Description of Bound States and Scattering Processes Using Hamiltonian Renormalization Group Procedure for Effective Particles in Quantum field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Description of Bound States and Scattering Processes Using Hamiltonian Renormalization Group Procedure for Effective Particles in Quantum field Theory Description of bound states and scattering processes using Hamiltonian renormalization group procedure for effective particles in quantum field theory Marek Wi˛eckowski June 2005 Doctoral thesis Advisor: Professor Stanisław D. Głazek Warsaw University Department of Physics Institute of Theoretical Physics Warsaw 2005 i Acknowledgments I am most grateful to my advisor, Professor Stanisław Głazek, for his invaluable advice and assistance during my work on this thesis. I would also like to thank Tomasz Masłowski for allowing me to use parts of our paper here. My heartfelt thanks go to Dr. Nick Ukiah, who supported and encouraged me during the writing of this thesis and who helped me in editing the final manuscript in English. Finally, I would like to thank my family, especially my grandmother, who has been a great support to me during the last few years. MAREK WI ˛ECKOWSKI,DESCRIPTION OF BOUND STATES AND SCATTERING... ii MAREK WI ˛ECKOWSKI,DESCRIPTION OF BOUND STATES AND SCATTERING... iii Abstract This thesis presents examples of a perturbative construction of Hamiltonians Hλ for effective particles in quantum field theory (QFT) on the light front. These Hamiltonians (1) have a well-defined (ultraviolet-finite) eigenvalue problem for bound states of relativistic constituent fermions, and (2) lead (in a scalar theory with asymptotic freedom in perturbation theory in third and partly fourth order) to an ultraviolet-finite and covariant scattering matrix, as the Feynman diagrams do. λ is a parameter of the renormalization group for Hamiltonians and qualitatively means the inverse of the size of the effective particles. The same procedure of calculating the operator Hλ applies in description of bound states and scattering. The question of whether this method extends to all orders in QFT is not resolved here. The relativistic Hamiltonian formulation of QFT is based on a global regularization of all terms in a relativistic operator H∆ (a canonical Hamiltonian with an ultraviolet cutoff ∆, plus counterterms). The renormalization group procedure for effective particles (RGPEP) makes it possible to find the structure of the counterterms in H∆ and calculate the effective Hamiltoni- ans Hλ for λ ranging from infinity down to λ on the order of masses of bound states. I investigate bound states of two relativistic fermions using Yukawa theory as an example. I give an explicit form of the effective Hamiltonian Hλ in the second order, and discuss the reduction of its eigenvalue equation to a Schrödinger equation for the wave function of the con- stituents. Every interaction term in the Hamiltonian Hλ contains a form factor fλ generated by RGPEP, which eliminates overlapping divergences in the bound-state eigenvalue problem expressed in terms of effective particles. The overlapping divergences appear in the eigenvalue problem expressed in terms of pointlike particles and without the form factors fλ, and result from relativistic relative motion of fermions. Such divergences appear in all Hamiltonian the- ories of pointlike particles with spin, and in particular in quantum chromodynamics (QCD). The advantage of the Yukawa theory is that it allows one to investigate the ultraviolet behav- ior in bound states of fermions without additional complications of QCD. The form factors fλ also cause the bound state to be dominated by the lowest sectors in the Fock-space basis built with effective particles. The ultraviolet complications of local QFT are contained in a complex structure that emerges in the effective particles as a result of dressing of the bare particles of the initial canonical theory. My description of scattering in an asymptotically free scalar field theory of φ3 type in 5+1 ∆ dimensions starts from constructing explicitly counterterms in H by calculating Hλ . I then use the Hamiltonian H∆ to calculate a scattering amplitude for a process analogous to e+e− → hadrons in perturbation theory up to the order e2g2, i.e., in one loop (e is an analogue of the electric charge of electrons in QED, and g of the color charge of quarks in QCD). I show that counterterms found using RGPEP without referring to the S matrix, remove the divergent regularization dependence from the calculated amplitude. I also give the explicit form of the finite parts of the counterterms in H∆ that lead to a covariant result for the scattering amplitude. I show that the dependence of the amplitude calculated this way on the momenta of the colliding particles, is the same as the dependence derived from Feynman diagrams (the diagrams are regularized covariantly and without defining a regularized Hamiltonian ab initio). I prove a theorem that states that the scattering amplitude obtained using H∆ is the same ∆ as the scattering amplitude obtained using Hλ . Note that in the calculation using H physical states of colliding particles are expressed in terms of bare particles and one uses the renor- ∆ malized interaction Hamiltonian HI . In the calculation using Hλ physical states of colliding particles are expressed in terms of non-pointlike effective particles and one uses the effective MAREK WI ˛ECKOWSKI,DESCRIPTION OF BOUND STATES AND SCATTERING... iv interaction Hamiltonian Hλ I with form factors in all vertices. In the case of the considered am- plitude of the type e+e− → hadrons in a one-loop approximation, this theorem implies that the effective Hamiltonian Hλ leads to the same predictions for the scattering matrix as the Feynman diagrams. I also present an alternative, simplified procedure for deriving the Hamiltonian counterterms needed for the description of the scalar analogue of e+e− → hadrons. I illustrate the simpli- fied procedure by giving mass and some vertex counterterms in QCD coupled to QED, in the Appendices. MAREK WI ˛ECKOWSKI,DESCRIPTION OF BOUND STATES AND SCATTERING... v Streszczenie Niniejsza praca podaje przykłady perturbacyjnej konstrukcji takich Hamiltonianów Hλ dla cz ˛a- stek efektywnych w kwantowej teorii pola (KTP) na froncie swietlnym,´ które (1) maj ˛adobrze zdefiniowany (ultrafioletowo skonczony)´ problem własny dla stanów zwi ˛azanych relatywistycz- nych fermionów-składników, oraz (2) w skalarnej teorii z asymptotyczn ˛aswobod ˛aw rachunku zaburzen´ do trzeciego i cz˛esciowo´ czwartego rz˛eduprzewiduj ˛aultrafioletowo skonczon´ ˛ai ko- wariantn ˛amacierz rozpraszania, tak ˛ajak diagramy Feynmana. λ jest parametrem grupy renor- malizacji dla hamiltonianów i jakosciowo´ oznacza odwrotnos´c´ rozmiaru cz ˛astekefektywnych. Ta sama procedura obliczania operatora Hλ stosuje si˛ew przypadku opisu stanów zwi ˛azanych i rozpraszania. Dowód stosowalnosci´ metody do wszystkich rz˛edóww KTP nie jest rozwa˙zany. Relatywistyczne hamiltonowskie sformułowanie KTP opiera si˛ena globalnej regularyzacji wszystkich wyrazów w relatywistycznym operatorze H∆ (hamiltonian kanoniczny z ultrafiole- towym obci˛eciem ∆, plus kontrczłony). Procedura grupy renormalizacji dla cz ˛astekefektyw- nych (RGPEP) pozwala znale´zc´ struktur˛ekontrczłonów w H∆, a nast˛epnieobliczyc´ hamiltonian efektywny Hλ dla λ z zakresu od nieskonczono´ sci´ do małych wartosci´ rz˛edumas stanów zwi ˛a- zanych. W przypadku stanów zwi ˛azanych dwóch relatywistycznych fermionów (zbadanym na przy- kładzie teorii Yukawy) podana jest jawna postac´ hamiltonianu efektywnego Hλ w drugim rz˛e- dzie rachunku oraz redukcja jego równania własnego do równania Schrödingera na funkcj˛efa- low ˛aefektywnych składników. Hamiltonian Hλ zawiera w oddziaływaniach czynniki kształtu fλ wygenerowane przez RGPEP, które usuwaj ˛anakrywaj ˛acesi˛erozbie˙znosci´ (overlapping di- vergences) w problemie własnym stanu zwi ˛azanego. Nakrywaj ˛acesi˛erozbie˙znosci´ pojawiaj ˛a si˛ew problemie własnym zapisanym za pomoc ˛acz ˛astekpunktowych bez czynników fλ, i s ˛a spowodowane relatywistycznym ruchem wzgl˛ednym fermionów. Takie rozbie˙znosci´ pojawiaj ˛a si˛ewe wszystkich hamiltonowskich sformułowaniach teorii cz ˛astekpunktowych ze spinem, a w szczególnosci´ w chromodynamice kwantowej (QCD). Zalet ˛ateorii Yukawy jest mo˙zliwos´c´ zba- dania ultrafioletowego zachowania fermionów w stanie zwi ˛azanym niezale˙znieod dodatkowych komplikacji w QCD. Czynniki fλ powoduj ˛arównie˙z,˙zew stanie zwi ˛azanym dominuj ˛anajni˙z- sze sektory Focka cz ˛astekefektywnych. Ultrafioletowe komplikacje lokalnej KTP zawarte s ˛aw skomplikowanej strukturze, która powstaje wewn ˛atrzcz ˛astekefektywnych na skutek ubierania si˛ecz ˛astekgołych wyjsciowej´ teorii kanonicznej. W przypadku teorii rozpraszania, jawna konstrukcja kontrczłonów w H∆ na podstawie obli- czen´ Hλ jest przeprowadzona w przypadku asymptotycznie swobodnej skalarnej teorii pola typu φ3 w 5+1 wymiarach. Nast˛epniehamiltonian H∆ jest u˙zytydo obliczenia amplitudy rozpraszania dla procesu analogicznego do e+e− → hadrony w rachunku zaburzen´ do rz˛edu e2g2, tj. w jednej p˛etli(e jest analogiem ładunku elektronów w QED a g ładunku kolorowego kwarków w QCD). Kontrczłony znalezione za pomoc ˛aRGPEP bez odwoływania si˛edo ma- cierzy rozpraszania, usuwaj ˛arozbie˙zn˛azale˙znos´c´ od regularyzacji w obliczonej amplitudzie. Podane s ˛ajawne wzory na skonczone´ cz˛esci´ kontrczłonów w H∆, prowadz ˛acedo kowariant- nego wyniku na macierz rozpraszania. Zale˙znos´c´ otrzymanej w ten sposób amplitudy od p˛edów zderzaj ˛acych si˛ecz ˛astekjest taka jak otrzymana z diagramów Feynmana (zregularyzowanych kowariantnie i bez definicji ab initio zregularyzowanego hamiltonianu). Podane jest twierdzenie, które mówi, ˙zeamplituda rozpraszania otrzymana za pomoc ˛a H∆ ∆ jest taka sama, jak amplituda otrzymana za pomoc
Recommended publications
  • Covariant Hamiltonian Field Theory 3
    December 16, 2020 2:58 WSPC/INSTRUCTION FILE kfte COVARIANT HAMILTONIAN FIELD THEORY JURGEN¨ STRUCKMEIER and ANDREAS REDELBACH GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH Planckstr. 1, 64291 Darmstadt, Germany and Johann Wolfgang Goethe-Universit¨at Frankfurt am Main Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany [email protected] Received 18 July 2007 Revised 14 December 2020 A consistent, local coordinate formulation of covariant Hamiltonian field theory is pre- sented. Whereas the covariant canonical field equations are equivalent to the Euler- Lagrange field equations, the covariant canonical transformation theory offers more gen- eral means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proved that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinites- imal canonical transformation furnishes the most general form of Noether’s theorem. We furthermore specify the generating function of an infinitesimal space-time step that conforms to the field equations. Keywords: Field theory; Hamiltonian density; covariant. PACS numbers: 11.10.Ef, 11.15Kc arXiv:0811.0508v6 [math-ph] 15 Dec 2020 1. Introduction Relativistic field theories and gauge theories are commonly formulated on the basis of a Lagrangian density L1,2,3,4. The space-time evolution of the fields is obtained by integrating the Euler-Lagrange field equations that follow from the four-dimensional representation of Hamilton’s action principle.
    [Show full text]
  • Turbulence, Entropy and Dynamics
    TURBULENCE, ENTROPY AND DYNAMICS Lecture Notes, UPC 2014 Jose M. Redondo Contents 1 Turbulence 1 1.1 Features ................................................ 2 1.2 Examples of turbulence ........................................ 3 1.3 Heat and momentum transfer ..................................... 4 1.4 Kolmogorov’s theory of 1941 ..................................... 4 1.5 See also ................................................ 6 1.6 References and notes ......................................... 6 1.7 Further reading ............................................ 7 1.7.1 General ............................................ 7 1.7.2 Original scientific research papers and classic monographs .................. 7 1.8 External links ............................................. 7 2 Turbulence modeling 8 2.1 Closure problem ............................................ 8 2.2 Eddy viscosity ............................................. 8 2.3 Prandtl’s mixing-length concept .................................... 8 2.4 Smagorinsky model for the sub-grid scale eddy viscosity ....................... 8 2.5 Spalart–Allmaras, k–ε and k–ω models ................................ 9 2.6 Common models ........................................... 9 2.7 References ............................................... 9 2.7.1 Notes ............................................. 9 2.7.2 Other ............................................. 9 3 Reynolds stress equation model 10 3.1 Production term ............................................ 10 3.2 Pressure-strain interactions
    [Show full text]
  • Advances in Quantum Field Theory
    ADVANCES IN QUANTUM FIELD THEORY Edited by Sergey Ketov Advances in Quantum Field Theory Edited by Sergey Ketov Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Romana Vukelic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Advances in Quantum Field Theory, Edited by Sergey Ketov p.
    [Show full text]
  • Classical Hamiltonian Field Theory
    Classical Hamiltonian Field Theory Alex Nelson∗ Email: [email protected] August 26, 2009 Abstract This is a set of notes introducing Hamiltonian field theory, with focus on the scalar field. Contents 1 Lagrangian Field Theory1 2 Hamiltonian Field Theory2 1 Lagrangian Field Theory As with Hamiltonian mechanics, wherein one begins by taking the Legendre transform of the Lagrangian, in Hamiltonian field theory we \transform" the Lagrangian field treatment. So lets review the calculations in Lagrangian field theory. Consider the classical fields φa(t; x¯). We use the index a to indicate which field we are talking about. We should think of x¯ as another index, except it is continuous. We will use the confusing short hand notation φ for the column vector φ1; : : : ; φn. Consider the Lagrangian Z 3 L(φ) = L(φ, @µφ)d x¯ (1.1) all space where L is the Lagrangian density. Hamilton's principle of stationary action is still used to determine the equations of motion from the action Z S[φ] = L(φ, @µφ)dt (1.2) where we find the Euler-Lagrange equations of motion for the field d @L @L µ a = a (1.3) dx @(@µφ ) @φ where we note these are evil second order partial differential equations. We also note that we are using Einstein summation convention, so there is an implicit sum over µ but not over a. So that means there are n independent second order partial differential equations we need to solve. But how do we really know these are the correct equations? How do we really know these are the Euler-Lagrange equations for classical fields? We can obtain it directly from the action S by functional differentiation with respect to the field.
    [Show full text]
  • Higher Order Geometric Theory of Information and Heat Based On
    Article Higher Order Geometric Theory of Information and Heat Based on Poly-Symplectic Geometry of Souriau Lie Groups Thermodynamics and Their Contextures: The Bedrock for Lie Group Machine Learning Frédéric Barbaresco Department of Advanced Radar Concepts, Thales Land Air Systems, Voie Pierre-Gilles de Gennes, 91470 Limours, France; [email protected] Received: 9 August 2018; Accepted: 9 October; Published: 2 November 2018 Abstract: We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted to describe density of probability (maximum entropy Gibbs density) of data living on groups or on homogeneous manifolds. For small data analytics (rarified gases, sparse statistical surveys, …), the density of maximum entropy should consider higher order moments constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order and higher moments) as introduced by Ingarden. We use a poly-sympletic model introduced by Christian Günther, replacing the symplectic form by a vector-valued form. The poly-symplectic approach generalizes the Noether theorem, the existence of moment mappings, the Lie algebra structure of the space of currents, the (non-)equivariant cohomology and the classification of G-homogeneous systems. The formalism is covariant, i.e., no special coordinates or coordinate systems on the parameter space are used to construct the Hamiltonian equations. We underline the contextures of these models, and the process to build these generic structures. We also introduce a more synthetic Koszul definition of Fisher Metric, based on the Souriau model, that we name Souriau-Fisher metric.
    [Show full text]
  • Arxiv:1808.08689V3
    Hamiltonian Nature of Monopole Dynamics J. M. Heningera, P. J. Morrisona aDepartment of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX, 78712, USA Abstract Classical electromagnetism with magnetic monopoles is not a Hamiltonian field theory because the Jacobi identity for the Poisson bracket fails. The Jacobi identity is recovered only if all of the species have the same ratio of electric to magnetic charge or if an electron and a monopole can never collide. Without the Jacobi identity, there are no local canonical coordinates or Lagrangian action principle. To build a quantum field of magnetic monopoles, we either must explain why the positions of electrons and monopoles can never coincide or we must resort to new quantization techniques. 1. Introduction This letter considers the classical gauge-free theory of electromagnetic fields interacting with electrically and magnetically charged matter as a Hamiltonian field theory. We begin with a brief history of magnetic monopoles and then describe why monopole theories are not Hamiltonian field theories. The modern theory of magnetic monopoles was developed by Dirac [1, 2]. He showed that an electron in the magnetic field of a monopole is equivalent to an electron whose wave function is zero along a semi-infinite ‘string’ extending from the location of the monopole. Along this string, the electromagnetic vector potential is undefined. The phase of the electron is no longer single valued along a loop encircling the Dirac string. In order for observables to be single valued, the phase shift must be an integer multiple of 2π, so the electric and magnetic charge must be quantized.
    [Show full text]
  • The Hamiltonian Field Theory of the Von Mises Wave Equation: Analytical and Computational Issues
    Commun. Comput. Phys. Vol. 19, No. 3, pp. 758-769 doi: 10.4208/cicp.101114.140715a March 2016 The Hamiltonian Field Theory of the Von Mises Wave Equation: Analytical and Computational Issues 1,2, 1,2 Christian Cherubini ∗ and Simonetta Filippi 1 Unit of Nonlinear Physics and Mathematical Modeling, Campus Bio-Medico, University of Rome, I-00128, Rome, Italy. 2 International Center for Relativistic Astrophysics – I.C.R.A., Campus Bio-Medico, University of Rome, I-00128, Rome, Italy. Communicated by Lianjie Huang Received 10 November 2014; Accepted (in revised version) 14 July 2015 Abstract. The Von Mises quasi-linear second order wave equation, which completely describes an irrotational, compressible and barotropic classical perfect fluid, can be de- rived from a nontrivial least action principle for the velocity scalar potential only, in contrast to existing analog formulations which are expressed in terms of coupled den- sity and velocity fields. In this article, the classical Hamiltonian field theory specifically associated to such an equation is developed in the polytropic case and numerically verified in a simplified situation. The existence of such a mathematical structure sug- gests new theoretical schemes possibly useful for performing numerical integrations of fluid dynamical equations. Moreover it justifies possible new functional forms for La- grangian densities and associated Hamiltonian functions in other theoretical classical physics contexts. AMS subject classifications: 76A02, 65M60, 37K05 PACS: 47.40.-x, 02.30.Jr, 11.10.Ef, 04.90.+e Key words: Classical field theories, fluid dynamics, partial differential equations, numerical methods. 1 Introduction The dynamics of non viscous barotropic fluids is characterized by well defined Lagrangian [1] as well as Hamiltonian classical field theory formulations [1–6] developed in terms of coupled density and velocity fields.
    [Show full text]
  • The Lagrangian-Hamiltonian Formalism for Higher Order Field Theories
    The Di©ety Institute Preprint Series Preprint DIPS2/2009 May 28, 2009 The Lagrangian-Hamiltonian Formalism for Higher Order Field Theories by L. Vitagliano Available via INTERNET: http://di©ety.ac.ru; http://di©ety.org The Di©ety Institute DIPS-2/2009 arXiv:0905.4580 The Lagrangian-Hamiltonian Formalism for Higher Order Field Theories L. VITAGLIANO Abstract. We generalize the lagrangian-hamiltonian formalism of Skinner and Rusk to higher order ¦eld theories on ¦ber bundles. As a byproduct we solve the long standing problem of de¦ning, in a coordinate free manner, a hamiltonian formalism for higher order lagrangian ¦eld theories, which does only depend on the action func- tional and, therefore, unlike previously proposed formalisms, is free from any relevant ambiguity. Introduction First order lagrangian mechanics can be generalized to higher order lagrangian ¦eld theory. Moreover, the latter has got a very elegant geometric (and homological) for- mulation (see, for instance, [1]) on which there is general consensus. On the other side, it seems that the generalization of hamiltonian mechanics of lagrangian systems to higher order ¦eld theory presents some more problems. They have been proposed several answers (see, for instance, [2, 3, 4, 5, 6, 7, 8, 9, 10] and references therein) to the question: is there any reasonable, higher order, ¦eld theoretic analogue of hamiltonian mechanics? To our opinion, non of them is satisfactorily natural, especially because of the common emergence of ambiguities due to either the arbitrary choice of a coordinate system [2] or the choice of a Legendre transform [7, 8, 10]. Namely, the latter seems not to be uniquely de¦nable, except in the case of ¦rst order lagrangian ¦eld theories when a satisfactory hamiltonian formulation can be presented in terms of multisym- plectic geometry (see, for instance, [11] - see also [12] for a recent review, and references therein).
    [Show full text]
  • Introduction to Relativistic Quantum Field Theory
    Introduction to Relativistic Quantum Field Theory Prof. Dr. Stefan Dittmaier, Dr. Heidi Rzehak and Dr. Christian Schwinn Albert-Ludwigs-Universit¨at Freiburg, Physikalisches Institut D-79104 Freiburg, Germany Summer-Semester 2014 Draft: October 1, 2014 2 Contents 1 Introduction 7 I Quantization of Scalar Fields 9 2 Recapitulation of Special Relativity 11 2.1 Lorentz transformations, four-vectors, tensors . ......... 11 2.1.1 Minkowskispace ............................ 11 2.1.2 Lorentztransformations . 12 2.1.3 Differentialoperators.......................... 14 2.1.4 Tensors ................................. 15 2.2 LorentzgroupandLorentzalgebra . 15 2.2.1 Classification of Lorentz transformations . 15 2.2.2 Infinitesimal transformations and group generators . ... 17 2.3 PoincaregroupandPoincarealgebra . 19 2.3.1 Thebasics................................ 19 2.3.2 Generatorsasdifferentialoperators . 20 2.4 Relativistic point particles . 22 3 The Klein–Gordon equation 25 3.1 Relativistic wave equation . 25 3.2 Solutions of the Klein–Gordon equation . 26 3.3 Conservedcurrent................................ 28 3.4 Interpretation of the Klein–Gordon equation . ... 29 4 Classical Field Theory 31 4.1 Lagrangian and Hamiltonian formalism . 31 4.1.1 Lagrangianfieldtheory......................... 31 4.1.2 Hamiltonian field theory . 35 4.2 Actionsforscalarfields............................. 36 4.2.1 Freerealscalarfield .......................... 36 4.2.2 Freecomplexscalarfield ........................ 37 4.3 Interactingfields ................................ 38 3 4 CONTENTS 4.3.1 Scalar self-interactions . 38 4.3.2 Explicit calculation of the Green function (propagator) ....... 40 4.4 SymmetriesandtheNoetherTheorem . 43 4.4.1 Continuoussymmetries. .. .. 43 4.4.2 DerivationoftheNoethertheorem . 45 4.4.3 Internal symmetries and conserved currents . .. 46 4.4.4 Translation invariance and energy-momentum tensor . 47 5 Canonical quantization of free scalar fields 49 5.1 Canonical commutation relations .
    [Show full text]
  • Hamiltonian Formulation of Two-Dimensional Gyroviscous MHD Philip 1
    Hamiltonian Formulation of Two-Dimensional Gyroviscous MHD Philip 1. Morrison *, I. L. Caldas **, and H. Tasso Max-Planck-Instilut fUr Plasma physik, EURATOM Assnciation, Garching Z. Naturforsch. 39., 1023-1027 (1984); received August 9,1984 Gyroviscous MHD in two dimensions is shown to be a Hamiltonian field theory in terms of a rton~canonical Poisson bracket. This bracket is of the Lie-Poisson type, but possesses an unfamiliar inner Lie algebra. Analysis of this algebra motivates a transformation that enables a Clebsch-like potential decomposition that makes Lagrangian and canonical Hamiltonian formulations possible. I. Introduction and then present the Poisson bracket for the gyro­ This work is concerned with the Hamiltonian MHD model. Section IV is concerned with the algebraic interprctation of the bracket presented in field formulation of the equations that describe Sect. III. In case the methods of this section are two-dimensional non-dissipative gyroviscous one­ unfamiliar to the reader, it may be skipped without fluid plasmas [I, 2, 3, 4J. These equations differ loss of continuity. Section V deals with Clebsch [13J from the usual Eulerian form of ideal MHO by the . potentials, i. e. a potential decomposition that trans­ inclusion of a non-entropy-producing stress tensor that arises from the finiteness of the ion gyroradius. forms the noncanonical formalism into canonical The physics of this stress \ensor is important for form with gauge conditions. We thus obtain a varia­ tional principle. Clebsch-potentials are discussed in modelling tokamak discharges [5J, and may be important for calculation of the MHO k-spectrum [9], [12J, [14J-[18J.
    [Show full text]
  • Hamiltonian Field Theory
    Hamiltonian Field Theory August 31, 2016 1 Introduction So far we have treated classical field theory using Lagrangian and an action principle for Lagrangian. This approach is called Lagrangian field theory and is best suited for quantizing a field theory using the path- integral (aka functional integral) approach. However, a quicker route to quantizing a classical field theory is thru the \canonical quantization" program which is what you will find in most introductory treatments on quantum field theory. So for us, the Lagrangian is just a crutch to extract the Hamiltonian. However there is a price to pay when we switch from a Lagrangian approach to a Hamiltonian approach, that is manifest Lorentz invariance. Recall that a field theory is a system where we have a degree of freedom located at each point in space. If this degree of freedom is a Lorentz scalar, we will denote the degree of freedom located at position x by Φ(x) and its conjugate momenta, Π(x). These degrees of freedom of course fluctuate in time, so when we include this time-dependence, the notation becomes, Φ(x; t) and Π(x; t): The job of Hamiltonian field theory is describe time-evolution of Π and Φ in equations as follows, Π_ = :::; Φ_ = ::: The dot is time derivative, i.e. we have to choose a time axis or equivalently preferred reference frame which breaks manifest Lorentz invariance. Recall that earlier, in the Lagrangian/action approach we did not have to choose a time-frame because the equation of motion looked Lorentz invariant, e.g.
    [Show full text]
  • Hamiltonian Field Theory
    Fall 2019: Classical Field Theory (PH6297) Hamiltonian Field Theory August 31, 2019 1 Introduction So far we have defined classical field theory using a action principle by specifying the Lagrangian (density). This approach is called Lagrangian field theory and is best suited for quantizing a field theory using the path-integral (aka functional integral) approach. However, the more traditional route to quantizing a classical field theory is thru the \canonical quantization" program which is what you will find in most introductory treatments on quantum field theory. So for quantizing the field theory using the canonical quantization route, the Lagrangian is just a crutch to extract the Hamiltonian. However there is a price to pay when we switch from a Lagrangian approach to a Hamiltonian approach, that is we have to sacrifice manifest Lorentz invariance. In particular in the Hamiltonian approach time is treated differently from spatial coordinates. Recall that a field theory is a system of infinite degrees of freedom, a degree of freedom being located at each point in space, x. If this degree of freedom is a Lorentz scalar, we will denote the degree of freedom located at position x by '(x) and its conjugate momenta, π(x). These degrees of freedom of course fluctuate in time, so when we include this time-dependence, the notation becomes, '(x; t) and π(x; t): The job of Hamiltonian field theory is describe time-evolution of π and ' in equations as follows, π_ = :::; '_ = ::: The dot is (total) time derivative, i.e. we have to choose a time axis or equivalently preferred reference frame which breaks manifest Lorentz invariance.
    [Show full text]