Quark Diagram Analysis of Bottom Meson Decays Emitting Pseudoscalar and Vector Mesons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Positons of the Three Quarks Composing the Proton Are Illustrated
The posi1ons of the three quarks composing the proton are illustrated by the colored spheres. The surface plot illustrates the reduc1on of the vacuum ac1on density in a plane passing through the centers of the quarks. The vector field illustrates the gradient of this reduc1on. The posi1ons in space where the vacuum ac1on is maximally expelled from the interior of the proton are also illustrated by the tube-like structures, exposing the presence of flux tubes. a key point of interest is the distance at which the flux-tube formaon occurs. The animaon indicates that the transi1on to flux-tube formaon occurs when the distance of the quarks from the center of the triangle is greater than 0.5 fm. again, the diameter of the flux tubes remains approximately constant as the quarks move to large separaons. • Three quarks indicated by red, green and blue spheres (lower leb) are localized by the gluon field. • a quark-an1quark pair created from the gluon field is illustrated by the green-an1green (magenta) quark pair on the right. These quark pairs give rise to a meson cloud around the proton. hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html Nucl. Phys. A750, 84 (2005) 1000000 QCD mass 100000 Higgs mass 10000 1000 100 Mass (MeV) 10 1 u d s c b t GeV HOW does the rest of the proton mass arise? HOW does the rest of the proton spin (magnetic moment,…), arise? Mass from nothing Dyson-Schwinger and Lattice QCD It is known that the dynamical chiral symmetry breaking; namely, the generation of mass from nothing, does take place in QCD. -
First Determination of the Electric Charge of the Top Quark
First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge. -
Properties of Baryons in the Chiral Quark Model
Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results. -
Quark Structure of Pseudoscalar Mesons Light Pseudoscalar Mesons Can Be Identified As (Almost) Goldstone Bosons
International Journal of Modern Physics A, c❢ World Scientific Publishing Company QUARK STRUCTURE OF PSEUDOSCALAR MESONS THORSTEN FELDMANN∗ Fachbereich Physik, Universit¨at Wuppertal, Gaußstraße 20 D-42097 Wuppertal, Germany I review to which extent the properties of pseudoscalar mesons can be understood in terms of the underlying quark (and eventually gluon) structure. Special emphasis is put on the progress in our understanding of η-η′ mixing. Process-independent mixing parameters are defined, and relations between different bases and conventions are studied. Both, the low-energy description in the framework of chiral perturbation theory and the high-energy application in terms of light-cone wave functions for partonic Fock states, are considered. A thorough discussion of theoretical and phenomenological consequences of the mixing approach will be given. Finally, I will discuss mixing with other states 0 (π , ηc, ...). 1. Introduction The fundamental degrees of freedom in strong interactions of hadronic matter are quarks and gluons, and their behavior is controlled by Quantum Chromodynamics (QCD). However, due to the confinement mechanism in QCD, in experiments the only observables are hadrons which appear as complex bound systems of quarks and gluons. A rigorous analytical solution of how to relate quarks and gluons in QCD to the hadronic world is still missing. We have therefore developed effective descriptions that allow us to derive non-trivial statements about hadronic processes from QCD and vice versa. It should be obvious that the notion of quark or gluon structure may depend on the physical context. Therefore one aim is to find process- independent concepts which allow a comparison of different approaches. -
Mass Shift of Σ-Meson in Nuclear Matter
Mass shift of σ-Meson in Nuclear Matter J. R. Morones-Ibarra, Mónica Menchaca Maciel, Ayax Santos-Guevara, and Felipe Robledo Padilla. Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66450, México. Facultad de Ingeniería y Arquitectura, Universidad Regiomontana, 15 de Mayo 567, Monterrey, N.L., 64000, México. April 6, 2010 Abstract The propagation of sigma meson in nuclear matter is studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in medium effect of sigma-omega mixing. We have also considered, by completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases respect to its value in vacuum and that the contribution of the sigma omega mixing effect on the mass shift is relatively small. Keywords: scalar mesons, hadrons in dense matter, spectral function, dense nuclear matter. PACS:14.40;14.40Cs;13.75.Lb;21.65.+f 1. INTRODUCTION The study of matter under extreme conditions of density and temperature, has become a very important issue due to the fact that it prepares to understand the physics for some interesting subjects like, the conditions in the early universe, the physics of processes in stellar evolution and in heavy ion collision. Particularly, the study of properties of mesons in hot and dense matter is important to understand which could be the signature for detecting the Quark-Gluon Plasma (QGP) state in heavy ion collision, and to get information about the signal of the presence of QGP and also to know which symmetries are restored [1]. -
Phenomenology of Gev-Scale Heavy Neutral Leptons Arxiv:1805.08567
Prepared for submission to JHEP INR-TH-2018-014 Phenomenology of GeV-scale Heavy Neutral Leptons Kyrylo Bondarenko,1 Alexey Boyarsky,1 Dmitry Gorbunov,2;3 Oleg Ruchayskiy4 1Intituut-Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 2Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 3Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 4Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK- 2100 Copenhagen, Denmark E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We review and revise phenomenology of the GeV-scale heavy neutral leptons (HNLs). We extend the previous analyses by including more channels of HNLs production and decay and provide with more refined treatment, including QCD corrections for the HNLs of masses (1) GeV. We summarize the relevance O of individual production and decay channels for different masses, resolving a few discrepancies in the literature. Our final results are directly suitable for sensitivity studies of particle physics experiments (ranging from proton beam-dump to the LHC) aiming at searches for heavy neutral leptons. arXiv:1805.08567v3 [hep-ph] 9 Nov 2018 ArXiv ePrint: 1805.08567 Contents 1 Introduction: heavy neutral leptons1 1.1 General introduction to heavy neutral leptons2 2 HNL production in proton fixed target experiments3 2.1 Production from hadrons3 2.1.1 Production from light unflavored and strange mesons5 2.1.2 -
A Quark-Meson Coupling Model for Nuclear and Neutron Matter
Adelaide University ADPT February A quarkmeson coupling mo del for nuclear and neutron matter K Saito Physics Division Tohoku College of Pharmacy Sendai Japan and y A W Thomas Department of Physics and Mathematical Physics University of Adelaide South Australia Australia March Abstract nucl-th/9403015 18 Mar 1994 An explicit quark mo del based on a mean eld description of nonoverlapping nucleon bags b ound by the selfconsistent exchange of ! and mesons is used to investigate the prop erties of b oth nuclear and neutron matter We establish a clear understanding of the relationship b etween this mo del which incorp orates the internal structure of the nucleon and QHD Finally we use the mo del to study the density dep endence of the quark condensate inmedium Corresp ondence to Dr K Saito email ksaitonuclphystohokuacjp y email athomasphysicsadelaideeduau Recently there has b een considerable interest in relativistic calculations of innite nuclear matter as well as dense neutron matter A relativistic treatment is of course essential if one aims to deal with the prop erties of dense matter including the equation of state EOS The simplest relativistic mo del for hadronic matter is the Walecka mo del often called Quantum Hadro dynamics ie QHDI which consists of structureless nucleons interacting through the exchange of the meson and the time comp onent of the meson in the meaneld approximation MFA Later Serot and Walecka extended the mo del to incorp orate the isovector mesons and QHDI I and used it to discuss systems like -
Arxiv:1702.08417V3 [Hep-Ph] 31 Aug 2017
Strong couplings and form factors of charmed mesons in holographic QCD Alfonso Ballon-Bayona,∗ Gast~aoKrein,y and Carlisson Millerz Instituto de F´ısica Te´orica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 S~aoPaulo, SP, Brazil We extend the two-flavor hard-wall holographic model of Erlich, Katz, Son and Stephanov [Phys. Rev. Lett. 95, 261602 (2005)] to four flavors to incorporate strange and charm quarks. The model incorporates chiral and flavor symmetry breaking and provides a reasonable description of masses and weak decay constants of a variety of scalar, pseudoscalar, vector and axial-vector strange and charmed mesons. In particular, we examine flavor symmetry breaking in the strong couplings of the ρ meson to the charmed D and D∗ mesons. We also compute electromagnetic form factors of the π, ρ, K, K∗, D and D∗ mesons. We compare our results for the D and D∗ mesons with lattice QCD data and other nonperturbative approaches. I. INTRODUCTION are taken from SU(4) flavor and heavy-quark symmetry relations. For instance, SU(4) symmetry relates the cou- There is considerable current theoretical and exper- plings of the ρ to the pseudoscalar mesons π, K and D, imental interest in the study of the interactions of namely gρDD = gKKρ = gρππ=2. If in addition to SU(4) charmed hadrons with light hadrons and atomic nu- flavor symmetry, heavy-quark spin symmetry is invoked, clei [1{3]. There is special interest in the properties one has gρDD = gρD∗D = gρD∗D∗ = gπD∗D to leading or- of D mesons in nuclear matter [4], mainly in connec- der in the charm quark mass [27, 28]. -
Analysis of Pseudoscalar and Scalar $D$ Mesons and Charmonium
PHYSICAL REVIEW C 101, 015202 (2020) Analysis of pseudoscalar and scalar D mesons and charmonium decay width in hot magnetized asymmetric nuclear matter Rajesh Kumar* and Arvind Kumar† Department of Physics, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011 Punjab, India (Received 27 August 2019; revised manuscript received 19 November 2019; published 8 January 2020) In this paper, we calculate the mass shift and decay constant of isospin-averaged pseudoscalar (D+, D0 ) +, 0 and scalar (D0 D0 ) mesons by the magnetic-field-induced quark and gluon condensates at finite density and temperature of asymmetric nuclear matter. We have calculated the in-medium chiral condensates from the chiral SU(3) mean-field model and subsequently used these condensates in QCD sum rules to calculate the effective mass and decay constant of D mesons. Consideration of external magnetic-field effects in hot and dense nuclear matter lead to appreciable modification in the masses and decay constants of D mesons. Furthermore, we also ψ ,ψ ,χ ,χ studied the effective decay width of higher charmonium states [ (3686) (3770) c0(3414) c2(3556)] as a 3 by-product by using the P0 model, which can have an important impact on the yield of J/ψ mesons. The results of the present work will be helpful to understand the experimental observables of heavy-ion colliders which aim to produce matter at finite density and moderate temperature. DOI: 10.1103/PhysRevC.101.015202 I. INTRODUCTION debateable topic. Many theories suggest that the magnetic field produced in HICs does not die immediately due to the Future heavy-ion colliders (HIC), such as the Japan Proton interaction of itself with the medium. -
Effective Field Theories of Heavy-Quark Mesons
Effective Field Theories of Heavy-Quark Mesons A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy (PhD) in the faculty of Engineering and Physical Sciences Mohammad Hasan M Alhakami School of Physics and Astronomy 2014 Contents Abstract 10 Declaration 12 Copyright 13 Acknowledgements 14 1 Introduction 16 1.1 Ordinary Mesons......................... 21 1.1.1 Light Mesons....................... 22 1.1.2 Heavy-light Mesons.................... 24 1.1.3 Heavy-Quark Mesons................... 28 1.2 Exotic cc¯ Mesons......................... 31 1.2.1 Experimental and theoretical studies of the X(3872). 34 2 From QCD to Effective Theories 41 2.1 Chiral Symmetry......................... 43 2.1.1 Chiral Symmetry Breaking................ 46 2.1.2 Effective Field Theory.................. 57 2.2 Heavy Quark Spin Symmetry.................. 65 2.2.1 Motivation......................... 65 2.2.2 Heavy Quark Effective Theory.............. 69 3 Heavy Hadron Chiral Perturbation Theory 72 3.1 Self-Energies of Charm Mesons................. 78 3.2 Mass formula for non-strange charm mesons.......... 89 3.2.1 Extracting the coupling constant of even and odd charm meson transitions..................... 92 2 4 HHChPT for Charm and Bottom Mesons 98 4.1 LECs from Charm Meson Spectrum............... 99 4.2 Masses of the charm mesons within HHChPT......... 101 4.3 Linear combinations of the low energy constants........ 106 4.4 Results and Discussion...................... 108 4.5 Prediction for the Spectrum of Odd- and Even-Parity Bottom Mesons............................... 115 5 Short-range interactions between heavy mesons in frame- work of EFT 126 5.1 Uncoupled Channel........................ 127 5.2 Two-body scattering with a narrow resonance........ -
Non-Perturbative Gluons and Pseudoscalar Mesons in Baryon Spectroscopy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Non-perturbative Gluons and Pseudoscalar Mesons in Baryonprovided by CERN Document Server Spectroscopy Z. Dziembowskia, M. Fabre de la Ripelleb, and Gerald A. Millerc a Department of Physics Temple University Philadelphia, PA 19122 b Institut de Physique Nucleaire, Universite de Paris-Sud, 94106 Orsay, France c Department of Physics University of Washington, Box 351560 Seattle, WA 98195-1560 Abstract We study baryon spectroscopy including the effects of pseudoscalar meson exchange and one gluon exchange potentials between quarks, governed by αs. The non-perturbative, hyperspherical method calculations show that one can obtain a good description of the data by using a quark-meson coupling con- stant that is compatible with the measured pion-nucleon coupling constant, and a reasonably small value of αs. Typeset using REVTEX 1 Interest in studying baryon spectroscopy has been re-vitalized by the recent work of Glozman and Riska [1–5]. These authors point out the persistent difficulty in obtaining a simultaneous description of the masses of the P-wave baryon resonances and the Roper- nucleon mass difference. In particular they argue [2] that “the spectra of the nucleons, ∆ resonances and the strange hyperons are well described by the constituent quark model, if in addition to the harmonic confinement potential the quarks are assumed to interact by exchange of the SU(3)F octet of pseudoscalar mesons”. Furthermore, Ref. [5] states that gluon exchange has no relation with the spectrum of baryons ! The ideas of Glozman and Riska are especially interesting because of the good descrip- tions of the spectra obtained in Refs. -
Quarks and Their Discovery
Quarks and Their Discovery Parashu Ram Poudel Department of Physics, PN Campus, Pokhara Email: [email protected] Introduction charge (e) of one proton. The different fl avors of Quarks are the smallest building blocks of matter. quarks have different charges. The up (u), charm They are the fundamental constituents of all the (c) and top (t) quarks have electric charge +2e/3 hadrons. They have fractional electronic charge. and the down (d), strange (s) and bottom (b) quarks Quarks never exist alone in nature. They are always have charge -e/3; -e is the charge of an electron. The found in combination with other quarks or antiquark masses of these quarks vary greatly, and of the six, in larger particle of matter. By studying these larger only the up and down quarks, which are by far the particles, scientists have determined the properties lightest, appear to play a direct role in normal matter. of quarks. Protons and neutrons, the particles that make up the nuclei of the atoms consist of quarks. There are four forces that act between the quarks. Without quarks there would be no atoms, and without They are strong force, electromagnetic force, atoms, matter would not exist as we know it. Quarks weak force and gravitational force. The quantum only form triplets called baryons such as proton and of strong force is gluon. Gluons bind quarks or neutron or doublets called mesons such as Kaons and quark and antiquark together to form hadrons. The pi mesons. Quarks exist in six varieties: up (u), down electromagnetic force has photon as quantum that (d), charm (c), strange (s), bottom (b), and top (t) couples the quarks charge.