Advances in Quantum Field Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Covariant Hamiltonian Field Theory 3
December 16, 2020 2:58 WSPC/INSTRUCTION FILE kfte COVARIANT HAMILTONIAN FIELD THEORY JURGEN¨ STRUCKMEIER and ANDREAS REDELBACH GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH Planckstr. 1, 64291 Darmstadt, Germany and Johann Wolfgang Goethe-Universit¨at Frankfurt am Main Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany [email protected] Received 18 July 2007 Revised 14 December 2020 A consistent, local coordinate formulation of covariant Hamiltonian field theory is pre- sented. Whereas the covariant canonical field equations are equivalent to the Euler- Lagrange field equations, the covariant canonical transformation theory offers more gen- eral means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proved that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinites- imal canonical transformation furnishes the most general form of Noether’s theorem. We furthermore specify the generating function of an infinitesimal space-time step that conforms to the field equations. Keywords: Field theory; Hamiltonian density; covariant. PACS numbers: 11.10.Ef, 11.15Kc arXiv:0811.0508v6 [math-ph] 15 Dec 2020 1. Introduction Relativistic field theories and gauge theories are commonly formulated on the basis of a Lagrangian density L1,2,3,4. The space-time evolution of the fields is obtained by integrating the Euler-Lagrange field equations that follow from the four-dimensional representation of Hamilton’s action principle. -
Description of Bound States and Scattering Processes Using Hamiltonian Renormalization Group Procedure for Effective Particles in Quantum field Theory
Description of bound states and scattering processes using Hamiltonian renormalization group procedure for effective particles in quantum field theory Marek Wi˛eckowski June 2005 Doctoral thesis Advisor: Professor Stanisław D. Głazek Warsaw University Department of Physics Institute of Theoretical Physics Warsaw 2005 i Acknowledgments I am most grateful to my advisor, Professor Stanisław Głazek, for his invaluable advice and assistance during my work on this thesis. I would also like to thank Tomasz Masłowski for allowing me to use parts of our paper here. My heartfelt thanks go to Dr. Nick Ukiah, who supported and encouraged me during the writing of this thesis and who helped me in editing the final manuscript in English. Finally, I would like to thank my family, especially my grandmother, who has been a great support to me during the last few years. MAREK WI ˛ECKOWSKI,DESCRIPTION OF BOUND STATES AND SCATTERING... ii MAREK WI ˛ECKOWSKI,DESCRIPTION OF BOUND STATES AND SCATTERING... iii Abstract This thesis presents examples of a perturbative construction of Hamiltonians Hλ for effective particles in quantum field theory (QFT) on the light front. These Hamiltonians (1) have a well-defined (ultraviolet-finite) eigenvalue problem for bound states of relativistic constituent fermions, and (2) lead (in a scalar theory with asymptotic freedom in perturbation theory in third and partly fourth order) to an ultraviolet-finite and covariant scattering matrix, as the Feynman diagrams do. λ is a parameter of the renormalization group for Hamiltonians and qualitatively means the inverse of the size of the effective particles. The same procedure of calculating the operator Hλ applies in description of bound states and scattering. -
Turbulence, Entropy and Dynamics
TURBULENCE, ENTROPY AND DYNAMICS Lecture Notes, UPC 2014 Jose M. Redondo Contents 1 Turbulence 1 1.1 Features ................................................ 2 1.2 Examples of turbulence ........................................ 3 1.3 Heat and momentum transfer ..................................... 4 1.4 Kolmogorov’s theory of 1941 ..................................... 4 1.5 See also ................................................ 6 1.6 References and notes ......................................... 6 1.7 Further reading ............................................ 7 1.7.1 General ............................................ 7 1.7.2 Original scientific research papers and classic monographs .................. 7 1.8 External links ............................................. 7 2 Turbulence modeling 8 2.1 Closure problem ............................................ 8 2.2 Eddy viscosity ............................................. 8 2.3 Prandtl’s mixing-length concept .................................... 8 2.4 Smagorinsky model for the sub-grid scale eddy viscosity ....................... 8 2.5 Spalart–Allmaras, k–ε and k–ω models ................................ 9 2.6 Common models ........................................... 9 2.7 References ............................................... 9 2.7.1 Notes ............................................. 9 2.7.2 Other ............................................. 9 3 Reynolds stress equation model 10 3.1 Production term ............................................ 10 3.2 Pressure-strain interactions -
Super-Exceptional Embedding Construction of the Heterotic M5
Super-exceptional embedding construction of the heterotic M5: Emergence of SU(2)-flavor sector Domenico Fiorenza, Hisham Sati, Urs Schreiber June 2, 2020 Abstract A new super-exceptional embedding construction of the heterotic M5-brane’s sigma-model was recently shown to produce, at leading order in the super-exceptional vielbein components, the super-Nambu-Goto (Green- Schwarz-type) Lagrangian for the embedding fields plus the Perry-Schwarz Lagrangian for the free abelian self-dual higher gauge field. Beyond that, further fields and interactions emerge in the model, arising from probe M2- and probe M5-brane wrapping modes. Here we classify the full super-exceptional field content and work out some of its characteristic interactions from the rich super-exceptional Lagrangian of the model. We show that SU(2) U(1)-valued scalar and vector fields emerge from probe M2- and M5-branes wrapping × the vanishing cycle in the A1-type singularity; together with a pair of spinor fields of U(1)-hypercharge 1 and each transforming as SU(2) iso-doublets. Then we highlight the appearance of a WZW-type term in± the super-exceptional PS-Lagrangian and find that on the electromagnetic field it gives the first-order non-linear DBI-correction, while on the iso-vector scalar field it has the form characteristic of the coupling of vector mesons to pions via the Skyrme baryon current. We discuss how this is suggestive of a form of SU(2)-flavor chiral hadrodynamics emerging on the single (N = 1) M5 brane, different from, but akin to, holographiclarge-N QCD. -
A Quark-Meson Coupling Model for Nuclear and Neutron Matter
Adelaide University ADPT February A quarkmeson coupling mo del for nuclear and neutron matter K Saito Physics Division Tohoku College of Pharmacy Sendai Japan and y A W Thomas Department of Physics and Mathematical Physics University of Adelaide South Australia Australia March Abstract nucl-th/9403015 18 Mar 1994 An explicit quark mo del based on a mean eld description of nonoverlapping nucleon bags b ound by the selfconsistent exchange of ! and mesons is used to investigate the prop erties of b oth nuclear and neutron matter We establish a clear understanding of the relationship b etween this mo del which incorp orates the internal structure of the nucleon and QHD Finally we use the mo del to study the density dep endence of the quark condensate inmedium Corresp ondence to Dr K Saito email ksaitonuclphystohokuacjp y email athomasphysicsadelaideeduau Recently there has b een considerable interest in relativistic calculations of innite nuclear matter as well as dense neutron matter A relativistic treatment is of course essential if one aims to deal with the prop erties of dense matter including the equation of state EOS The simplest relativistic mo del for hadronic matter is the Walecka mo del often called Quantum Hadro dynamics ie QHDI which consists of structureless nucleons interacting through the exchange of the meson and the time comp onent of the meson in the meaneld approximation MFA Later Serot and Walecka extended the mo del to incorp orate the isovector mesons and QHDI I and used it to discuss systems like -
Sum Rules on Quantum Hadrodynamics at Finite Temperature
Sum rules on quantum hadrodynamics at finite temperature and density B. X. Sun1∗, X. F. Lu2;3;7, L. Li4, P. Z. Ning2;4, P. N. Shen7;1;2, E. G. Zhao2;5;6;7 1Institute of High Energy Physics, The Chinese Academy of Sciences, P.O.Box 918(4), Beijing 100039, China 2Institute of Theoretical Physics, The Chinese Academy of Sciences, Beijing 100080, China 3Department of Physics, Sichuan University, Chengdu 610064, China 4Department of Physics, Nankai University, Tianjin 300071, China 5Center of Theoretical Nuclear Physics, National Laboratory of Heavy ion Accelerator,Lanzhou 730000, China 6Department of Physics, Tsinghua University, Beijing 100084, China 7China Center of Advanced Science and Technology(World Laboratory), Beijing 100080,China October 15, 2003 Abstract According to Wick's theorem, the second order self-energy corrections of hadrons in the hot and dense nuclear matter are calculated. Furthermore, the Feynman rules ∗Corresponding author. E-mail address: [email protected]. Present address: Laboratoire de Physique Subatomique et de Cosmologie, IN2P3/CNRS, 53 Av. des Martyrs, 38026 Grenoble-cedex, France 1 are summarized, and the method of sum rules on quantum hadrodynamics at finite temperature and density is developed. As the strong couplings between nucleons are considered, the self-consistency of this method is discussed in the framework of relativistic mean-field approximation. Debye screening masses of the scalar and vector mesons in the hot and dense nuclear matter are calculated with this method in the relativistic mean-field approximation. The results are different from those of thermofield dynamics and Brown-Rho conjecture. Moreover, the effective masses of the photon and the nucleon in the hot and dense nuclear matter are discussed. -
General Relativity and Spatial Flows: I
1 GENERAL RELATIVITY AND SPATIAL FLOWS: I. ABSOLUTE RELATIVISTIC DYNAMICS* Tom Martin Gravity Research Institute Boulder, Colorado 80306-1258 [email protected] Abstract Two complementary and equally important approaches to relativistic physics are explained. One is the standard approach, and the other is based on a study of the flows of an underlying physical substratum. Previous results concerning the substratum flow approach are reviewed, expanded, and more closely related to the formalism of General Relativity. An absolute relativistic dynamics is derived in which energy and momentum take on absolute significance with respect to the substratum. Possible new effects on satellites are described. 1. Introduction There are two fundamentally different ways to approach relativistic physics. The first approach, which was Einstein's way [1], and which is the standard way it has been practiced in modern times, recognizes the measurement reality of the impossibility of detecting the absolute translational motion of physical systems through the underlying physical substratum and the measurement reality of the limitations imposed by the finite speed of light with respect to clock synchronization procedures. The second approach, which was Lorentz's way [2] (at least for Special Relativity), recognizes the conceptual superiority of retaining the physical substratum as an important element of the physical theory and of using conceptually useful frames of reference for the understanding of underlying physical principles. Whether one does relativistic physics the Einsteinian way or the Lorentzian way really depends on one's motives. The Einsteinian approach is primarily concerned with * http://xxx.lanl.gov/ftp/gr-qc/papers/0006/0006029.pdf 2 being able to carry out practical space-time experiments and to relate the results of these experiments among variously moving observers in as efficient and uncomplicated manner as possible. -
Relativistic Nuclear Field Theory and Applications to Single- and Double-Beta Decay
Relativistic nuclear field theory and applications to single- and double-beta decay Caroline Robin, Elena Litvinova INT Neutrinoless double-beta decay program Seattle, June 13, 2017 Outline Relativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the “quenching” problem Current developments: ground-state correlations in RNFT Application to double-beta decay: some ideas Conclusion & perspectives Outline Relativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the “quenching” problem Current developments: ground-state correlations in RNFT Application to double-beta decay: some ideas Conclusion & perspectives Relativistic Nuclear Field Theory: foundations Quantum Hadrodynamics σ ω ρ - Relativistic nucleons mesons self-consistent m ~140-800 MeV π,σ,ω,ρ extensions of the Relativistic Relativistic mean-field Mean-Field nucleons + superfluidity via S ~ 10 MeV Green function n techniques (1p-1h) collective vibrations successive (phonons) ~ few MeV Relativistic Random Phase Approximation corrections in the single- phonon particle motion (2p-2h) and effective interaction Particle-Vibration coupling - Nuclear Field theory nucleons – Time-Blocking & phonons ... (3p-3h) -
Classical Hamiltonian Field Theory
Classical Hamiltonian Field Theory Alex Nelson∗ Email: [email protected] August 26, 2009 Abstract This is a set of notes introducing Hamiltonian field theory, with focus on the scalar field. Contents 1 Lagrangian Field Theory1 2 Hamiltonian Field Theory2 1 Lagrangian Field Theory As with Hamiltonian mechanics, wherein one begins by taking the Legendre transform of the Lagrangian, in Hamiltonian field theory we \transform" the Lagrangian field treatment. So lets review the calculations in Lagrangian field theory. Consider the classical fields φa(t; x¯). We use the index a to indicate which field we are talking about. We should think of x¯ as another index, except it is continuous. We will use the confusing short hand notation φ for the column vector φ1; : : : ; φn. Consider the Lagrangian Z 3 L(φ) = L(φ, @µφ)d x¯ (1.1) all space where L is the Lagrangian density. Hamilton's principle of stationary action is still used to determine the equations of motion from the action Z S[φ] = L(φ, @µφ)dt (1.2) where we find the Euler-Lagrange equations of motion for the field d @L @L µ a = a (1.3) dx @(@µφ ) @φ where we note these are evil second order partial differential equations. We also note that we are using Einstein summation convention, so there is an implicit sum over µ but not over a. So that means there are n independent second order partial differential equations we need to solve. But how do we really know these are the correct equations? How do we really know these are the Euler-Lagrange equations for classical fields? We can obtain it directly from the action S by functional differentiation with respect to the field. -
Higher Order Geometric Theory of Information and Heat Based On
Article Higher Order Geometric Theory of Information and Heat Based on Poly-Symplectic Geometry of Souriau Lie Groups Thermodynamics and Their Contextures: The Bedrock for Lie Group Machine Learning Frédéric Barbaresco Department of Advanced Radar Concepts, Thales Land Air Systems, Voie Pierre-Gilles de Gennes, 91470 Limours, France; [email protected] Received: 9 August 2018; Accepted: 9 October; Published: 2 November 2018 Abstract: We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted to describe density of probability (maximum entropy Gibbs density) of data living on groups or on homogeneous manifolds. For small data analytics (rarified gases, sparse statistical surveys, …), the density of maximum entropy should consider higher order moments constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order and higher moments) as introduced by Ingarden. We use a poly-sympletic model introduced by Christian Günther, replacing the symplectic form by a vector-valued form. The poly-symplectic approach generalizes the Noether theorem, the existence of moment mappings, the Lie algebra structure of the space of currents, the (non-)equivariant cohomology and the classification of G-homogeneous systems. The formalism is covariant, i.e., no special coordinates or coordinate systems on the parameter space are used to construct the Hamiltonian equations. We underline the contextures of these models, and the process to build these generic structures. We also introduce a more synthetic Koszul definition of Fisher Metric, based on the Souriau model, that we name Souriau-Fisher metric. -
The Role of Nucleon Structure in Finite Nuclei
ADP-95-45/T194 THE ROLE OF NUCLEON STRUCTURE IN FINITE NUCLEI Pierre A. M. GUICHON 1 DAPHIA/SPhN, CE Saclay, 91191 Gif-sur Yvette, CEDEX, France Koichi SAITO 2 Physics Division, Tohoku College of Pharmacy Sendai 981, Japan Evguenii RODIONOV 3 and Anthony W. THOMAS 4 Department of Physics and Mathematical Physics, University of Adelaide, South Australia 5005, Australia arXiv:nucl-th/9509034v2 15 Jan 1996 PACS numbers: 12.39.Ba, 21.60.-n, 21.90.+f, 24.85.+p Keywords: Relativistic mean-field theory, finite nuclei, quark degrees of freedom, MIT bag model, charge density [email protected] [email protected] [email protected] [email protected] 1 Abstract The quark-meson coupling model, based on a mean field description of non- overlapping nucleon bags bound by the self-consistent exchange of σ, ω and ρ mesons, is extended to investigate the properties of finite nuclei. Using the Born- Oppenheimer approximation to describe the interacting quark-meson system, we derive the effective equation of motion for the nucleon, as well as the self-consistent equations for the meson mean fields. The model is first applied to nuclear matter, after which we show some initial results for finite nuclei. 2 1 Introductory remarks The nuclear many-body problem has been the object of enormous theoretical attention for decades. Apart from the non-relativistic treatments based upon realistic two-body forces [1, 2], there are also studies of three-body effects and higher [3]. The importance of relativity has been recognised in a host of treatments under the general heading of Dirac- Brueckner [4, 5, 6]. -
Relativistic Thermodynamics
C. MØLLER RELATIVISTIC THERMODYNAMICS A Strange Incident in the History of Physics Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser 36, 1 Kommissionær: Munksgaard København 1967 Synopsis In view of the confusion which has arisen in the later years regarding the correct formulation of relativistic thermodynamics, the case of arbitrary reversible and irreversible thermodynamic processes in a fluid is reconsidered from the point of view of observers in different systems of inertia. Although the total momentum and energy of the fluid do not transform as the components of a 4-vector in this case, it is shown that the momentum and energy of the heat supplied in any process form a 4-vector. For reversible processes this four-momentum of supplied heat is shown to be proportional to the four-velocity of the matter, which leads to Otts transformation formula for the temperature in contrast to the old for- mula of Planck. PRINTED IN DENMARK BIANCO LUNOS BOGTRYKKERI A-S Introduction n the years following Einsteins fundamental paper from 1905, in which I he founded the theory of relativity, physicists were engaged in reformu- lating the classical laws of physics in order to bring them in accordance with the (special) principle of relativity. According to this principle the fundamental laws of physics must have the same form in all Lorentz systems of coordinates or, more precisely, they must be expressed by equations which are form-invariant under Lorentz transformations. In some cases, like in the case of Maxwells equations, these laws had already the appropriate form, in other cases, they had to be slightly changed in order to make them covariant under Lorentz transformations.