Open Jordanirvinthesis2.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Jordanirvinthesis2.Pdf The Pennsylvania State University The Graduate School Department of Biochemistry, Microbiology, and Molecular Biology GENOME-WIDE FUNCTIONAL ANALYSIS OF TAF1 AND MOT1, REGULATORS OF THE TATA BOX BINDING PROTEIN IN SACCHAROMYCES CEREVISIAE A Thesis in Biochemistry, Microbiology and Molecular Biology by Jordan Davis Welch Irvin © 2005 Jordan Davis Welch Irvin Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2005 The thesis of Jordan Davis Welch Irvin was reviewed and approved* by the following: B. Franklin Pugh Professor of Biochemistry and Molecular Biology Thesis Advisor Chair of Committee Song Tan Associate Professor of Biochemistry and Molecular Biology Richard J. Frisque Professor of Molecular Virology Blake R. Peterson Associate Professor of Chemistry Jerry L. Workman Investigator, The Stowers Institute for Medical Research Kansas City, MO Special Member Robert A. Schlegel Professor of Biochemistry and Molecular Biology Head of the Department of Biochemistry, Microbiology and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT The TATA box binding protein (TBP) is a key protein in the process of gene expression, or transcription. The binding of TBP to DNA nucleates the formation of the pre-initiation complex of transcription factors at a gene. Numerous transcription factors regulate TBP both positively and negatively. TBP directs transcription from two multi- subunit complexes, SAGA and TFIID, that operate on separate classes of genes. The studies described here dissect the contributions that distinct domains of two transcription factors, TAF1 and MOT1, make on a genome-wide scale. TAF1 is an essential subunit of TFIID with several known activities, including binding TBP. MOT1 has been linked to the SAGA co-activator complex through genetic, biochemical, and genome-wide studies, and is known to remove TBP from DNA via ATP hydrolysis. We find that all activities of TAF1 tested are required for proper expression of TFIID-dominated genes (~90% of the genome), and a domain of TAF1 plays a role in preventing TAF1 from associating with SAGA dominated genes. Deletion of functional domains of TAF1 contribute to protein instability, dominant toxicity, and can not support viability as the sole source of TAF1. In contrast to the results from TAF1, several distinct patterns of MOT1-mediated regulation emerge. MOT1 appears to be a major regulator of transcription at a small subset of yeast genes. A genome-wide assessment indicates MOT1 acts primarily to activate TFIID-dominated (housekeeping) genes and repress SAGA-dominated (stress response) genes. The N-terminus of MOT1, which interacts with TBP is necessary for repression of stress response genes. A subset of genes depends on most or all of the iv regions of MOT1 that were mutated for proper expression. Interestingly, the TBP- associated complex NC2, which makes positive and negative contributions to gene expression, appears to work in concert with MOT1 to regulate TBP. At genes where MOT1 is acting positively, NC2 also plays an activating role. Where MOT1 exerts repressive effects, NC2 also works to down-regulate expression. v TABLE OF CONTENTS LIST OF FIGURES .....................................................................................................vii ABBREVIATIONS .....................................................................................................ix ACKNOWLEDGEMENTS.........................................................................................xi Chapter 1 Introduction ................................................................................................1 1.1 Overview of Gene Regulation ........................................................................1 1.2 Regulation of RNA Polymerase II Expression...............................................3 1.3 Chromatin Structure and Gene Expression.....................................................5 1.4 Chromatin Remodeling Complexes................................................................6 1.5 Histone Acetylation ........................................................................................8 1.6 The SAGA Co-Activator Complex ................................................................8 1.7 General Transcription Factors ........................................................................10 1.7.1 TFIID....................................................................................................10 1.7.1.1 TFIID Subunit TAF1..................................................................13 1.8 Bromodomain Factor 1...................................................................................15 1.9 The TATA Box Binding Protein (TBP) .........................................................16 1.10 MOT1 ...........................................................................................................16 1.11 The Yeast NC2 Complex..............................................................................18 1.12 Bibliography .................................................................................................20 Chapter 2 Interaction of the Amino-Terminal Domain of yTAF1 and TBP ..............39 2.1 Introduction.....................................................................................................39 2.2 Identification of TAF1 N-Terminal Domain (TAND) and Association with TBP........................................................................................................40 2.3 TAND Homology ...........................................................................................42 2.4 Structure of TBP.............................................................................................43 2.5 TAND Structure Mimics the TATA Box .......................................................48 2.6 Mutagenesis of TBP and effects on TAND binding.......................................51 2.7 Results.............................................................................................................53 2.8 Discussion.......................................................................................................60 2.9 Materials and Methods ...................................................................................64 2.9.1 Subcloning of F23K and F23K/D66K Mutations........................................64 2.9.1 GST-TAND purification..............................................................................65 2.9.1 Purification of 6His-TBP mutants ...............................................................66 2.9.1 GST Pulldowns............................................................................................67 2.9.1 Molecular Structrues....................................................................................68 2.10 Bibliography .................................................................................................70 Chapter 3 Genome-Wide Roles of TAF1 Functional Domains on Transcription ......78 vi 3.1 Abstract...........................................................................................................78 3.2 Introduction.....................................................................................................79 3.3 Results and Discussion ...................................................................................82 3.3.1 Mutant Design .............................................................................................82 3.3.1 Growth Phenotypes......................................................................................89 3.3.1 Subcellular Localization ..............................................................................91 3.3.1 Protein Stability ...........................................................................................94 3.3.1 Genome-wide Expression............................................................................96 3.3.1 Future Directions .........................................................................................104 3.4 Materials and Methods ...................................................................................105 3.4.1 Plasmids.......................................................................................................105 3.4.1 FHT-TAF1 mutant strains ...........................................................................106 3.4.1.1 Haploids .....................................................................................107 3.4.1 PCR..............................................................................................................108 3.4.1 Cell Growth/Lethality/Dominant Toxicity Assays......................................111 3.4.1 Galactose Shutoff.........................................................................................111 3.4.1 Immunofluorsecence....................................................................................112 3.4.1 Western Blotting..........................................................................................113 3.4.1 Galactose Additiong Timing........................................................................113 3.4.1 Microarray Analysis ....................................................................................114 3.5 Bibliography ...................................................................................................116 Chapter 4 Genome-wide Analysis of Functional Domains of Yeast Transcription Factor MOT1 ........................................................................................................121
Recommended publications
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Characterization of Genomic Copy Number Variation in Mus Musculus Associated with the Germline of Inbred and Wild Mouse Populations, Normal Development, and Cancer
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-18-2019 2:00 PM Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer Maja Milojevic The University of Western Ontario Supervisor Hill, Kathleen A. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Maja Milojevic 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Genetics and Genomics Commons Recommended Citation Milojevic, Maja, "Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer" (2019). Electronic Thesis and Dissertation Repository. 6146. https://ir.lib.uwo.ca/etd/6146 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Mus musculus is a human commensal species and an important model of human development and disease with a need for approaches to determine the contribution of copy number variants (CNVs) to genetic variation in laboratory and wild mice, and arising with normal mouse development and disease. Here, the Mouse Diversity Genotyping array (MDGA)-approach to CNV detection is developed to characterize CNV differences between laboratory and wild mice, between multiple normal tissues of the same mouse, and between primary mammary gland tumours and metastatic lung tissue.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Taenia Solium TAF6 and TAF9 Binds to a Putative Downstream Promoter Element
    bioRxiv preprint doi: https://doi.org/10.1101/106997; this version posted February 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taenia solium TAF6 and TAF9 binds to a putative Downstream Promoter Element present in TsTBP1 gene core promoter. Oscar Rodríguez-Lima1, #a, Ponciano García-Gutierrez2, Lucía Jimenez1, Angel Zarain-Herzberg3, Roberto Lazarini4 and Abraham Landa1*. 1Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México. 2Departamento de Química, Universidad Autónoma Metropolitana–Iztapalapa. Ciudad de México, México. 3Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México. 4Departamento de Biología Experimental, Universidad Autónoma Metropolitana– Iztapalapa. Ciudad de México, México. #a Current address: Center for Integrative Genomics, Lausanne University, Lausanne, Switzerland. *Corresponding author: Abraham Landa, Ph.D. Universidad Nacional Autónoma de México. Departamento de Microbiología y Parasitología, Facultad de Medicina Edificio A 2do piso. Ciudad Universitaria. CDMX 04510, México Phone: (52 55) 56-23-23-57, Fax: (52 55) 56-23-23-82, Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/106997; this version posted February 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • The Function of TAF10 Proteins in Drosophila Melanogaster
    The function of dTAF10 proteins in Drosophila melanogaster Zoltán Gábor Páhi Ph.D. thesis summary Supervisors: Imre Miklós Boros Ph.D, D.Sc. Head of the Department Tibor Pankotai Ph.D. Assistant Professor Ph.D. School of Biology University of Szeged Faculty of Science and Informatics Department of Biochemistry and Molecular Biology Szeged 2017 1. Introduction As a first step of eukaryotic transcription initiation, the general transcription factor TFIID binds to the promoter region of transcribed genes. TFIID is a multiprotein complex consisting of TBP, which binds to the TATA box region, and several TAF proteins, which associate with TBP. TFIID is evolutionary well- conserved in human and Drosophila cells and it consists of double copies of five TAFs (TAF4, TAF5, TAF6, TAF9 and TAF12), which together create a two-fold symmetric structure. Then TAF8-TAF10 heterodimer joins to this complex and induces conformational changes by abolishing the two-fold symmetry. Further peripheral TAF proteins and TBP bind to the 7 TAF containing TFIID core, forming the functional complex. TAF proteins, however are parts not only the TBP, but the histone acetyl transferase (HAT) SAGA complex, as well. Drosophila dSAGA acetylates histone proteins by transferring acetyl groups from acetyl-coenzyme A to lysine side chains. The HAT enzyme of dSAGA is dGCN5, which on the other hand is also present in another histone acetyltransferase complex as well, that is designated as dATAC in Drosophila. Curiously, while dSAGA and dATAC complexes have very similar HAT modules, in which they share common subunits, such as dGCN5, dSGF29 and dADA3, they regulate different 1 biological processes.
    [Show full text]
  • Molecular Structure of Promoter-Bound Yeast TFIID
    ARTICLE DOI: 10.1038/s41467-018-07096-y OPEN Molecular structure of promoter-bound yeast TFIID Olga Kolesnikova 1,2,3,4, Adam Ben-Shem1,2,3,4, Jie Luo5, Jeff Ranish 5, Patrick Schultz 1,2,3,4 & Gabor Papai 1,2,3,4 Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP- associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolu- 1234567890():,; tion better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. 1 Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France. 2 Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France. 3 Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France. 4 Université de Strasbourg, Illkirch 67404, France. 5 Institute for Systems Biology, Seattle, WA 98109, USA. These authors contributed equally: Olga Kolesnikova, Adam Ben-Shem. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) or to G.P.
    [Show full text]
  • High-Resolution Structure of TBP with TAF1 Reveals Anchoring Patterns in Transcriptional Regulation
    ARTICLES High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation Madhanagopal Anandapadamanaban1, Cecilia Andresen1,6, Sara Helander1,6, Yoshifumi Ohyama2, Marina I Siponen3,5, Patrik Lundström1, Tetsuro Kokubo2, Mitsuhiko Ikura4, Martin Moche3 & Maria Sunnerhagen1 The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP’s concave DNA- binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation. Initiation of eukaryotic gene transcription at a core promoter requires DNA binding and recruitment of the transcriptional machinery13. the assembly of a preinitiation complex (PIC). These complexes are However, although the DNA anchoring in this model is well estab- biologically dynamic assemblies, and their composition can be altered lished12, recruiting activation-domain complexes have been charac- during development and thereby drive cell-specific programs of tran- terized only at low resolution14–17. Furthermore, although TBP has scription1,2.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Supplementary Methods
    Weake2009 Supplemental Methods 1 Supplemental methods Preparation of soluble nuclear extracts, affinity purification and MudPIT analysis Nuclear extracts were prepared and affinity purifications conducted from 4 L of S2 cells grown to a density of 1 x 107cells/mL in Hyclone SFX media with low/no copper induction. Cells were collected by centrifugation at 5000 rpm 15 min 4ºC and washed in Wash Buffer (10 mM HEPEs [Na+], pH 7.5; 140 mM NaCl). Cells were resuspended in + 40mL of Buffer I (15 mM HEPEs [Na ] pH 7.5; 10 mM KCl, 5 mM MgCl2; 0.1 mM EDTA; 0.5 mM EGTA; 350 mM sucrose; supplemented with 20 g/mL leupeptin, 20 g/mL pepstatin and 100 M PMSF) and disrupted by 40 strokes in a Dounce homogenizer with the loose pestle. Nuclei were collected by centrifugation at 10,400 x g 15 min 4ºC and washed once with 40 mL of Buffer I. The soluble nuclear fraction was isolated by resuspending nuclei in 20 mL of Extraction Buffer (20 mM HEPEs [Na+], pH 7.5; 10% glycerol; 350 mM NaCl; 1 mM MgCl2; 0.1% TritonX-100; supplemented with 20 g/mL leupeptin, 20 g/mL pepstatin and 100 M PMSF) for 1 h 4ºC with rotation, followed by centrifugation to pellet the insoluble chromatin fraction at 18,000 x g 10 min 4ºC. The soluble nuclear extract was cleared by centrifugation at 40,000 rpm 1.5 h 4ºC. Nuclear extracts were diluted to a final salt concentration of 300 mM NaCl and incubated with FLAG-agarose.
    [Show full text]
  • Revealing Transcription Factor and Histone Modification Co-Localization and Dynamics Across Cell Lines by Integrating Chip-Seq A
    Zhang et al. BMC Genomics 2018, 19(Suppl 10):914 https://doi.org/10.1186/s12864-018-5278-5 RESEARCH Open Access Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data Lirong Zhang1*, Gaogao Xue1, Junjie Liu1, Qianzhong Li1* and Yong Wang2,3,4* From 29th International Conference on Genome Informatics Yunnan, China. 3-5 December 2018 Abstract Background: Interactions among transcription factors (TFs) and histone modifications (HMs) play an important role in the precise regulation of gene expression. The context specificity of those interactions and further its dynamics in normal and disease remains largely unknown. Recent development in genomics technology enables transcription profiling by RNA-seq and protein’s binding profiling by ChIP-seq. Integrative analysis of the two types of data allows us to investigate TFs and HMs interactions both from the genome co-localization and downstream target gene expression. Results: We propose a integrative pipeline to explore the co-localization of 55 TFs and 11 HMs and its dynamics in human GM12878 and K562 by matched ChIP-seq and RNA-seq data from ENCODE. We classify TFs and HMs into three types based on their binding enrichment around transcription start site (TSS). Then a set of statistical indexes are proposed to characterize the TF-TF and TF-HM co-localizations. We found that Rad21, SMC3, and CTCF co-localized across five cell lines. High resolution Hi-C data in GM12878 shows that they associate most of the Hi-C peak loci with a specific CTCF-motif “anchor” and supports that CTCF, SMC3, and RAD2 co-localization serves important role in 3D chromatin structure.
    [Show full text]
  • Pathway Analysis of Breast, Colorectal, Pancreatic Cancers and Glioblastoma
    Pathway analysis ofbreast, colorectal, pancreatic cancers and glioblastoma Dongyan Song Degree project inbiology, Bachelor ofscience, 2009 Examensarbete ibiologi 30 hp tillkandidatexamen, 2009 Biology Education Centre, Uppsala University and Department ofGenetics and Pathology Supervisor: Tobias Sjöblom Pathway analysis of breast, colorectal, pancreatic cancers and glioblastoma Summary Cancer is a genetic disease, and due to the multi-step progression, mutated genes accumulate in genome, leading to a gene spectrum with a few frequently mutated genes and a bunch of infrequently mutated genes. Because of the complexity of mutation profile in gene level, this study tries to analyze cancer mutations in a pathway level, implemented as clusters in this case. Initial attempts used phylogenetic analysis, which gave a result that breast and colorectal cancers cannot be distinguished from each other only by information of mutated genes but pancreatic cancers and glioblastoma formed a cluster distinguishing with patients with pancreatic cancer or glioblastoma. Thus, to some extent, the pattern of mutated genes can distinguish different cancers or different patients with same cancer type, but the results are not clear enough to give a conclusion. So, I implemented network methodology to study mutational pathway patterns in breast, colorectal, pancreatic cancers and glioblastoma. The initial network was constructed based on gene-gene interaction pairs identified from literature mining and the STRING database. PubMed IDs were retrieved with Entrez Gene IDs as queries, and via checking the overlap of PubMed IDs, 135,863,922 potential gene-gene interaction pairs were found. Negative logarithms of co-occurrence probabilities were calculated and the number of pairs was reduced by setting the significance level at 99.7% in the Poisson distribution.
    [Show full text]