Disentangling the Mechanisms Shaping the Surface Ocean Microbiota Ramiro Logares1,2*, Ina M

Total Page:16

File Type:pdf, Size:1020Kb

Disentangling the Mechanisms Shaping the Surface Ocean Microbiota Ramiro Logares1,2*, Ina M Logares et al. Microbiome (2020) 8:55 https://doi.org/10.1186/s40168-020-00827-8 RESEARCH Open Access Disentangling the mechanisms shaping the surface ocean microbiota Ramiro Logares1,2*, Ina M. Deutschmann1, Pedro C. Junger3, Caterina R. Giner1,4, Anders K. Krabberød2, Thomas S. B. Schmidt5, Laura Rubinat-Ripoll6, Mireia Mestre1,7,8, Guillem Salazar1,9, Clara Ruiz-González1, Marta Sebastián1,10, Colomban de Vargas6, Silvia G. Acinas1, Carlos M. Duarte11, Josep M. Gasol1,12 and Ramon Massana1 Abstract Background: The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tropical and subtropical surface-ocean microbiota: prokaryotes and minute eukaryotes (picoeukaryotes). Furthermore, we investigate the agents exerting abiotic selection on this assemblage as well as the spatial patterns emerging from the action of ecological mechanisms. To explore this, we analysed the composition of surface-ocean prokaryotic and picoeukaryotic communities using DNA-sequence data (16S- and 18S-rRNA genes) collected during the circumglobal expeditions Malaspina-2010 and TARA-Oceans. Results: We found that the two main components of the tropical and subtropical surface-ocean microbiota, prokaryotes and picoeukaryotes, appear to be structured by different ecological mechanisms. Picoeukaryotic communities were predominantly structured by dispersal-limitation, while prokaryotic counterparts appeared to be shaped by the combined action of dispersal-limitation, selection and drift. Temperature-driven selection appeared as a major factor, out of a few selected factors, influencing species co-occurrence networks in prokaryotes but not in picoeukaryotes, indicating that association patterns may contribute to understand ocean microbiota structure and response to selection. Other measured abiotic variables seemed to have limited selective effects on community structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher spatial differentiation between communities and a higher distance decay when compared to prokaryotes, consistent with a scenario of higher dispersal limitation in the former after considering environmental heterogeneity. Lastly, random dynamics or drift seemed to have a more important role in structuring prokaryotic communities than picoeukaryotic counterparts. (Continued on next page) * Correspondence: [email protected] 1Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia, Spain 2Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, 0316 Oslo, Norway Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Logares et al. Microbiome (2020) 8:55 Page 2 of 17 (Continued from previous page) Conclusions: The differential action of ecological mechanisms seems to cause contrasting biogeography, in the tropical and subtropical ocean, among the smallest surface plankton, prokaryotes and picoeukaryotes. This suggests that the idiosyncrasy of the main constituents of the ocean microbiota should be considered in order to understand its current and future configuration, which is especially relevant in a context of global change, where the reaction of surface ocean plankton to temperature increase is still unclear. Keywords: Ocean, Plankton, Microbiota, Picoeukaryotes, Prokaryotes, Community structure, Ecological processes, Selection, Dispersal, Drift Background colonizers are too far away [20], and the significance of The surface ocean microbiota is a pivotal underpinning of dispersal limitation increases as geographic scale in- global biogeochemical cycles [1, 2]. The smallest ocean creases [21]. Ecological drift (hereafter drift) in a local microbes, the picoplankton, have a key role in the global community refers to random changes in species’ relative carbon cycle, being responsible for an important fraction abundances derived from stochastic birth, death, off- of the total atmospheric carbon and nitrogen fixation in spring production, immigration and emigration [18]. the ocean [3–5], which supports ≈ 46% of the global pri- The action of drift in a metacommunity, that is, local mary productivity [6]. Oceanic picoplankton plays a fun- communities that are connected via dispersal of multiple damental role in processing organic matter by recycling species [22], may lead to neutral dynamics [21], where nutrients and carbon to support additional production as random dispersal is the main mechanism of community well as by channelling organic carbon to upper trophic assembly. Finally, speciation is the evolution of new spe- levels through food webs [5, 7, 8]. The ocean picoplankton cies [18], and it will not be considered hereafter as it is includes prokaryotes (both bacteria and archaea) and tiny expected to have a small impact in the turnover of com- unicellular eukaryotes (hereafter picoeukaryotes), which munities that are connected via dispersal [23], being also feature fundamental differences in terms of cellular struc- difficult to measure this ecological process in the wild. ture, feeding habits, metabolic diversity, growth rates and The action of the previous ecological processes is typ- behaviour [9]. Even though marine picoeukaryotes and ically manifested as different taxonomic or phylogenetic prokaryotes are usually investigated separately, they are in- patterns of community turnover, that is, β-diversity. At timately connected through biogeochemical and food web the moment, there are several estimators of β-diversity networks [10–12]. which capture different aspects of community turnover The underlying ecological mechanisms determining [24]. Most of these indices consider taxonomic or phylo- the biogeography of prokaryotes and picoeukaryotes in genetic aspects of communities, but not species- the global ocean are unclear [13, 14]. In particular, we association patterns, which can also manifest the action do not know whether these crucial components of the of ecological processes. For example, selection exerted ocean microbiota are structured by the action of the by an environmental variable can drive species co- same or different ecological processes. Comprehending occurrences generating groups of highly associated spe- such processes is fundamental, as their differential action cies or modules in association networks that correspond can produce changes in the ocean microbiota compos- with specific environmental conditions [25]. Different ition that could impact global ecosystem function [15– members of these modules may be more abundant in 17]. A recent ecological synthesis explains the structure specific regions of the ocean, contributing to increase β- of communities and the emergence of biogeography as a diversity estimates between these regions when based on consequence of the action of four main processes: selec- standard compositional or phylogenetic β-diversity met- tion, dispersal, ecological drift and speciation [18]. Selec- rics. Yet, β-diversity estimates based on association- tion involves deterministic reproductive differences aware metrics may point to higher similarity between among individuals from different or the same species as these regions, as taxa belong to the same modules. Fur- a response to biotic or abiotic conditions. Selection can thermore, modules may display correlations with envir- act in two opposite directions; it can constrain (homoge- onmental heterogeneity. Thus, association aware metrics neous selection) or promote (heterogeneous selection) the of β-diversity may allow unveiling community patterns divergence of communities [19]. Dispersal is the move- and their relationships with environmental variables (i.e. ment of organisms across space, and rates can be high selection), which would be missed by standard ap- (homogenising dispersal), moderate, or low (dispersal proaches [26]. So far, most studies investigating the limitation)[19]. Dispersal limitation occurs when species structure of the ocean microbiota have not considered are absent from suitable habitats because potential species associations in their analyses of β-diversity. Logares et al. Microbiome (2020) 8:55 Page 3 of 17 The differential action of selection, dispersal and drift that appear to be driven by
Recommended publications
  • Taurine Is a Major Carbon and Energy Source for Marine Prokaryotes in the North Atlantic Ocean Off the Iberian Peninsula
    Microbial Ecology https://doi.org/10.1007/s00248-019-01320-y MICROBIOLOGY OF AQUATIC SYSTEMS Taurine Is a Major Carbon and Energy Source for Marine Prokaryotes in the North Atlantic Ocean off the Iberian Peninsula Elisabeth L. Clifford1 & Marta M. Varela2 & Daniele De Corte3 & Antonio Bode2 & Victor Ortiz1 & Gerhard J. Herndl1,4 & Eva Sintes1,5 Received: 28 June 2018 /Accepted: 3 January 2019 # The Author(s) 2019 Abstract Taurine, an amino acid-like compound, acts as an osmostress protectant in many marine metazoans and algae and is released via various processes into the oceanic dissolved organic matter pool. Taurine transporters are widespread among members of the marine prokaryotic community, tentatively indicating that taurine might be an important substrate for prokaryotes in the ocean. In this study, we determined prokaryotic taurine assimilation and respiration throughout the water column along two transects in the North Atlantic off the Iberian Peninsula. Taurine assimilation efficiency decreased from the epipelagic waters from 55 ± 14% to 27 ± 20% in the bathypelagic layers (means of both transects). Members of the ubiquitous alphaproteobacterial SAR11 clade accounted for a large fraction of cells taking up taurine, especially in surface waters. Archaea (Thaumarchaeota + Euryarchaeota) were also able to take up taurine in the upper water column, but to a lower extent than Bacteria. The contribution of taurine assimilation to the heterotrophic prokaryotic carbon biomass production ranged from 21% in the epipelagic layer to 16% in the bathypelagic layer. Hence, we conclude that dissolved free taurine is a significant carbon and energy source for prokaryotes throughout the oceanic water column being utilized with similar efficiencies as dissolved free amino acids.
    [Show full text]
  • Specificity Re-Evaluation of Oligonucleotide Probes for the Detection of Marine Picoplankton by Tyramide Signal Amplification-Fl
    fmicb-08-00854 May 24, 2017 Time: 20:18 # 1 ORIGINAL RESEARCH published: 29 May 2017 doi: 10.3389/fmicb.2017.00854 Specificity Re-evaluation of Oligonucleotide Probes for the Detection of Marine Picoplankton by Tyramide Signal Amplification-Fluorescent In Situ Hybridization Virginie Riou, Marine Périot and Isabelle C. Biegala* Centre National de la Recherche Scientifique, Mediterranean Institute of Oceanography – Institut de Recherche pour le Développement, Aix Marseille Université – Université de Toulon, Marseille, France Edited by: Sophie Rabouille, Oligonucleotide probes are increasingly being used to characterize natural microbial Centre National de la Recherche Scientifique (CNRS), France assemblages by Tyramide Signal Amplification-Fluorescent in situ Hybridization (TSA- Reviewed by: FISH, or CAtalysed Reporter Deposition CARD-FISH). In view of the fast-growing rRNA Fernanda De Avila Abreu, databases, we re-evaluated the in silico specificity of eleven bacterial and eukaryotic Federal University of Rio de Janeiro, Brazil probes and competitor frequently used for the quantification of marine picoplankton. Tom Bibby, We performed tests on cell cultures to decrease the risk for non-specific hybridization, University of Southampton, before they are used on environmental samples. The probes were confronted to recent United Kingdom databases and hybridization conditions were tested against target strains matching *Correspondence: Isabelle C. Biegala perfectly with the probes, and against the closest non-target strains presenting one [email protected]
    [Show full text]
  • Archaeal Distribution and Abundance in Water Masses of the Arctic Ocean, Pacific Sector
    Vol. 69: 101–112, 2013 AQUATIC MICROBIAL ECOLOGY Published online April 30 doi: 10.3354/ame01624 Aquat Microb Ecol FREEREE ACCESSCCESS Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector Chie Amano-Sato1, Shohei Akiyama1, Masao Uchida2, Koji Shimada3, Motoo Utsumi1,* 1University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572, Japan 2National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki 305-8506, Japan 3Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo 108-8477, Japan ABSTRACT: Marine planktonic Archaea have been recently recognized as an ecologically impor- tant component of marine prokaryotic biomass in the world’s oceans. Their abundance and meta- bolism are closely connected with marine geochemical cycling. We evaluated the distribution of planktonic Archaea in the Pacific sector of the Arctic Ocean using fluorescence in situ hybridiza- tion (FISH) with catalyzed reporter deposition (CARD-FISH) and performed statistical analyses using data for archaeal abundance and geochemical variables. The relative abundance of Thaum - archaeota generally increased with depth, and euryarchaeal abundance was the lowest of all planktonic prokaryotes. Multiple regression analysis showed that the thaumarchaeal relative abundance was negatively correlated with ammonium and dissolved oxygen concentrations and chlorophyll fluorescence. Canonical correspondence analysis showed that archaeal distributions differed with oceanographic water masses; in particular, Thaumarchaeota were abundant from the halocline layer to deep water, where salinity was higher and most nutrients were depleted. However, at several stations on the East Siberian Sea side of the study area and along the North- wind Ridge, Thaumarchaeota and Bacteria were proportionally very abundant at the bottom in association with higher nutrient conditions.
    [Show full text]
  • Oceans of Archaea Abundant Oceanic Crenarchaeota Appear to Derive from Thermophilic Ancestors That Invaded Low-Temperature Marine Environments
    Oceans of Archaea Abundant oceanic Crenarchaeota appear to derive from thermophilic ancestors that invaded low-temperature marine environments Edward F. DeLong arth’s microbiota is remarkably per- karyotes), Archaea, and Bacteria. Although al- vasive, thriving at extremely high ternative taxonomic schemes have been recently temperature, low and high pH, high proposed, whole-genome and other analyses E salinity, and low water availability. tend to support Woese’s three-domain concept. One lineage of microbial life in par- Well-known and cultivated archaea generally ticular, the Archaea, is especially adept at ex- fall into several major phenotypic groupings: ploiting environmental extremes. Despite their these include extreme halophiles, methanogens, success in these challenging habitats, the Ar- and extreme thermophiles and thermoacido- chaea may now also be viewed as a philes. Early on, extremely halo- cosmopolitan lot. These microbes philic archaea (haloarchaea) were exist in a wide variety of terres- first noticed as bright-red colonies trial, freshwater, and marine habi- Archaea exist in growing on salted fish or hides. tats, sometimes in very high abun- a wide variety For many years, halophilic isolates dance. The oceanic Marine Group of terrestrial, from salterns, salt deposits, and I Crenarchaeota, for example, ri- freshwater, and landlocked seas provided excellent val total bacterial biomass in wa- marine habitats, model systems for studying adap- ters below 100 m. These wide- tations to high salinity. It was only spread Archaea appear to derive sometimes in much later, however, that it was from thermophilic ancestors that very high realized that these salt-loving invaded diverse low-temperature abundance “bacteria” are actually members environments.
    [Show full text]
  • Experimental Warming Effects on Prokaryotic Growth and Viral Production in Coastal Waters of the Northwest Pacific During the Cold Season
    diversity Brief Report Experimental Warming Effects on Prokaryotic Growth and Viral Production in Coastal Waters of the Northwest Pacific during the Cold Season An-Yi Tsai 1,2,*, Gwo-Ching Gong 1,2 and Vladimir Mukhanov 3 1 Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202-24, Taiwan; [email protected] 2 Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202-24, Taiwan 3 A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, 299011 Sevastopol, Russia; [email protected] * Correspondence: [email protected]; Tel.: +886-2-2462-2192 (ext. 5705); Fax: +886-2-2462-0892 Abstract: Climate warming can directly affect biological processes in marine environments. Here, we investigated if warming (+2 ◦C) can change dynamics in viral and prokaryotic populations in the cold seasons in natural seawaters. We monitored the changes in viral production and prokaryotic growth rate. The prokaryotic average gross growth rates were 0.08 and 0.34 h−1 in November and 0.06 and 0.41 h−1 in December in the in situ and warming experiments, respectively. We found that warming water temperature resulted in a significant increase in prokaryotic growth rates. In warming experiments, the overall viral production rate was about 0.77–14.4 × 105 viruses mL−1 h−1, and a rough estimate of prokaryotic mortality was about 5.6–6.8 × 104 cells mL−1 h−1. Based on our estimation, burst sizes of about 21 and 14 viruses prokaryotes−1 were measured under the Citation: Tsai, A.-Y.; Gong, G.-C.; experimental warming period.
    [Show full text]
  • Cobalamin Cobalamin in Which Adenine Substitutes for DMB As the Α Ligand
    Two distinct pools of B12 analogs reveal community interdependencies in the ocean Katherine R. Heala, Wei Qinb, Francois Ribaleta, Anthony D. Bertagnollib,1, Willow Coyote-Maestasa,2, Laura R. Hmeloa, James W. Moffettc,d, Allan H. Devola, E. Virginia Armbrusta, David A. Stahlb, and Anitra E. Ingallsa,3 aSchool of Oceanography, University of Washington, Seattle, WA 98195; bDepartment of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195; cDepartment of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0894; and dDepartment of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089-0894 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved November 28, 2016 (received for review May 25, 2016) Organisms within all domains of life require the cofactor cobalamin cobalamin in which adenine substitutes for DMB as the α ligand (vitamin B12), which is produced only by a subset of bacteria and (12) (Fig. 1). Production of pseudocobalamin in a natural marine archaea. On the basis of genomic analyses, cobalamin biosynthesis environment has not been shown, nor have reasons for the pro- in marine systems has been inferred in three main groups: select duction of this compound in place of cobalamin been elucidated. heterotrophic Proteobacteria, chemoautotrophic Thaumarchaeota, To explore the pervasiveness of cobalamin and pseudocobala- and photoautotrophic Cyanobacteria. Culture work demonstrates min supply and demand in marine systems, we determined the that many Cyanobacteria do not synthesize cobalamin but rather standing stocks of these compounds in microbial communities produce pseudocobalamin, challenging the connection between the from surface waters across the North Pacific Ocean using liquid occurrence of cobalamin biosynthesis genes and production of the chromatography mass spectrometry (LC-MS).
    [Show full text]
  • Microbial Ecology of the Oceans David L. Kirchman (Editor)
    Microbial Ecology of the Oceans David L. Kirchman (Editor) John Wiley & Sons, August 2000, ISBN 0471299928 552 pages Microbial ecology is now recognized to be fundamental for understanding the natural world around us and is essential for examining life in the oceans. For the first time, this book brings together international experts to explore the incredibly diverse collection of microbes (and viruses) found in the oceans and to dissect many of the processes mediated by these microbes in aquatic environments. Although the oceans are emphasized, the organisms and processes discussed in the book occur in nearly all natural environments, including rivers and lakes. « Microbial Ecology of the Oceans » reviews some basics of marine microbiology and provides a foundation for researchers and students new to the field while also examining several questions currently being discussed in modern microbial ecology. The book brings together concepts from autoecological studies of individual bacterial groups and from ecological studies of microbial assemblages in the oceans. In addition to drawing on the rich history of microbiology, Microbial Ecology of the Oceans uses the latest advances in biological and chemical oceanography and limnology to examine the role of marine microbes and viruses in the oceans. « Microbial Ecology of the Oceans » elucidates the role of microbes in food web dynamics and biogeochemical cycles in the ocean. It will prove to be an indispensable resource for students and researchers in biological and chemical oceanography, geochemistry, marine chemistry, freshwater ecology, and microbiology. Some of the topics covered by this informative book include: * Microbial evolution, as revealed by molecular techniques * Microbes in carbon budgets and cycles * Viruses and grazers of bacteria * Competition between bacteria and phytoplankton for limited nutrients * Marine symbiosis Introduction (D.
    [Show full text]
  • Ecological Dynamics and Co-Occurrence Among Marine Phytoplankton, Bacteria and Myoviruses Shows Microdiversity Matters
    The ISME Journal (2017) 11, 1614–1629 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters David M Needham, Rohan Sachdeva and Jed A Fuhrman Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA Numerous ecological processes, such as bacteriophage infection and phytoplankton–bacterial interactions, often occur via strain-specific mechanisms. Therefore, studying the causes of microbial dynamics should benefit from highly resolving taxonomic characterizations. We sampled daily to weekly over 5 months following a phytoplankton bloom off Southern California and examined the extent of microdiversity, that is, significant variation within 99% sequence similarity clusters, operational taxonomic units (OTUs), of bacteria, archaea, phytoplankton chloroplasts (all via 16S or intergenic spacer (ITS) sequences) and T4-like-myoviruses (via g23 major capsid protein gene sequence). The extent of microdiversity varied between genes (ITS most, g23 least) and only temporally common taxa were highly microdiverse. Overall, 60% of taxa exhibited microdiversity; 59% of these had subtypes that changed significantly as a proportion of the parent taxon, indicating ecologically distinct taxa. Pairwise correlations between prokaryotes and myoviruses or phytoplank- ton (for example, highly microdiverse Chrysochromulina sp.) improved when using single-base variants. Correlations between myoviruses and SAR11 increased in number (172 vs 9, Spear- man40.65) and became stronger (0.61 vs 0.58, t-test: Po0.001) when using SAR11 ITS single-base variants vs OTUs. Whole-community correlation between SAR11 and myoviruses was much improved when using ITS single-base variants vs OTUs, with Mantel rho = 0.49 vs 0.27; these results are consistent with strain-specific interactions.
    [Show full text]
  • The Biomass Distribution on Earth
    The biomass distribution on Earth Y. M. Bar-On, R. Phillips, R. Milo Supplementary Information Appendix Contents Overview ......................................................................................................................... 3 Plants ............................................................................................................................... 4 Biomass ....................................................................................................................... 4 Biomass of roots and leaves ........................................................................................ 6 Comparison of plant and bacterial biomass ................................................................ 7 Bacteria and Archaea (Prokaryotes) ............................................................................... 7 Marine ......................................................................................................................... 8 Soil ............................................................................................................................ 11 Marine deep subsurface sediment ............................................................................. 13 Terrestrial deep subsurface ....................................................................................... 18 Fungi ............................................................................................................................. 22 Soil fungi ..................................................................................................................
    [Show full text]
  • Molecular Marine Microbiology
    J. Molec. Microbiol. Biotechnol. (1999) 1(1): 3-4. JMMBMarine Symposium Microbiology 3 Molecular Marine Microbiology Douglas H. Bartlett* describes the bacterial manufacturing of magnetic iron containing organelles (magnetosomes) within certain Center for Marine Biotechnology and Biomedicine benthic bacteria and their biotechnological promise in Scripps Institution of Oceanography products ranging from magnetic tapes to magnetic University of California, San Diego resonance imaging devices. La Jolla, CA 92093-0202, USA Two articles deal with mysterious motility mechanisms operating in marine microbes. Linda McCarter introduces surface-regulated phenomena, including swarming motility The following thirteen minireviews introduce some of the via lateral flagella, in the human pathogen and marine exciting milestones being covered in molecular marine resident, V. parahaemolyticus. Bianca Brahamsha details microbiology today, and in many cases, their biomedical the only known case of liquid motility in the absence of or biotechnological relevance. The issues covered include flagella, a phenotype displayed by many marine quorum and anti-quorum sensing, selected symbioses, Synechococcus species. DNA shuffling in the environment, the evolution and devel- The minireviews end with descriptions of the opment of novel motility mechanisms, hydrocarbon deg- adaptations of certain deep-sea prokaryotes to extremes radation, the interactions of microbes with metals, and of pressure and temperature. Kato and Qureshi present a adaptations to extremes of pressure and temperature. Al- taxomonic overview of deep-sea bacteria and genetic and though most of these topics are not exclusive to marine biophysical analyses of respiratory chain adaptations to realms, they all have as a common thread a profound rel- elevated pressure. My article describes genetic evidence evance to the ocean environment.
    [Show full text]
  • Prokaryotic Growth and Nutrition
    37623_CH05_137_160.pdf 11/11/06 7:23 AM Page 137 © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION 5 Chapter Preview and Key Concepts 5.1 Prokaryotic Reproduction Prokaryotic • Binary fission produces genetically-identical daughter cells. • Prokaryotes vary in their generation times. Growth and 5.2 Prokaryotic Growth • Bacterial population growth goes through four phases. • Endospores are dormant structures to endure Nutrition times of nutrient stress. • Growth of prokaryotic populations is sensitive to temperature, oxygen gas, and pH. But who shall dwell in these worlds if they be inhabited? . Are we or 5.3 Culture Media and Growth Measurements • Culture media contain the nutrients needed for they Lords of the World? . optimal prokaryotic growth. —Johannes Kepler (quoted in The Anatomy of Melancholy) • Special chemical formulations can be devised to isolate and identify some prokaryotes. MicroInquiry 5: Identification of Bacterial Species Books have been written about it; movies have been made; even a • Two standard methods are available to produce radio play in 1938 about it frightened thousands of Americans. What pure cultures. is it? Martian life. In 1877 the Italian astronomer, Giovanni Schiapar- • Prokaryotic growth can be measured by direct elli, saw lines on Mars, which he and others assumed were canals built and indirect methods. by intelligent beings. It wasn’t until well into the 20th century that this notion was disproved. Still, when we gaze at the red planet, we won- der: Did life ever exist there? We are not the only ones wondering. Astronomers, geologists, and many other scientists have asked the same question. Today microbiol- ogists have joined their comrades, wondering if microbial life once existed on the Red Planet or, for that matter, elsewhere in our Solar System.
    [Show full text]
  • Mechanisms of Microbial Carbon Sequestration in the Ocean – Future Research Directions
    Biogeosciences, 11, 5285–5306, 2014 www.biogeosciences.net/11/5285/2014/ doi:10.5194/bg-11-5285-2014 © Author(s) 2014. CC Attribution 3.0 License. Mechanisms of microbial carbon sequestration in the ocean – future research directions N. Jiao1, C. Robinson2, F. Azam3, H. Thomas4, F. Baltar5, H. Dang1, N. J. Hardman-Mountford6, M. Johnson2, D. L. Kirchman7, B. P. Koch8, L. Legendre9,10, C. Li11, J. Liu1, T. Luo1, Y.-W. Luo1, A. Mitra12, A. Romanou13, K. Tang1, X. Wang14, C. Zhang15, and R. Zhang1 1State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China 2School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK 3Scripps Institution of Oceanography, UCSD, La Jolla, CA 920193, USA 4Dalhousie University, Halifax, Nova Scotia, Canada 5Department of Marine Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand 6CSIRO Marine and Atmospheric Research, Floreat, WA 6014, Australia 7School of Marine Science and Policy, University of Delaware, DE 19958, USA 8Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany 9Sorbonne Universités, UPMC Univ. Paris 06, UMR7093, Laboratoire d’Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France 10CNRS, UMR7093, Laboratoire d’Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France 11Chinese University of Geology, Wuhan, China 12Centre for Sustainable Aquatic Research, Swansea University, Swansea, UK 13Dept. of Applied Physics and Applied Math., Columbia University and NASA-Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA 14South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China 15Tongji University, Shanghai, China Correspondence to: N.
    [Show full text]