AIMS Microbiology, 4(4): 622–641. DOI: 10.3934/microbiol.2018.4.622 Received: 29 June 2018 Accepted: 20 September 2018 Published: 25 October 2018 http://www.aimspress.com/journal/microbiology Research article The role of the surface smear microbiome in the development of defective smear on surface-ripened red-smear cheese Jasmine S. Ritschard1,†, Lea Amato2,†, Yadhu Kumar3, Britta Müller3, Leo Meile2 and Markus Schuppler1,* 1 Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland 2 Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland 3 Eurofins GATC Biotech AG, Jakob-Stadler-Platz 7, 78467 Konstanz, Germany * Correspondence: Email:
[email protected]; Tel: +41446327862; Fax: +41446321266. † These two authors contributed equally. Abstract: The complex smear microbiota colonizing the surface of red-smear cheese fundamentally impacts the ripening process, appearance and shelf life of cheese. To decipher the prokaryotic composition of the cheese smear microbiome, the surface of a semi-hard surface ripened cheese was studied post-ripening by culture-based and culture-independent molecular approaches. The aim was to detect potential bacterial alterations in the composition of the cheese smear microbiota resulting from cheese storage in vacuum film-prepackaging, which is often accompanied by the development of a surface smear defect. Next-generation sequencing of amplified 16S rRNA gene fragments revealed an unexpected high diversity of a total of 132 different genera from the domains Bacteria and Archaea on the cheese surface. Beside typical smear organisms, our study revealed the presence of several microorganisms so far not associated with cheese, but related to milk, farm and cheese dairy environments.