Co-Occurrence Patterns in Aquatic Bacterial Communities Across

Total Page:16

File Type:pdf, Size:1020Kb

Co-Occurrence Patterns in Aquatic Bacterial Communities Across Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 12, 10233–10269, 2015 www.biogeosciences-discuss.net/12/10233/2015/ doi:10.5194/bgd-12-10233-2015 BGD © Author(s) 2015. CC Attribution 3.0 License. 12, 10233–10269, 2015 This discussion paper is/has been under review for the journal Biogeosciences (BG). Co-occurrence Please refer to the corresponding final paper in BG if available. patterns in aquatic bacterial Co-occurrence patterns in aquatic communities bacterial communities across changing J. Comte et al. permafrost landscapes Title Page 1,2 1,2,3 1,2 1 J. Comte , C. Lovejoy , S. Crevecoeur , and W. F. Vincent Abstract Introduction 1Centre d’études nordiques (CEN), Takuvik Joint International Laboratory and Département Conclusions References de biologie, Université Laval, Québec, QC G1V 0A6, Canada Tables Figures 2Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada 3Québec Océan, Université Laval, Québec, QC G1V 0A6, Canada J I Received: 09 June 2015 – Accepted: 16 June 2015 – Published: 08 July 2015 J I Correspondence to: J. Comte ([email protected]) Back Close Published by Copernicus Publications on behalf of the European Geosciences Union. Full Screen / Esc Printer-friendly Version Interactive Discussion 10233 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their mi- 12, 10233–10269, 2015 crobial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow 5 rock-basin lakes that are located in distinct valleys along a North–South permafrost Co-occurrence degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene patterns in aquatic to determine co-occurrence patterns among bacterial taxa, and then analyzed these bacterial results relative to environmental variables to identify factors controlling bacterial com- communities munity structure. Network analysis was applied to identify possible ecological linkages 10 among the bacterial taxa and with abiotic and biotic variables. The results showed an J. Comte et al. overall high level of shared taxa among bacterial communities within each valley, how- ever the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the Title Page different valleys that were statistically related to dissolved organic carbon concentra- Abstract Introduction 15 tion, conductivity and phytoplankton biomass. Co-occurrence networks revealed com- plex interdependencies within the bacterioplankton communities and showed contrast- Conclusions References ing linkages to environmental conditions among the main bacterial phyla. The thaw Tables Figures pond networks were composed of a limited number of highly connected taxa. This “small world network” property would render the communities more robust to environ- J I 20 mental change but vulnerable to the loss of microbial keystone species. J I 1 Introduction Back Close Full Screen / Esc Permafrost is widespread in Arctic and boreal regions (Schuur et al., 2008) and con- tains ca. 1700 Pg of organic carbon (McGuire et al., 2009; Tarnocai et al., 2009). Per- Printer-friendly Version mafrost thawing and erosion is evident by the northward retreat of the permafrost Interactive Discussion 25 boundary (Thibault and Payette, 2009). In some northern regions this has led to the expansion of permafrost thaw ponds and lakes (thermokarst systems; Grosse et al., 10234 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | 2013), whereas in other regions there has been a contraction and loss of these wa- terbodies (e.g., Andresen and Lougheed, 2015). These thermokarst systems are part BGD of circumpolar and global biogeochemical cycles (Abnizova et al., 2012; Walter et al., 12, 10233–10269, 2015 2007). Although some are carbon sinks (Walter Anthony et al., 2014), others are net 5 sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere due to the mo- bilization of ancient carbon stored in permafrost (Laurion et al., 2010; Negandhi et al., Co-occurrence 2013; Walter et al., 2008). patterns in aquatic Bacterial communities are among the main drivers of key biogeochemical processes bacterial (Ducklow, 2008), and in thermokarst systems are composed of functionally diverse taxa communities 10 (Crevecoeur et al., 2015; Rossi et al., 2013). In particular, these systems are favorable for bacterial methanotrophs (Crevecoeur et al., 2015) as well as archaeal methanogens J. Comte et al. (Mondav et al., 2014), and the relative activity of these two groups will affect methane balance and the net emission of greenhouse gases. Identifying factors that shape bac- Title Page terial communities in these aquatic systems is therefore essential for understanding the 15 functional significance of these permafrost thaw systems in the global carbon budget. Abstract Introduction Aquatic bacterial communities are thought to be selected by a combination of bottom- Conclusions References up (resource availability) and top-down (viral lysis, grazing) controls. Less studied are bacteria-bacteria interactions (facilitation, competition), which may further contribute to Tables Figures non-random distributions observed among microbial taxa (e.g., Horner-Devine et al., 20 2007). Examining co-occurrence patterns has the potential to unveil ecological pro- J I cesses that structure bacterial communities. Specifically, patterns of co-occurrence may reveal to what extent groups of microbes share habitat preferences, to what ex- J I tent there may be ecological linkages among bacterial taxa and with other planktonic Back Close organisms, and the extent of phylogenetic closeness of co-occurring bacterial taxa. Full Screen / Esc 25 Across northern landscapes, both regional (e.g., climate and the degradation state of permafrost) and local (e.g., nutrients, dissolved organic carbon and oxygen) condi- Printer-friendly Version tions are likely to influence the distribution and bacterial community composition of thaw ponds and lakes. Thaw ponds and lakes show a high degree of limnological Interactive Discussion (Deshpande et al., 2015) and bacterial heterogeneity (Crevecoeur et al., 2015), making 10235 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | them suitable models to investigate the co-occurrence patterns among bacterial taxa as well their network relationships within microbial consortia. The main objectives of BGD this study were to characterize the ecological linkages within microbial communities as 12, 10233–10269, 2015 a response to permafrost thawing. Our hypotheses were that (i) bacterial communities 5 follow co-occurrence patterns along the permafrost degradation gradient, due to dis- tinct habitat preferences among bacteria, and (ii) these habitat preferences relate to Co-occurrence differences in the phylogenetic structure of bacterial communities. patterns in aquatic To test the above hypotheses, we employed high-throughput sequencing of the 16S bacterial rRNA gene to determine the composition of bacterial communities in thaw ponds and communities 10 lakes of Nunavik (Quebec, Canada) along a North–South permafrost degradation gra- dient. In addition, we sampled rock-basin lakes that were under the same regional J. Comte et al. climate but whose formation was not related to climate change. We investigated the relationships among bacterial taxa and local environmental conditions by means of Title Page network analysis, which has been applied with success elsewhere to evaluate micro- 15 bial distribution patterns (Barberan et al., 2012; Peura et al., 2015; Steele et al., 2011) Abstract Introduction and responses to environmental perturbation (Araújo et al., 2011). We then examined Conclusions References the potential linkages between the bacteria and phytoplankton, autotrophic picoplank- ton and zooplankton biomass in the ponds. Tables Figures J I 2 Methods J I 20 2.1 Study sites and sampling Back Close Surface water from 29 thermokarst ponds was collected from 1 to 13 August 2012 Full Screen / Esc in two types of permafrost landscapes. Thaw ponds were located in the vicinity ◦ 0 ◦ 0 of Whapmagoostui–Kuujjuarapik (W–K: lat. 55 15 N, long. 77 45 W) and Umiujaq Printer-friendly Version (lat. 56◦320 N, long. 76◦330 W), within four valleys in the eastern Canadian subarctic, Interactive Discussion 25 Nunavik: the Sasapimakwananisikw River valley (SAS) and the Kwakwatanikapistikw River valley (KWK), in sporadic, highly degraded permafrost landscapes (< 10 % per- 10236 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | mafrost coverage; see Bhiry et al., 2011 for details); and the Sheldrake River valley (BGR) and Nastapoka River valley (NAS) that are in discontinuous permafrost land- BGD scapes (10–50 % permafrost coverage). In addition, we sampled 5 rock-basin lakes as 12, 10233–10269, 2015 “reference lakes” (RBL) in catchments near the W–K village as a fifth “valley”; these 5 waters occupy glacially scoured basins, and their origin is not related to permafrost degradation. Co-occurrence At each site, temperature, conductivity, dissolved oxygen and pH were measured us- patterns in aquatic ing a 600R multiparametric probe (YSI, Yellow Springs, OH, USA). Water for dissolved bacterial
Recommended publications
  • Table S1. Bacterial Otus from 16S Rrna
    Table S1. Bacterial OTUs from 16S rRNA sequencing analysis including only taxa which were identified to genus level (those OTUs identified as Ambiguous taxa, uncultured bacteria or without genus-level identifications were omitted). OTUs with only a single representative across all samples were also omitted. Taxa are listed from most to least abundant. Pitcher Plant Sample Class Order Family Genus CB1p1 CB1p2 CB1p3 CB1p4 CB5p234 Sp3p2 Sp3p4 Sp3p5 Sp5p23 Sp9p234 sum Gammaproteobacteria Legionellales Coxiellaceae Rickettsiella 1 2 0 1 2 3 60194 497 1038 2 61740 Alphaproteobacteria Rhodospirillales Rhodospirillaceae Azospirillum 686 527 10513 485 11 3 2 7 16494 8201 36929 Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 455 302 873 103 16 19242 279 55 760 1077 23162 Betaproteobacteria Burkholderiales Oxalobacteraceae Duganella 9060 5734 2660 40 1357 280 117 29 129 35 19441 Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 3336 1991 3475 1309 2819 233 1335 1666 3046 218 19428 Betaproteobacteria Burkholderiales Burkholderiaceae Paraburkholderia 0 1 0 1 16051 98 41 140 23 17 16372 Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Mucilaginibacter 77 39 3123 20 2006 324 982 5764 408 21 12764 Gammaproteobacteria Pseudomonadales Moraxellaceae Alkanindiges 9 10 14 7 9632 6 79 518 1183 65 11523 Betaproteobacteria Neisseriales Neisseriaceae Aquitalea 0 0 0 0 1 1577 5715 1471 2141 177 11082 Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 324 219 8432 533 24 123 7 15 111 324 10112 Alphaproteobacteria
    [Show full text]
  • The RDP-II Backbone Tree for Release 8.0. the Tree Was Inferred from a Distance Matrix Generated in PAUP* with the Weighbor (Weighted Neighbor Joining) Algorithm
    Methylococcus capsulatus ACM 1292 (T) Oceanospirillum linum ATCC 11336 (T) Halomonas halodenitrificans ATCC 13511 (T) Legionella lytica PCM 2298 (T) Francisella tularensis subsp. tularensis ATCC 6223 (T) Coxiella burnetii Q177 Moraxella catarrhalis ATCC 25238 (T) Pseudomonas fluorescens IAM 12022 (T) Piscirickettsia salmonis LF-89 (T) Thiothrix nivea DSM 5205 (T) Allochromatium minutissimum DSM 1376 (T) Alteromonas macleodii IAM 12920 (T) Aeromonas salmonicida subsp. smithia CCM 4103 (T) Pasteurella multocida NCTC 10322 (T) Enterobacter nimipressuralis LMG 10245 (T) Vibrio vulnificus ATCC 27562 (T) Ectothiorhodospira mobilis DSM237 (T) Xanthomonas campestris LMG 568 (T) Cardiobacterium hominis ATCC 15826 (T) Methylophilus methylotrophus ATCC 53528 (T) Rhodocyclus tenuis DSM 109 (T) Hydrogenophilus thermoluteolus TH-1 (T) Neisseria gonorrhoeae NCTC 8375 (T) Comamonas testosteroni ATCC 11996 (T) Nitrosospira multiformis ATCC 25196 (T) Spirillum volutans ATCC 19554 (T) Burkholderia glathei LMG 14190 (T) Alcaligenes defragrans DSM 12141 (T) Oxalobacter formigenes ATCC 35274 (T) Acetobacter oboediens DSM 11826 (T) clone CS93 PROTEOBACTERIA Caedibacter caryophilus 221 (T) Rhodobacter sphaeroides ATCC 17023 (T) Rickettsia rickettsii ATCC VR-891 (T) Ehrlichia risticii ATCC VR-986 (T) Sphingomonas paucimobilis GIFU 2395 (T) Caulobacter fusiformis ATCC 15257 (T) Rhodospirillum rubrum ATCC 11170 (T) Brucella melitensis ATCC 23459 (T) Rhizobium tropici IFO 15247 (T) Bartonella vinsonii subsp. vinsonii ATCC VR-152 (T) Phyllobacterium myrsinacearum
    [Show full text]
  • Bacterial Communities Associated with the Hindgut of Tipula Abdominalis Larvae
    BACTERIAL COMMUNITIES ASSOCIATED WITH THE HINDGUT OF TIPULA ABDOMINALIS LARVAE (DIPTERA: TIPULIDAE), A NATURAL BIOREFINERY by DANA M. COOK (Under the Direction of Joy Doran Peterson) ABSTRACT Insects are the largest taxonomic group of animals on earth. Although a few thorough studies have shown insect guts host high microbial diversity, many insect-microbe associations have not been investigated. Tipula abdominalis is an aquatic crane fly ubiquitous in riparian environments. T. abdominalis larvae are shredders, a functional feeding group of insects that consume coarse particulate organic matter, primarily leaf litter. In small stream ecosystems, leaf litter comprises the majority of carbon and energy inputs; however, many organisms are unable to degrade this lignocellulosic material. By converting lignocellulose into a form that other organisms can use, T. abdominalis larvae influence the bioavailability of carbon and energy within the ecosystem. Evidence suggests that the bacterial community associated with the T. abdominalis larval hindgut facilitates the digestion of its recalcitrant lignocellulosic diet. Such lignocellulose-ecosystem-insect-microbiota interactions provide a model natural biorefinery and have become of special interest recently for the application of microbial conversion of lignocellulose to biofuels, including ethanol, butanol, and hydrogen. Bacterial isolates from the T. abdominalis larval hindgut were characterized, and many had enzymatic activity against plant polymer model substrates. Several isolates had low 16S rRNA gene sequence similarity to previous described bacteria, including the proposed novel genus Klugiella xanthotipulae gen. nov., sp. nov. Clone libraries of the 16S rRNA gene revealed a phylogenetically diverse bacterial community associated with the larval hindgut wall epithelial and lumen material. Clostridia and Bacteroidetes dominated both hindgut wall and lumen, while Betaproteobacteria dominated leaf diet- and cast-associated microbiota.
    [Show full text]
  • Biodiversité Du Microbiome Cutané Des Organismes Marins : Variabilité, Déterminants Et Importance Dans L’Écosystème Marlène Chiarello
    Biodiversité du microbiome cutané des organismes marins : variabilité, déterminants et importance dans l’écosystème Marlène Chiarello To cite this version: Marlène Chiarello. Biodiversité du microbiome cutané des organismes marins : variabilité, détermi- nants et importance dans l’écosystème. Microbiologie et Parasitologie. Université Montpellier, 2017. Français. NNT : 2017MONTT092. tel-01693132 HAL Id: tel-01693132 https://tel.archives-ouvertes.fr/tel-01693132 Submitted on 25 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ! ! ! Délivré par l’Université de Montpellier Préparée au sein de l’école doctorale GAIA Et de l’unité de recherche MARBEC (Centre pour la Biodiversité marine, l’Exploitation et la Conservation) Spécialité : Écologie Fonctionnelle et Sciences Agronomiques Présentée par Marlène Chiarello Biodiversité du microbiome cutané des organismes marins : variabilité, déterminants et importance dans l’écosystème Soutenue le 29 novembre 2017 devant le jury composé de M. Thierry BOUVIER, DR, CNRS Directeur M. Frédéric DELSUC, DR, CNRS Examinateur M. Pierre GALAND, DR, CNRS Invité M. Fabrice NOT, DR, CNRS Invité M. Loïc PELLISIER, Asst. Prof., ETH Zürich Rapporteur M. Télesphore SIME-NGANDO, DR, CNRS Rapporteur Mme Eve TOULZA, MCF, Université de Perpignan Examinateur M.
    [Show full text]
  • Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Invertebrate Animals
    The Journal of Theoretical Fimpology Volume 2, Issue 4: e-20081017-2-4-14 December 28, 2014 www.fimpology.com Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Invertebrate Animals Shu-dong Yin Cory H. E. R. & C. Inc. Burnaby, British Columbia, Canada Email: [email protected] ________________________________________________________________________ Abstract The novel recognition that individual bodies of normal animals are actually inhabited by subcellular viral entities and membrane-enclosed microentities, prokaryotic bacterial and archaeal cells and unicellular eukaryotes such as fungi and protists has been supported by increasing evidences since the emergence of culture-independent approaches. However, how to understand the relationship between animal hosts including human beings and those non-host microentities or microorganisms is challenging our traditional understanding of pathogenic relationship in human medicine and veterinary medicine. In recent novel evolution theories, the relationship between animals and their environments has been deciphered to be the interaction between animals and their environmental evolutionary entities at the same and/or different evolutionary levels;[1-3] and evolutionary entities of the lower evolutionary levels are hypothesized to be the evolutionary background entities of entities at the higher evolutionary levels.[1,2] Therefore, to understand the normal existence of microentities or microorganisms in multicellular animal bodies is becoming the first priority for elucidating the ecological and evolutiological relationships between microorganisms and nonhuman macroorganisms. The evolutionary background entities at the cellular and subcellular levels in bodies of nonhuman vertebrate animals have been summarized recently.[4] In this paper, the author tries to briefly review the evolutionary background entities (EBE) at the cellular and subcellular levels for several selected invertebrate animal species.
    [Show full text]
  • The Influence of Sodium Chloride on the Performance of Gammarus Amphipods and the Community Composition of Microbes Associated with Leaf Detritus
    THE INFLUENCE OF SODIUM CHLORIDE ON THE PERFORMANCE OF GAMMARUS AMPHIPODS AND THE COMMUNITY COMPOSITION OF MICROBES ASSOCIATED WITH LEAF DETRITUS By Shelby McIlheran Leaf litter decomposition is a fundamental part of the carbon cycle and helps support aquatic food webs along with being an important assessment of the health of rivers and streams. Disruptions in this organic matter breakdown can signal problems in other parts of ecosystems. One disruption is rising chloride concentrations. Chloride concentrations are increasing in many rivers worldwide due to anthropogenic sources that can harm biota and affect ecosystem processes. Elevated chloride concentrations can lead to lethal or sublethal impacts. While many studies have shown that excessive chloride uptake impacts health (e.g. lowered respiration and growth rates) in a wide variety of aquatic organisms including microbes and benthic invertebrates). The impacts of high chloride concentrations on decomposers are less well understood. My research objective was to assess how increasing chloride concentrations affect the performance and diversity of decomposer organisms in freshwater systems. I experimentally manipulated chloride concentrations in microcosms containing leaves colonized by microbes or containing leaves, microbes and amphipods. Respiration rate, decomposition, and community composition of the microbes were measured along with the amphipod growth rate, egestion rate, and mortality. Elevated chloride concentration did not impact microbial respiration rates or leaf decomposition, but had large impacts on bacteria community composition. It did cause a decrease in instantaneous growth rate, and 100% mortality in the highest amphipod chloride treatment, but amphipod egestion rate was not significantly affected. The results of my research suggest that the widespread increases in chloride concentrations in rivers will have an impact on decomposer communities in these systems.
    [Show full text]
  • Antibus Revised Thesis 11-16 For
    Molecular and Cultivation-based Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Science by Doug Antibus December, 2009 Thesis written by Doug Antibus B.S., Kent State University, 2007 M.S., Kent State University, 2009 Approved by Dr. Christopher B. Blackwood Advisor Dr. James L. Blank Chair, Department of Biological Sciences Dr. Timothy Moerland Dean, College of Arts and Sciences iii TABLE OF CONTENTS LIST OF TABLES………………………………………………………………………..iv LIST OF FIGURES ……………………………………………………………………...vi ACKNOWLEDGEMENTS…………………………………………………………......viii CHAPTER I: General Introduction……………………………………………………….1 CHAPTER II: Molecular Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica: A Legacy of Genetic Diversity Introduction……………………………………………………………....22 Results and Discussion……………………………………………..……27 Methods…………………………………………………………………..51 Literature Cited…………………………………………………………..59 CHAPTER III: Recovery of Viable Bacteria from Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica Introduction………………………………………………..……………..78 Methods…………………………………………………………………..80 Results……………………………………………………………...…….88 Discussion…………………………………………………………...….106 Literature Cited………………………………………………………....109 CHAPTER IV: General Discussion…………………………………………………….120 iii LIST OF TABLES Chapter II: Molecular Characterization of Ancient Algal Mats from the McMurdo Dry Valleys, Antarctica: A Legacy of Genetic Diversity
    [Show full text]
  • The Role of the Surface Smear Microbiome in the Development of Defective Smear on Surface-Ripened Red-Smear Cheese
    AIMS Microbiology, 4(4): 622–641. DOI: 10.3934/microbiol.2018.4.622 Received: 29 June 2018 Accepted: 20 September 2018 Published: 25 October 2018 http://www.aimspress.com/journal/microbiology Research article The role of the surface smear microbiome in the development of defective smear on surface-ripened red-smear cheese Jasmine S. Ritschard1,†, Lea Amato2,†, Yadhu Kumar3, Britta Müller3, Leo Meile2 and Markus Schuppler1,* 1 Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland 2 Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland 3 Eurofins GATC Biotech AG, Jakob-Stadler-Platz 7, 78467 Konstanz, Germany * Correspondence: Email: [email protected]; Tel: +41446327862; Fax: +41446321266. † These two authors contributed equally. Abstract: The complex smear microbiota colonizing the surface of red-smear cheese fundamentally impacts the ripening process, appearance and shelf life of cheese. To decipher the prokaryotic composition of the cheese smear microbiome, the surface of a semi-hard surface ripened cheese was studied post-ripening by culture-based and culture-independent molecular approaches. The aim was to detect potential bacterial alterations in the composition of the cheese smear microbiota resulting from cheese storage in vacuum film-prepackaging, which is often accompanied by the development of a surface smear defect. Next-generation sequencing of amplified 16S rRNA gene fragments revealed an unexpected high diversity of a total of 132 different genera from the domains Bacteria and Archaea on the cheese surface. Beside typical smear organisms, our study revealed the presence of several microorganisms so far not associated with cheese, but related to milk, farm and cheese dairy environments.
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Bibliography
    Bibliography Abella, C.A., X.P. Cristina, A. Martinez, I. Pibernat and X. Vila. 1998. on moderate concentrations of acetate: production of single cells. Two new motile phototrophic consortia: "Chlorochromatium lunatum" Appl. Microbiol. Biotechnol. 35: 686-689. and "Pelochromatium selenoides". Arch. Microbiol. 169: 452-459. Ahring, B.K, P. Westermann and RA. Mah. 1991b. Hydrogen inhibition Abella, C.A and LJ. Garcia-Gil. 1992. Microbial ecology of planktonic of acetate metabolism and kinetics of hydrogen consumption by Me­ filamentous phototrophic bacteria in holomictic freshwater lakes. Hy­ thanosarcina thermophila TM-I. Arch. Microbiol. 157: 38-42. drobiologia 243-244: 79-86. Ainsworth, G.C. and P.H.A Sheath. 1962. Microbial Classification: Ap­ Acca, M., M. Bocchetta, E. Ceccarelli, R Creti, KO. Stetter and P. Cam­ pendix I. Symp. Soc. Gen. Microbiol. 12: 456-463. marano. 1994. Updating mass and composition of archaeal and bac­ Alam, M. and D. Oesterhelt. 1984. Morphology, function and isolation terial ribosomes. Archaeal-like features of ribosomes from the deep­ of halobacterial flagella. ]. Mol. Biol. 176: 459-476. branching bacterium Aquifex pyrophilus. Syst. Appl. Microbiol. 16: 629- Albertano, P. and L. Kovacik. 1994. Is the genus LeptolynglYya (Cyano­ 637. phyte) a homogeneous taxon? Arch. Hydrobiol. Suppl. 105: 37-51. Achenbach-Richter, L., R Gupta, KO. Stetter and C.R Woese. 1987. Were Aldrich, H.C., D.B. Beimborn and P. Schönheit. 1987. Creation of arti­ the original eubacteria thermophiles? Syst. Appl. Microbiol. 9: 34- factual internal membranes during fixation of Methanobacterium ther­ 39. moautotrophicum. Can.]. Microbiol. 33: 844-849. Adams, D.G., D. Ashworth and B.
    [Show full text]
  • Bacteria Associated with Vascular Wilt of Poplar
    Bacteria associated with vascular wilt of poplar Hanna Kwasna ( [email protected] ) Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu https://orcid.org/0000-0001- 6135-4126 Wojciech Szewczyk Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Marlena Baranowska Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Jolanta Behnke-Borowczyk Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Research Article Keywords: Bacteria, Pathogens, Plantation, Poplar hybrids, Vascular wilt Posted Date: May 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-250846/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/30 Abstract In 2017, the 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. Leaves appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died. Bark was sunken and discolored, often loosened and split. Trunks decayed from the base. Phloem and xylem showed brown necrosis. Ten per cent of trees died in 1–2 months. None of these symptoms was typical for known poplar diseases. Bacteria in soil and the necrotic base of poplar trunk were analysed with Illumina sequencing. Soil and wood were colonized by at least 615 and 249 taxa. The majority of bacteria were common to soil and wood. The most common taxa in soil were: Acidobacteria (14.757%), Actinobacteria (14.583%), Proteobacteria (36.872) with Betaproteobacteria (6.516%), Burkholderiales (6.102%), Comamonadaceae (2.786%), and Verrucomicrobia (5.307%).The most common taxa in wood were: Bacteroidetes (22.722%) including Chryseobacterium (5.074%), Flavobacteriales (10.873%), Sphingobacteriales (9.396%) with Pedobacter cryoconitis (7.306%), Proteobacteria (73.785%) with Enterobacteriales (33.247%) including Serratia (15.303%) and Sodalis (6.524%), Pseudomonadales (9.829%) including Pseudomonas (9.017%), Rhizobiales (6.826%), Sphingomonadales (5.646%), and Xanthomonadales (11.194%).
    [Show full text]
  • Proposed Minimal Standards for Describing New Genera and Species of the Suborder Micrococcineae
    International Journal of Systematic and Evolutionary Microbiology (2009), 59, 1823–1849 DOI 10.1099/ijs.0.012971-0 Proposed minimal standards for describing new genera and species of the suborder Micrococcineae Peter Schumann,1 Peter Ka¨mpfer,2 Hans-Ju¨rgen Busse 3 and Lyudmila I. Evtushenko4 for the Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes Correspondence 1DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, P. Schumann 38124 Braunschweig, Germany [email protected] 2Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t, 35392 Giessen, Germany 3Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, Austria 4All-Russian Collection of Microorganisms (VKM), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Moscow Region 142290, Russia The Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes has agreed on minimal standards for describing new genera and species of the suborder Micrococcineae. The minimal standards are intended to provide bacteriologists involved in the taxonomy of members of the suborder Micrococcineae with a set of essential requirements for the description of new taxa. In addition to sequence data comparisons of 16S rRNA genes or other appropriate conservative genes, phenotypic and genotypic criteria are compiled which are considered essential for the comprehensive characterization of new members of the suborder Micrococcineae. Additional features are recommended for the characterization and differentiation of genera and species with validly published names. INTRODUCTION Aureobacterium and Rothia/Stomatococcus) and one pair of homotypic synonyms (Pseudoclavibacter/Zimmer- The suborder Micrococcineae was established by mannella) (Table 1 and http://www.the-icsp.org/taxa/ Stackebrandt et al.
    [Show full text]