Le Homard Européen Homarus Gammarus (Linnaeus, 1758)

Total Page:16

File Type:pdf, Size:1020Kb

Le Homard Européen Homarus Gammarus (Linnaeus, 1758) Le homard européen Homarus gammarus (Linnaeus, 1758) Citation de cette fiche : Pere A., Noël P., 2017. Le homard européen Homarus gammarus (Linnaeus, 1758). in Muséum national d'Histoire naturelle [Ed.], 11 février 2017. Inventaire national du Patrimoine naturel, pp. 1-25, site web http://inpn.mnhn.fr Contact des auteurs : Anthony Pere, chercheur indépendant ; e-mail [email protected] ; Pierre Noël, UMS 2006 "Patrimoine naturel", Muséum national d'Histoire naturelle, 43 rue Buffon (CP 48), 75005 Paris ; e-mail [email protected] Résumé. Le homard européen mesure souvent 25 à 50 cm ; il peut atteindre 60 cm et un poids de 12 kg. Les pinces des gros individus sont énormes. Le jeune est bleu clair et l'adulte est bleu foncé à noir ; il devient rouge à la cuisson. L’accouplement intervient après la mue de la femelle. La fécondation a lieu au moment de la ponte. Le nombre d'œufs varie de 5 000 à 50 000 selon la taille de la femelle. L'éclosion se tient en mai-juin. Il y a trois stades larvaires planctoniques et un stade postlarvaire. La croissance se fait au moment de la mue. La longévité du homard est de plusieurs dizaines d'années. Le homard est assez agressif ; il a une alimentation variée : algues, hydraires, mollusques, vers, échinodermes et parfois crustacés et poissons. Il reste la journée dans son abri et sort la nuit pour chercher sa nourriture. Il est parasité par divers organismes (protozoaires, copépodes, annélides) et est atteint par des bactéries et des mycoses. Il est associé à plusieurs espèces (amphipodes, gastéropodes, annélides) et vit en compagnie du congre et de crevettes. Le homard adulte a peu de prédateurs ; les jeunes peuvent être la proie de céphalopodes, crustacés, poissons et mammifères marins. Il vit sur des fonds rocheux jusqu'à 60 m, rarement davantage. On le rencontre dans l'Atlantique nord de la Norvège au Maroc, en Méditerranée, et en Mer Noire où il est rare. Pêché principalement au casier (pêche réglementée), cette espèce patrimoniale s'est raréfiée en raison de sa surexploitation. Des tentatives d'élevage n'ont pas été couronnées de succès. Figure 1. Aspect général vue dorsale. Photo © Michel Le Quément. Figure 2. Carte de distribution en France métropolitaine. © P. Noël [Ploubazlanec, Pointe de l'Arcouest, 2011]. INPN-MNHN 2017. Classification : Phylum Arthropoda Latreille, 1829 > Sub-phylum Crustacea Brünnich, 1772 > Super-classe Multicrustacea Regier, Shultz, Zwick, Hussey, Ball, Wetzer, Martin & Cunningham, 2010 > Classe Malacostraca Latreille, 1802 > Sous-classe Eumalacostraca Grobben, 1892 > Super- ordre Eucarida Calman, 1904 > Ordre Decapoda Latreille, 1802 > Sous-ordre Pleocyemata Burkenroad, 1963 > Super-famille Nephropoidea Dana, 1852 > Famille Nephropidae Dana, 1852 > Genre Homarus Weber, 1795. Synonymes (Zariquiey Álvarez 1968 ; GBIF 2016 ; INPN 2017 ; Noms vernaculaires: ITIS 2016 ; WoRMS 2016): Homard, homard européen (Bertran 1984), homard vulgaire Cancer gammarus Linnaeus, 1758, p. 631 (basionyme) Astacus marinus Fabricius, 1798, p. 406 (Gadeau de Kerville 1894). Homarus vulgaris H. Milne Edwards, 1837, p. 334 ; Heller, 1863, p. Le cardinal des mers (Le Fevere 1965) ; 219 ; Nobre, 1936, p. 151 ; Bouvier, 1940, p. 56 ; Zariquiey criquet [jeune individu] (Carbonne 2009 ; Collectif 2010) ; legrest Álvarez, 1946, p. 96, pl. 2. (Carbonne 2009) ; lingoumbeau (Carbonne 2009) ; liangaou Homarus gammarus Herrick, 1911, p. 160 ; ZA, 1968, p. 199. (Carbonne 2009) ; lorman (Carbonne 2009) ; mollet [individu venant de muer] (Blavet 1998). N° des bases de données : GBIF ID : 5972003 ; INPN Cd_Nom : 18427 ; ITIS : 97315 ; IUCN 169955; WoRMS AphiaID : 107253. Principaux noms étrangers : Anglais: European lobster (Mantiri & al. 1995). Allemand: Europäischer Hummer. Italien: Astice, lupicante. Néerlandais, flamand : kreeft (Holthuis & al. 1986). Espagnol: Bogavante, lubricante, abricanto, llangant, homar, langosta (Zariquiey Álvarez 1968). Portugais : lagoszim (Azevedo 1999). Catalan : Llamàntol europeu. Russe: Obyknovennyi (yevropeiskii) omar Etymologie : Homarus : vient du danois [hommer] ou de l'allemand [Hummer] ; gammarus : vient du latin [gammarus] ou [cammarus] = nom d'un crustacé indéterminé, crevette, écrevisse (Sohier & al. 2007). Description (Figure 1). Les plus grands exemplaires de Homarus gammarus sont des mâles qui atteignent une taille respectable de 60 cm (Wolff 1978) (la taille de 80 cm donnée par Maître-Allain 1997 correspond sans doute à une mesure "hors- tout" avec les pinces) et un poids de 12 kg (Noël 1985) et même de 13 à 18 kg (Carbonne 2009), mais en général la taille des spécimens pêchés est de 25 à 50 cm. La carapace est lisse, le rostre est bien développé et pointu. Les trois pattes antérieures portent une pince (chélipèdes), les deux autres sont terminées par une griffe. Les premiers chélipèdes sont énormes, surtout chez les mâles adultes et se terminent par de fortes pinces, légèrement asymétriques : une des pinces est plus large et munie de dents irrégulières sur ses bords coupants (pince broyeuse), l’autre est plus mince et armée d’une rangée de dents en scie sur le bord interne du doigt fixe (pince coupante). Si la grosse pince est amputée, une petite pince est régénérée à sa place, alors que la petite pince non amputée évolue en grosse pince. Ainsi, il n'y a pas de latéralisation, c'est à dire un côté préférentiel pour la grosse pince. L’abdomen et la rame caudale sont robustes. Les juvéniles ont le corps bleu clair avec des marques blanches et les appendices blancs (Sohier & al. 2016). Chez l'adulte, la couleur générale du corps est bleu foncé et marbré, les extrémités des pattes sont blanchâtres, les flagelles des antennules et des antennes sont orange (Zariquiey Álvarez 1968). Les zones de couleur bleue sur l'animal vivant deviennent rouges pendant la cuisson. Les couleurs du homard sont dues à des caroténoprotéines (pigments caroténoïdes complexés à des protéines), principalement la crustacyanine dont le pigment est une xanthophylle, l'astaxanthine (Ceccaldi & Allemand 1964 ; Clarke & al. 1990 ; Mantiri & al. 1995). Ce complexe moléculaire décale la longueur d'onde d'absorption de la lumière qui passe de 472 nm pour le caroténoïde simple à 632 nm pour la caroténoprotéine. La cuisson, en coagulant la protéine de la crustacyanine, libère de l'astaxanthine et lui rend sa couleur rouge. La couleur des œufs est due à des pigments encore plus complexes et de poids moléculaire très élevé, à savoir des lipo-glyco-caroténo-protéines (Sohier & al. 2016). Figure 3. Homard en vue dorsale ; noter la pince droite coupante et la pince gauche broyeuse. Photo © Anthony Pere. Risques de confusion, espèces voisines, variations infra-spécifiques. L’espèce la plus proche du homard européen est le homard américain Homarus americanus Milne Edwards, 1837 de la côte est des Etats-Unis et du Canada. Cette dernière se distingue du homard européen par des caractéristiques peu marquées et variables ; le critère le plus net est la présence chez l'espèce américaine d'une dent sous le rostre. La coloration serait davantage vert foncé (orange sur la face ventrale), et les pinces seraient plus larges et plus plates chez le homard américain (Hedgecock & al. 1977). Notons que les deux espèces peuvent s'hybrider au laboratoire (Audouin & Léglise 1972 ; Carlberg & al. 1978) et que des formes morphologiques intermédiaires ou des hybrides peuvent s'observer en milieu naturel (Stebbing & al. 2012). Le "homard du Cap" autrefois nommé Homarus capensis (Herbst, 1792) et donc rattaché au genre Homarus est en fait plus proche des langoustines (Tam & Kornfield 1998) ; son nom de genre est devenu ultérieurement Homarinus (Kornfield & al. 1995). Le homard a peu évolué et s'est peu diversitifié au cours des temps géologiques ; c'est une forme panchronique, une sorte de "fossile vivant" (Glaessner 1969). Ses ancêtres du genre Palaeohomarus diffèrent peu morphologiquement ; ils remontent au Crétacé, il y a plus de 100 millions d'années (Secretan 1988). Biologie. Reproduction et cycle de vie. L’accouplement intervient juste après la mue de la femelle, lorsque la cuticule de celle-ci est encore molle. Le sperme est introduit par les appendices abdominaux du mâle modifiés en organes copulateurs dans le réceptacle séminal de la femelle et stocké dans une poche, la spermathèque. Le nombre de chromosomes est variable ; il est de 2n = 90 à 134 (Hughes 1982). La fécondation a lieu au moment de la ponte (Bloch 1935 ; Goudeau & Goudeau 1986). La femelle peut féconder ses œufs avec le même sperme pendant au moins deux années successives (Latrouite & al. 1981). Le nombre d'œufs varie entre 5 000 et 50 000 selon la taille de la femelle (Jensen 1958 ; Bertrand 1982 ; Latrouite & al. 1984 ; Fechter & al. 1987 ; Tully & al. 2001 ; Lizárraga-Cubedo & al. 2003). La fécondité varie considérablement entre les zones étudiées. Par exemple, une femelle de 1 kg produit en moyenne 13 500 œufs en Irlande (Tully & al. 2001) et 18 000 en Norvège (Agnalt 2008). Ellis & al. (2015) ont démontré l’importance des facteurs géographiques et environementaux sur la variabilité de la fécondité, et ont mis en evidence l’impact du Golf Stream comme régulateur de la production d’œufs. Les œufs mesurent entre 1,5 et 2 mm de diamètre (Zariquiey Álvarez 1968) et la taille fluctue en fonction du développement embryonnaire. Plus la taille des femelles est élevée, plus les tailles des œufs et des larves nouvellement écloses sont grandes. De même, il semblerait que la survie des larves soit plus importante chez les grosses femelles (Moland & al. 2010). Les œufs sont pondus de juillet à décembre et sont attachés sur les soies ovigères présentes sous les pléopodes (appendices abdominaux) des femelles pendant 7 à 10 mois environ selon la température ambiante en milieu naturel (Pandian 1970 ; Branford 1978 ; Moland & al. 2010). En milieu contrôlé, Branford (1978) a observé que la période d’incubation diminuait avec l’augmentation de la temperature. En effet, cette période pouvait fluctuer de 9,5 à 3,6 mois pour une temperature variant de 10,0 °C à 18,3 °C.
Recommended publications
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • 1 Amphipoda of the Northeast Pacific (Equator to Aleutians, Intertidal to Abyss): IX. Photoidea
    Amphipoda of the Northeast Pacific (Equator to Aleutians, intertidal to abyss): IX. Photoidea - a review Donald B. Cadien, LACSD 22 July 2004 (revised 21 May 2015) Preface The purpose of this review is to bring together information on all of the species reported to occur in the NEP fauna. It is not a straight path to the identification of your unknown animal. It is a resource guide to assist you in making the required identification in full knowledge of what the possibilities are. Never forget that there are other, as yet unreported species from the coverage area; some described, some new to science. The natural world is wonderfully diverse, and we have just scratched its surface. Introduction to the Photoidea Over more than a century the position of the photids has been in dispute. Their separation was recommended by Boeck (1871), a position maintained by Stebbing (1906). Others have relegated the photids to the synonymy of the isaeids, and taxa considered here as photids have been listed as members of the Family Isaeidae in most west coast literature (i.e. J. L. Barnard 1969a, Conlan 1983). J. L. Barnard further combined both families, along with the Aoridae, into an expanded Corophiidae. The cladistic examination of the corophioid amphipods by Myers and Lowry (2003) offered support to the separation of the photids from the isaeids, although the composition of the photids was not the same as viewed by Stebbing or other earlier authors. The cladistic analysis indicated the Isaeidae were a very small clade separated at superfamily level from the photids, the neomegamphopids, and the caprellids within the infraorder Caprellida.
    [Show full text]
  • Strengthening Marine Amphipod DNA Barcode Libraries for Environmental Monitoring
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.268896; this version posted October 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Strengthening marine amphipod DNA barcode libraries for environmental monitoring Chinnamani Prasannakumar1,2*, Ganesh Manikantan3, J. Vijaylaxmi4, Balakrishnan Gunalan3,5, Seerangan Manokaran6, S. R. Pugazhvendan7,8 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa-403004, India. 2Institute of Marine Microbes and Ecosphere, State Key Laboratory for Marine Environmental Sciences, Xiamen University, Xiamen, Fujian, 361102, PR China. 3Centre of Advance studies in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu- 608502, India. 4Department of Marine Sciences, Goa University, Taleigao Plateau, Goa-403206, India. 5Post Graduate and Research Department of Zoology, Thiru Kolanjiappar Government Arts College, Virudhachalam, Tamil Nadu- 606001, India. 6Center for Environment & Water, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia. 7Department of Zoology, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu- 604407, India. 8Department of Zoology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu- 608002, India. *Corresponding author’s email id: [email protected] Abstract Environmental DNA barcoding technology is gaining innovative applications. The effectiveness of current DNA barcode reference libraries in identifying amphipod barcodes and/or strengthening the existing library was tested. From 2500 amphipod individuals we barcoded 22 amphipod species belonging to 17 genera, 13 families among which 13 species were first time barcoded. More than 80 percent of the species were new distributional records.
    [Show full text]
  • BENTHOS Scottish Association for Marine Science October 2002 Authors
    DTI Strategic Environmental Assessment 2002 SEA 7 area: BENTHOS Scottish Association for Marine Science October 2002 Authors: Peter Lamont, <[email protected]> Professor John D. Gage, <[email protected]> Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, PA37 1QA http://www.sams.ac.uk 1 Definition of SEA 7 area The DTI SEA 7 area is defined in Contract No. SEA678_data-03, Section IV – Scope of Services (p31) as UTM projection Zone 30 using ED50 datum and Clarke 1866 projection. The SEA 7 area, indicated on the chart page 34 in Section IV Scope of Services, shows the SEA 7 area to include only the western part of UTM zone 30. This marine part of zone 30 includes the West Coast of Scotland from the latitude of the south tip of the Isle of Man to Cape Wrath. Most of the SEA 7 area indicated as the shaded area of the chart labelled ‘SEA 7’ lies to the west of the ‘Thunderer’ line of longitude (6°W) and includes parts of zones 27, 28 and 29. The industry- adopted convention for these zones west of the ‘Thunderer’ line is the ETRF89 datum. The authors assume that the area for which information is required is as indicated on the chart in Appendix 1 SEA678 areas, page 34, i.e. the west (marine part) of zone 30 and the shaded parts of zones 27, 28 and 29. The Irish Sea boundary between SEA 6 & 7 is taken as from Carlingford Lough to the Isle of Man, then clockwise around the Isle of Man, then north to the Scottish coast around Dumfries.
    [Show full text]
  • Irish Fisheries Investigations
    SERIES B (Marine) No. 33 1989 IRISH FISHERIES INVESTIGATIONS M. J. Costello, J. M. C. Holmes, D. McGrath and A. A. Myers A Review and Catalogue of the Amphipoda (Crustacea) in Ireland IRISH FISHERIES INVESTIGATIONS SERIES B (Marine) No. 33 1989 Roinn na Mara (Department of the Marine) A Review and Catalogue of the Amphipoda (Crustacea) in Ireland by M. J. Costello, J. M. C. Holmes, D. McGrath and A. A. Myers DUBLIN: PUBLISHED BY THE STATIONERY OFFICE TO BE PURCHASED FROM THE GOVERNMENT PUBLICATIONS SALE OFFICE, SUN ALLIANCE HOUSE MOLESWORTH STREET, DUBLIN 2 Price: £3.10 .... A Review and Catalogue of the Amphipoda (Crustacea) in Ireland by M. J. COSTELLO, Department of Zoology, University College, Cork (Present address: Environmental Sciences Unit, Trinity College, Dublin 2 J. M. C. HOLMES, National Museum of Ireland, Dublin 2 D. McGRATH, Department of Zoology, University College, Galway A. A. MYERS, Department of Zoology, University College, Cork. ABSTRACT The distribution and source of published and unpublished records of 307 marine, freshwater, terrestrial and subterranean amphipod species in Ireland are documented. A historical account of studies on amphipods in Ireland, including the researchers, frequency of publications, localities and habitats surveyed, and sampling methods, is presented. The occurrence of introduced species, commensalism, and parasitism is noted. The amphipod fauna recorded from Galway Bay, Kilkieran Bay, the Clare Island Survey, Belfast Lough, Strangford Lough, Dublin Bay, Carnsore Point, Cork Harbour, Kinsale Harbour, Lough Hyne and Valentia is discussed. The Irish and British lists are compared. Differences with the British list are largely explicable in terms of the latitudinal range of a species.
    [Show full text]
  • Official Lists and Indexes of Names and Works in Zoology
    OFFICIAL LISTS AND INDEXES OF NAMES AND WORKS IN ZOOLOGY Supplement 1986-2000 Edited by J. D. D. SMITH Copyright International Trust for Zoological Nomenclature 2001 ISBN 0 85301 007 2 Published by The International Trust for Zoological Nomenclature c/o The Natural History Museum Cromwell Road London SW7 5BD U.K. on behalf of lICZtN] The International Commission on Zoological Nomenclature 2001 STATUS OF ENTRIES ON OFFICIAL LISTS AND INDEXES OFFICIAL LISTS The status of names, nomenclatural acts and works entered in an Official List is regulated by Article 80.6 of the International Code of Zoological Nomenclature. All names on Official Lists are available and they may be used as valid, subject to the provisions of the Code and to any conditions recorded in the relevant entries on the Official List or in the rulings recorded in the Opinions or Directions which relate to those entries. However, if a name on an Official List is given a different status by an adopted Part of the List of Available Names in Zoology the status in the latter is to be taken as correct (Article 80.8). A name or nomenclatural act occurring in a work entered in the Official List of Works Approved as Available for Zoological Nomenclature is subject to the provisions of the Code, and to any limitations which may have been imposed by the Commission on the use of that work in zoological nomenclature. OFFICIAL INDEXES The status of names, nomenclatural acts and works entered in an Official Index is regulated by Article 80.7 of the Code.
    [Show full text]
  • Amphipod Newsletter 25 (2003)
    1 Amphipod Newsletter 25 Bibliography (per 31-7-2003) by Wim Vader AIKINS, S. & E. KIKUCHI 2001. Water current velocity as an environmental factor regulating the distribution of amphipod species in Gamo lagoon, Japan. -- -- Limnology 2, 185-191 (Eogammarus possjeticus and Melita setiflagella.) AKAIKE, S., A. TAKIYA, F. TSUDA, A. MOTOYA & K. TAKAHASHI 2002?. ( Seasonal occurrence of a kelp-boring amphipod, Ceinina japonica along the coasts of Hokkaido from 1997 to 2001.) ---- Scientific Reports of Hokkaido Fisheries Experimental Station (61), 25-28. (In Japanese, not seen.) ALONSO DE PINO, G.M. 2003. A new species of Phoxocephalidae and some other records of sand-burrowing Amphipoda (Crustacea) from Argentina. ---- Journal of Natural History 37, 1029-1057. (Deals with Metharpinia iado n.sp. (El Rincon, Argentina), Microphoxus cornutus, , Fuegiphoxus fuegiensis, and Ipanema talpa.) ANDRES, H. G. & A. BRANDT 2001. Lepechinellid genera Paralepechinella Pirlot, 1933 and Lepechinelloides Thurston, 1980: first records from Antarctica (Crustacea: Amphipoda). ---- Mitteilingen aus dem Hamburgischen Zoologischen Museum und Institut 98, 77-97. (The family Lepechinellidae is maintained. Lepechinelloides weddellensis n.sp. (from 73*24'S, 22*09'W, c. 2000m), and Paralepechinella occultolongicornis n.sp. (from 73*27'S, 22*46'W, 1645m).) ANDRES, H. G., A.-N. LÖRZ & A. BRANDT 2002. A common, but undescribed huge species of Eusirus Krøyer, 1845 (Crustacea, Amphipoda, Eusiridae) from Antarctica. ---- Mitteilungen aus dem Hamburgischen Museum und Institut 99, 109-126. (Eusirus giganteus n.sp., up to 82 mm long, from off King George Isl., S.Shetlands. E. perdentatus is redescribed and a key to Antarctic Eusirus presented.) APPADOO, Ch. & A.A. MYERS 2003.
    [Show full text]
  • NEAT*Crustacea
    1 NEAT (North East Atlantic Taxa): Calantica Gray,1825 C. (Scillaelepas Seguenza,1876) gemma C.W. Aurivillius,1894 South Scandinavian marine CRUSTACEA Check-List off W Iceland compiled at TMBL (Tjärnö Marine Biological Laboratory) by: Scalpellinae Pilsbry,1916 Hans G. Hansson 1990-02-18 / small revisions until April 1996, when it for the 2:nd time was published on Internet, and again after some revisions August 1998. Scalpellum Leach,1818 Citation suggested: Hansson, H.G. (Comp.), 1998. NEAT (North East Atlantic Taxa): South Scandinavian marine S. (Strictoscalpellum Broch,1924) scalpellum (Linnaeus,1767) Crustacea Check-List. Internet pdf Ed., Aug. 1998. [http://www.tmbl.gu.se]. Öresund-Bohuslän-N Norway-Norw. Sea-Faeroes-Br. Isles-W Africa-Mediterranean Denotations: (™) = Genotype @ = Associated to * = General note S. (Strictoscalpellum) stroemi M. Sars,1859 Bohuslän-N Norway-Barents Sea-Spitsbergen-Iceland-Greenland-Faeroes-Shetlands N.B.: This is one of several preliminary check-lists, covering S. Scandinavian marine animal (and partly marine S. (Strictoscalpellum) nymphocola Hoek,1883 protoctist) taxa. Some financial support from (or via) NKMB (Nordiskt Kollegium för Marin Biologi), during the last Shetlands-Norw. Sea-E Greenland-Spitsbergen & Arctic Seas years of the existence of this organisation (until 1993), is thankfully acknowledged. The primary purpose of these checklists is to facilitate for everyone, trying to identify organisms from the area, to know which species that earlier S. (Strictoscalpellum) cornutum G.O. Sars,1879 have been encountered there, or in neighbouring areas. A secondary purpose is to facilitate for non-experts to find as Faeroes-Norw. Sea-Spitsbergen & Arctic Seas correct names as possible for organisms, including names of authors and years of description.
    [Show full text]
  • National Strategy for Preventing and Mitigating the Impact of Invasive Alien Species (IAS) in the Maltese Islands
    National Strategy For Preventing and Mitigating the Impact of Invasive Alien Species (IAS) in the Maltese Islands Technical document 2020 Front page photos Carpobrotus spp. - Hottentot figs More information on Invasive Alien Species is available atera.org.mt ©ERA, 2020 Reuse is authorised provided the source is acknowledged. Bibliographical reference: ERA, 2020. National Strategy for Preventing and Mitigating the Impact of Invasive Alien Species (IAS) in the Maltese Islands (Technical Document). Environment & Resources Authority, Malta, 176pp. For any use or reproduction of photos or other material that is not under the ERA copyright, permission must be sought directly from the copyright holders. ISBN: 978-99957-1-675-2 : National strategy for preventing and mitigating the impact of Invasive Alien Species (IAS) in the Maltese Islands : technical document - 2020 FOREWORD As Minister for the Environment, Climate Change, and Planning, it gives me great pleasure to endorse Malta’s National Strategy for Preventing and Mitigating the Impact of Invasive Alien Species (IAS) in the Maltese Islands. IAS are among the main drivers of biodiversity loss, globally and, in Malta having an impact on the terrestrial environment both in rural and urban areas, and in the marine realm. Malta, as an island State, is particularly susceptible to non-native species, which are highly problematic in terms of causing degradation of our ecosystems and their naturally occurring processes. Over the years, several alien species have been introduced into the Maltese Islands either deliberately for specific purposes (e.g. food production, pet trade and horticulture) or accidentally. The presence of alien species in new locations is not always a cause for concern, however, some can become invasive and have serious adverse impacts on the environment, society and the economy.
    [Show full text]
  • Strengthening Marine Amphipod DNA Barcode Libraries for Environmental Monitoring
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.26.268896; this version posted August 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Strengthening marine amphipod DNA barcode libraries for environmental monitoring Chinnamani Prasannakumar1*, Ganesh Manikantan2, J. Vijaylaxmi3, Balakrishnan Gunalan2,4, Seerangan Manokaran5 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa-403004, India. 2Centre of Advance studies in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu- 608502, India. 3Department of Marine Sciences, Goa University, Taleigao Plateau, Goa-403206, India. 4Post Graduate and Research Department of Zoology, Thiru Kolanjiappar Government Arts College, Virudhachalam, Tamil Nadu- 606001 5Center for Environment & Water, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia. *Correspong author’s email id: [email protected] Abstract Environmental DNA (eDNA) barcoding technology is finding innovative applications in monitoring terrestrial and marine biodiversity. DNA barcode reference libraries containing barcodes for wide range of species is vital for the success of monitoring any environments using eDNA barcodes. Since amphipods are used as bio-indicators for monitoring environmental quality and its health, we used DNA barcodes of amphipods to test the efficacy of present DNA libraries for species identification. We barcoded 22 amphipod species belonging to 17 genera of 13 families. 50% of barcodes produced in the present study was generated for the first time, as the sequences were absent in GenBank and Barcode of Life Databases (BOLD).
    [Show full text]
  • Soft-Sediment Crustacean Diversity and Distribution Along The
    Soft-sediment crustacean diversity and distribution along the Portuguese continental shelf Leandro Sampaio, Renato Mamede, Fernando Ricardo, Luisa Magalhaes, Helder Rocha, Roberto Martins, Jean-Claude Dauvin, Ana Maria Rodrigues, Victor Quintino To cite this version: Leandro Sampaio, Renato Mamede, Fernando Ricardo, Luisa Magalhaes, Helder Rocha, et al.. Soft- sediment crustacean diversity and distribution along the Portuguese continental shelf. Journal of Marine Systems, Elsevier, 2016, 163, pp.43 - 60. 10.1016/j.jmarsys.2016.06.011. hal-01537650 HAL Id: hal-01537650 https://hal.archives-ouvertes.fr/hal-01537650 Submitted on 12 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Marine Systems 163 (2016) 43–60 Contents lists available at ScienceDirect Journal of Marine Systems journal homepage: www.elsevier.com/locate/jmarsys Soft-sediment crustacean diversity and distribution along the Portuguese continental shelf Leandro Sampaio a, Renato Mamede a, Fernando Ricardo a, Luísa Magalhães a, Hélder Rocha a, Roberto Martins a, Jean-Claude
    [Show full text]
  • ORDER AMPHIPODA (Malacostraca, Crustacea) of KUWAIT
    FIELD GUIDE OF ORDER AMPHIPODA (Malacostraca, Crustacea) OF KUWAIT Faiza Y Al-Yamani Manal Al-Kandari Igor Polikarpov and Vladimir Grintsov - Kuwait - 2019 FIELD GUIDE OF ORDER AMPHIPODA (Malacostraca, Crustacea) OF KUWAIT 3 KUWAIT INSTITUTE FOR SCIENTIFIC RESEARCH FIELD GUIDE OF ORDER AMPHIPODA (Malacostraca, Crustacea) OF KUWAIT Faiza Y. Al-Yamani, Manal Al-Kandari, and Igor Polikarpov Ecosystem Based Management of Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research and Vladimir Grintsov The A.O. Kovalevsky Institute of Marine Biological Research of RAS Sevastopol 2019 FILED GUIDE OF ORDER AMPHIPODA (Malacostraca, Crustacea) Published in Kuwait in 2019 by Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait Copyright © Kuwait Institute for Scientific Research, 2019 All rights reserved Design by Mariposa Marketing & Advertising Creative Director: Melad Helani First Edition Kuwait Institute for Scientific Research (Publisher) ISBN 978-99966-95-07-0 No part of this work may be reproduced or utilized in any form or by any means electronic or manual, including photocopying, recording or by any information or retrieval system, without the prior written permission of the Kuwait Institute for Scientific Research. 2 FIELD GUIDE OF ORDER AMPHIPODA (Malacostraca, Crustacea) OF KUWAIT KUWAIT INSTITUTE FOR SCIENTIFIC RESEARCH Table of Contents PREFACE 6 ACKNOWLEDGEMENTS 8 ABSTRACT 10 INTRODUCTION 12 MATERIALS AND METHODS 14 Sampling 14 Intertidal zone 20 Hard substrates 20 Soft substrates 20 Algae and Sponges as Habitats for Amphipoda 22 Artificial constructions (Floating Piers) 22 Work with Samples in the Laboratory 22 Typical Habitats of Amphipoda on Intertidal Zone of the Kuwait Coast 23 MORPHOLOGY OF AMPHIPODS 33 GLOSSARY 36 LIST OF ABBREVIATIOS 39 COORDINATES OF INTERTIDAL SURVEY LOCATIONS 40 COORDINATES OF SUBTIDAL SURVEY LOCATIONS 47 TAXONOMY OF AMPHIPODA IN KUWAIT 50 Family Ampeliscidae 50 Ampelisca euroa Lowry & Poore, 1985 50 Ampelisca sp.
    [Show full text]