S dr q q Rm q q q Hence we nd the SCC for the eld in the case where the nucleon has the quark structure Z Z 2 k k F F n p M g N q dk C g 2 3 m 2 2 M k N Clearly the eect of the internal quark structure is completely absorb ed into the scalar density factor C Thus we see that it is p ossible to unify the present QMC mo del and QHD in the MFA the energy p er nucleon and the SCC for the eld are resp ectively given by eq and eq with M QHD N for g QMC C R The scalar density factor is shown in g as a function of the scalar eld strength for 0.45 0.4 0.35 0.3 C 0.25 0.2 0.15 0.1 0 0.1 0.2 0.3 0.4 0.5 RVσ Figure Scalar density factors for various bag radii as a function of RV m q MeV The solid dotted and dashed curves show the results for R and f m 0 resp ectively three bag radii We see that it is much smaller than unity and that the dep endence on the bag radius is not strong Now we are in a p osition to present numerical results First we take m MeV and q 2 2 determine the coupling constants g and g so as to t the binding energy MeV 3 and the saturation density f m for equilibrium nuclear matter Furthermore 0 2 we choose the meson coupling constant g so as to repro duce the bulk symmetry energy MeV The coupling constants and some calculated prop erties of nuclear Table Coupling constants and calculated prop erties of equilibrium nuclear matter The eective nucleon mass M the nuclear compressibility K and the symmetry energy a 4 N are quoted in MeV The b ottom row is for QHDI I We take m MeV m MeV and m MeV x R 2 2 2 K a M g g R g 4 0 N R x 0 0 QHDI I matter at saturation
Recommended publications
  • The Positons of the Three Quarks Composing the Proton Are Illustrated
    The posi1ons of the three quarks composing the proton are illustrated by the colored spheres. The surface plot illustrates the reduc1on of the vacuum ac1on density in a plane passing through the centers of the quarks. The vector field illustrates the gradient of this reduc1on. The posi1ons in space where the vacuum ac1on is maximally expelled from the interior of the proton are also illustrated by the tube-like structures, exposing the presence of flux tubes. a key point of interest is the distance at which the flux-tube formaon occurs. The animaon indicates that the transi1on to flux-tube formaon occurs when the distance of the quarks from the center of the triangle is greater than 0.5 fm. again, the diameter of the flux tubes remains approximately constant as the quarks move to large separaons. • Three quarks indicated by red, green and blue spheres (lower leb) are localized by the gluon field. • a quark-an1quark pair created from the gluon field is illustrated by the green-an1green (magenta) quark pair on the right. These quark pairs give rise to a meson cloud around the proton. hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html Nucl. Phys. A750, 84 (2005) 1000000 QCD mass 100000 Higgs mass 10000 1000 100 Mass (MeV) 10 1 u d s c b t GeV HOW does the rest of the proton mass arise? HOW does the rest of the proton spin (magnetic moment,…), arise? Mass from nothing Dyson-Schwinger and Lattice QCD It is known that the dynamical chiral symmetry breaking; namely, the generation of mass from nothing, does take place in QCD.
    [Show full text]
  • First Determination of the Electric Charge of the Top Quark
    First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge.
    [Show full text]
  • Advances in Quantum Field Theory
    ADVANCES IN QUANTUM FIELD THEORY Edited by Sergey Ketov Advances in Quantum Field Theory Edited by Sergey Ketov Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Romana Vukelic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Advances in Quantum Field Theory, Edited by Sergey Ketov p.
    [Show full text]
  • Properties of Baryons in the Chiral Quark Model
    Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results.
    [Show full text]
  • Mass Shift of Σ-Meson in Nuclear Matter
    Mass shift of σ-Meson in Nuclear Matter J. R. Morones-Ibarra, Mónica Menchaca Maciel, Ayax Santos-Guevara, and Felipe Robledo Padilla. Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66450, México. Facultad de Ingeniería y Arquitectura, Universidad Regiomontana, 15 de Mayo 567, Monterrey, N.L., 64000, México. April 6, 2010 Abstract The propagation of sigma meson in nuclear matter is studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in medium effect of sigma-omega mixing. We have also considered, by completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases respect to its value in vacuum and that the contribution of the sigma omega mixing effect on the mass shift is relatively small. Keywords: scalar mesons, hadrons in dense matter, spectral function, dense nuclear matter. PACS:14.40;14.40Cs;13.75.Lb;21.65.+f 1. INTRODUCTION The study of matter under extreme conditions of density and temperature, has become a very important issue due to the fact that it prepares to understand the physics for some interesting subjects like, the conditions in the early universe, the physics of processes in stellar evolution and in heavy ion collision. Particularly, the study of properties of mesons in hot and dense matter is important to understand which could be the signature for detecting the Quark-Gluon Plasma (QGP) state in heavy ion collision, and to get information about the signal of the presence of QGP and also to know which symmetries are restored [1].
    [Show full text]
  • Phenomenology of Gev-Scale Heavy Neutral Leptons Arxiv:1805.08567
    Prepared for submission to JHEP INR-TH-2018-014 Phenomenology of GeV-scale Heavy Neutral Leptons Kyrylo Bondarenko,1 Alexey Boyarsky,1 Dmitry Gorbunov,2;3 Oleg Ruchayskiy4 1Intituut-Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 2Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 3Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 4Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK- 2100 Copenhagen, Denmark E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We review and revise phenomenology of the GeV-scale heavy neutral leptons (HNLs). We extend the previous analyses by including more channels of HNLs production and decay and provide with more refined treatment, including QCD corrections for the HNLs of masses (1) GeV. We summarize the relevance O of individual production and decay channels for different masses, resolving a few discrepancies in the literature. Our final results are directly suitable for sensitivity studies of particle physics experiments (ranging from proton beam-dump to the LHC) aiming at searches for heavy neutral leptons. arXiv:1805.08567v3 [hep-ph] 9 Nov 2018 ArXiv ePrint: 1805.08567 Contents 1 Introduction: heavy neutral leptons1 1.1 General introduction to heavy neutral leptons2 2 HNL production in proton fixed target experiments3 2.1 Production from hadrons3 2.1.1 Production from light unflavored and strange mesons5 2.1.2
    [Show full text]
  • Super-Exceptional Embedding Construction of the Heterotic M5
    Super-exceptional embedding construction of the heterotic M5: Emergence of SU(2)-flavor sector Domenico Fiorenza, Hisham Sati, Urs Schreiber June 2, 2020 Abstract A new super-exceptional embedding construction of the heterotic M5-brane’s sigma-model was recently shown to produce, at leading order in the super-exceptional vielbein components, the super-Nambu-Goto (Green- Schwarz-type) Lagrangian for the embedding fields plus the Perry-Schwarz Lagrangian for the free abelian self-dual higher gauge field. Beyond that, further fields and interactions emerge in the model, arising from probe M2- and probe M5-brane wrapping modes. Here we classify the full super-exceptional field content and work out some of its characteristic interactions from the rich super-exceptional Lagrangian of the model. We show that SU(2) U(1)-valued scalar and vector fields emerge from probe M2- and M5-branes wrapping × the vanishing cycle in the A1-type singularity; together with a pair of spinor fields of U(1)-hypercharge 1 and each transforming as SU(2) iso-doublets. Then we highlight the appearance of a WZW-type term in± the super-exceptional PS-Lagrangian and find that on the electromagnetic field it gives the first-order non-linear DBI-correction, while on the iso-vector scalar field it has the form characteristic of the coupling of vector mesons to pions via the Skyrme baryon current. We discuss how this is suggestive of a form of SU(2)-flavor chiral hadrodynamics emerging on the single (N = 1) M5 brane, different from, but akin to, holographiclarge-N QCD.
    [Show full text]
  • Sum Rules on Quantum Hadrodynamics at Finite Temperature
    Sum rules on quantum hadrodynamics at finite temperature and density B. X. Sun1∗, X. F. Lu2;3;7, L. Li4, P. Z. Ning2;4, P. N. Shen7;1;2, E. G. Zhao2;5;6;7 1Institute of High Energy Physics, The Chinese Academy of Sciences, P.O.Box 918(4), Beijing 100039, China 2Institute of Theoretical Physics, The Chinese Academy of Sciences, Beijing 100080, China 3Department of Physics, Sichuan University, Chengdu 610064, China 4Department of Physics, Nankai University, Tianjin 300071, China 5Center of Theoretical Nuclear Physics, National Laboratory of Heavy ion Accelerator,Lanzhou 730000, China 6Department of Physics, Tsinghua University, Beijing 100084, China 7China Center of Advanced Science and Technology(World Laboratory), Beijing 100080,China October 15, 2003 Abstract According to Wick's theorem, the second order self-energy corrections of hadrons in the hot and dense nuclear matter are calculated. Furthermore, the Feynman rules ∗Corresponding author. E-mail address: [email protected]. Present address: Laboratoire de Physique Subatomique et de Cosmologie, IN2P3/CNRS, 53 Av. des Martyrs, 38026 Grenoble-cedex, France 1 are summarized, and the method of sum rules on quantum hadrodynamics at finite temperature and density is developed. As the strong couplings between nucleons are considered, the self-consistency of this method is discussed in the framework of relativistic mean-field approximation. Debye screening masses of the scalar and vector mesons in the hot and dense nuclear matter are calculated with this method in the relativistic mean-field approximation. The results are different from those of thermofield dynamics and Brown-Rho conjecture. Moreover, the effective masses of the photon and the nucleon in the hot and dense nuclear matter are discussed.
    [Show full text]
  • Effective Field Theories of Heavy-Quark Mesons
    Effective Field Theories of Heavy-Quark Mesons A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy (PhD) in the faculty of Engineering and Physical Sciences Mohammad Hasan M Alhakami School of Physics and Astronomy 2014 Contents Abstract 10 Declaration 12 Copyright 13 Acknowledgements 14 1 Introduction 16 1.1 Ordinary Mesons......................... 21 1.1.1 Light Mesons....................... 22 1.1.2 Heavy-light Mesons.................... 24 1.1.3 Heavy-Quark Mesons................... 28 1.2 Exotic cc¯ Mesons......................... 31 1.2.1 Experimental and theoretical studies of the X(3872). 34 2 From QCD to Effective Theories 41 2.1 Chiral Symmetry......................... 43 2.1.1 Chiral Symmetry Breaking................ 46 2.1.2 Effective Field Theory.................. 57 2.2 Heavy Quark Spin Symmetry.................. 65 2.2.1 Motivation......................... 65 2.2.2 Heavy Quark Effective Theory.............. 69 3 Heavy Hadron Chiral Perturbation Theory 72 3.1 Self-Energies of Charm Mesons................. 78 3.2 Mass formula for non-strange charm mesons.......... 89 3.2.1 Extracting the coupling constant of even and odd charm meson transitions..................... 92 2 4 HHChPT for Charm and Bottom Mesons 98 4.1 LECs from Charm Meson Spectrum............... 99 4.2 Masses of the charm mesons within HHChPT......... 101 4.3 Linear combinations of the low energy constants........ 106 4.4 Results and Discussion...................... 108 4.5 Prediction for the Spectrum of Odd- and Even-Parity Bottom Mesons............................... 115 5 Short-range interactions between heavy mesons in frame- work of EFT 126 5.1 Uncoupled Channel........................ 127 5.2 Two-body scattering with a narrow resonance........
    [Show full text]
  • Relativistic Nuclear Field Theory and Applications to Single- and Double-Beta Decay
    Relativistic nuclear field theory and applications to single- and double-beta decay Caroline Robin, Elena Litvinova INT Neutrinoless double-beta decay program Seattle, June 13, 2017 Outline Relativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the “quenching” problem Current developments: ground-state correlations in RNFT Application to double-beta decay: some ideas Conclusion & perspectives Outline Relativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the “quenching” problem Current developments: ground-state correlations in RNFT Application to double-beta decay: some ideas Conclusion & perspectives Relativistic Nuclear Field Theory: foundations Quantum Hadrodynamics σ ω ρ - Relativistic nucleons mesons self-consistent m ~140-800 MeV π,σ,ω,ρ extensions of the Relativistic Relativistic mean-field Mean-Field nucleons + superfluidity via S ~ 10 MeV Green function n techniques (1p-1h) collective vibrations successive (phonons) ~ few MeV Relativistic Random Phase Approximation corrections in the single- phonon particle motion (2p-2h) and effective interaction Particle-Vibration coupling - Nuclear Field theory nucleons – Time-Blocking & phonons ... (3p-3h)
    [Show full text]
  • Quark Diagram Analysis of Bottom Meson Decays Emitting Pseudoscalar and Vector Mesons
    Quark Diagram Analysis of Bottom Meson Decays Emitting Pseudoscalar and Vector Mesons Maninder Kaur†, Supreet Pal Singh and R. C. Verma Department of Physics, Punjabi University, Patiala – 147002, India. e-mail: [email protected], [email protected] and [email protected] Abstract This paper presents the two body weak nonleptonic decays of B mesons emitting pseudoscalar (P) and vector (V) mesons within the framework of the diagrammatic approach at flavor SU(3) symmetry level. Using the decay amplitudes, we are able to relate the branching fractions of B PV decays induced by both b c and b u transitions, which are found to be well consistent with the measured data. We also make predictions for some decays, which can be tested in future experiments. PACS No.:13.25.Hw, 11.30.Hv, 14.40.Nd †Corresponding author: [email protected] 1. Introduction At present, several groups at Fermi lab, Cornell, CERN, DESY, KEK and Beijing Electron Collider etc. are working to ensure wide knowledge of the heavy flavor physics. In future, a large quantity of new and accurate data on decays of the heavy flavor hadrons is expected which calls for their theoretical analysis. Being heavy, bottom hadrons have several channels for their decays, categorized as leptonic, semi-leptonic and hadronic decays [1-2]. The b quark is especially interesting in this respect as it has W-mediated transitions to both first generation (u) and second generation (c) quarks. Standard model provides satisfactory explanation of the leptonic and semileptonic decays but weak hadronic decays confronts serious problem as these decays experience strong interactions interferences [3-6].
    [Show full text]
  • Quarks and Their Discovery
    Quarks and Their Discovery Parashu Ram Poudel Department of Physics, PN Campus, Pokhara Email: [email protected] Introduction charge (e) of one proton. The different fl avors of Quarks are the smallest building blocks of matter. quarks have different charges. The up (u), charm They are the fundamental constituents of all the (c) and top (t) quarks have electric charge +2e/3 hadrons. They have fractional electronic charge. and the down (d), strange (s) and bottom (b) quarks Quarks never exist alone in nature. They are always have charge -e/3; -e is the charge of an electron. The found in combination with other quarks or antiquark masses of these quarks vary greatly, and of the six, in larger particle of matter. By studying these larger only the up and down quarks, which are by far the particles, scientists have determined the properties lightest, appear to play a direct role in normal matter. of quarks. Protons and neutrons, the particles that make up the nuclei of the atoms consist of quarks. There are four forces that act between the quarks. Without quarks there would be no atoms, and without They are strong force, electromagnetic force, atoms, matter would not exist as we know it. Quarks weak force and gravitational force. The quantum only form triplets called baryons such as proton and of strong force is gluon. Gluons bind quarks or neutron or doublets called mesons such as Kaons and quark and antiquark together to form hadrons. The pi mesons. Quarks exist in six varieties: up (u), down electromagnetic force has photon as quantum that (d), charm (c), strange (s), bottom (b), and top (t) couples the quarks charge.
    [Show full text]