Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement

Total Page:16

File Type:pdf, Size:1020Kb

Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement 8th ASDIN Annual Scientific Meeting Peritoneal Dialysis Catheter Placement ASDIN Advanced Techniques Pre-course Peritoneal Dialysis Catheter Placement Feb. 24, 2012 New Orleans, La Randall L. Rasmussen, MD Special thank you to Drs. Rajeev Narayan, San Antonio, Tx and Hemant Dhingra, Fresno Ca for lending me slides from their teaching files to use for this talk. Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement Permanent CAPD catheters Four placement techniques: • straight or arcuate inter-cuff segment • Peritoneoscopic • two cuffs – deep cuff that is implanted in the rectus muscle • Fluoroscopic – superficial cuff that is positioned two cm from the exit site • Surgical • variable length from the deep cuff to the coil • Laparoscopic • a coiled distal end • Blind technique - abandoned Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement There are advantages to both the peritoneoscopic and Peritoneoscopic and fluoroscopic techniques the fluoroscopic technique are favored by interventional doctors - peritoneoscopic procedure offers visualization of - but placing these catheters requires a different skill the peritoneal cavity which is important in patients with a history of extensive surgery or set than those interventional doctors are use to adhesions - fluoroscopic placement is the least invasive 8th ASDIN Annual Scientific Meeting Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement Pre-procedure assessment Immediately pre-procedure History document emptied bladder – meds, allergies, previous surgery – regular bowel pattern and not constipated mark the belt line with the patient sitting Physical exam – obesity, hernias start prophylactic antibiotics Laboratory – Cefazolin 1 gram IVPB – coagulation profile – Vancomycin 1 gram IVPB Evaluation by CAPD nurse – assess the patient’s ability to learn administer IV sedation Both peritoneoscopic and fluoroscopic Peritoneal Dialysis Catheter Placement techniques start with an abdominal US - demonstrated in workshops Peritoneoscopic and fluoroscopic techniques both Sub Q fat require: Measure distance skin to rectus Ant rectus sheath • abdominal ultrasound • incision to expose the anterior sheath on the Measure thickness of rectus lateral border of the rectus muscle Rectus muscle • gain entry into the peritoneal cavity • confirm entry into the peritoneal cavity Post rectus sheath • insert the catheter • check catheter function and close the incision Peritoneal cavity Document free movement Peritoneal Dialysis Catheter Placement US is used to identify any major vascular structure Peritoneoscopic and fluoroscopic techniques The second step is an incision, ½ distance between the ASIS and “normal location” of the umbilicus, to expose the anterior sheath on the lateral border of the rectus muscle. The incision should be: Inferior epigastric artery arises from the external iliac artery and courses cephalad along with the inferior epigastric vein between the posterior wall of - off the belt line the rectus muscle and the posterior rectus sheath - as long as it is deep Expose an area the size of a half dollar (3 cm in diameter) –> to get good visualization of the rectus sheath 8th ASDIN Annual Scientific Meeting Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement Peritoneoscopic and fluoroscopic techniques The third step is to gain entry into the peritoneal space • access to the peritoneal cavity can be visualized with real time ultrasound • need to avoid the pre-peritoneal space • an incision is made to expose the anterior sheath on the lateral border of the rectus muscle • ligate or bovie any bleeders Need to avoid the pre-peritoneal space Need to avoid the pre-peritoneal space Pre-peritoneal space Posterior rectus sheath Parietal peritoneum Rectus muscle Pre-peritoneal space Parietal peritoneum The pre-peritoneal space is less likely to be entered if an The pre-peritoneal space is the space between the insertion site is selected above the level of the anterior posterior rectus sheath and parietal peritoneum superior iliac spine. Peritoneoscopic technique entrance to the peritoneal Fluoroscopic technique(s) entrance to the peritoneal cavity is done using a quill guide assembly set cavity is done using a Veress needle Quill guide assembly set Veress needle Rectus Quill guide, cannula & trocar are inserted through the rectus at a 30-450 angle directed towards the coccyx “Pops” can be felt when the Veress needle pierces the anterior and posterior rectus sheath. Rectus muscle Note that saline will run freely once the peritoneal cavity is entered. 8th ASDIN Annual Scientific Meeting Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement Peritoneoscopic and fluoroscopic techniques Peritoneogram The fourth step is to confirm peritoneal location • usually requires 10cc of ½ strength contrast • using the peritoneosope the white-pink appearance of the peritoneum can be directly visualized and moves with respiration • contrast can be injected through the cannula during the peritoneoscopic approach • a white appearance means pre-peritoneal location • both techniques can confirm the location by performing a peritoneogram • contrast can be injected through a sheath or dilator inserted over a guidewire during the fluoroscopic • a .035 guidewire that easily curls across the midline technique is good evidence of intraperitoneal location • saline runs wide open Peritoneogram demonstrates .035 Guidewire in the Peritoneogram with free .035 Guidewire easily contrast trapped in the pre-peritoneal space flow of contrast in the curls across the midline pre-peritoneal space meets resistance and peritoneum with minimal resistance does not cross the midline Complications of peritoneoscopic and fluoroscopic CAPD catheter insertion occur with entry into the Peritoneal Dialysis Catheter Placement peritoneal cavity * perforation of bowel, bladder or a vessel * can usually be taken care of with minimal adverse outcomes as long as the complication is recognized. * aspirate after gaining entry to the peritoneal cavity for blood, urine or bowel contents Interpret this peritoneogram done at the time of CAPD catheter insertion. 8th ASDIN Annual Scientific Meeting Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement The fifth step is to insert the catheter • in both techniques, a small volume of NS is first instilled into the peritoneal cavity Interpret this peritoneogram done at the time of CAPD catheter insertion. Abdel-Aal A K et al. AJR 2009;192:1085-1089 Peritoneoscopic technique Peritoneal Dialysis Catheter Placement Insufflation of the peritoneal cavity with room air Peritoneoscopic technique • the CAPD catheter is mounted on a lubricated stylet for insertion • the catheter is inserted over the quill guide into the clear space • note that during catheter insertion, the stylet should be inserted the minimal distance into the Peritoneoscopy allows the quill guide assembly peritoneal cavity to be advanced into a clear space under direct visualization using the peritoneoscope. Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement Peritoneoscopic technique Fluoroscopic techniques • a peel-away sheath is advanced over a .035 guidewire then the guidewire is removed • the CAPD catheter is mounted on a lubricated stylet for insertion • the CAPD catheter is inserted into the peritoneal cavity through the peel-away catheter Quill guide Dilate Cath insertion Tunnel 8th ASDIN Annual Scientific Meeting Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement Fluoroscopic techniques After insertion of the catheter into the peritoneal cavity: the deep cuff is anchored in the rectus muscle using an implanter device a tunnel is created for the exit so that the cathetecatheterr is off the belt line and oriented lateral or inferior-lateral the superficial cuff is positioned 2 cm from the exiexitt CAPD catheter uncoiling site through 16 Fr peel-away CAPD catheter in position, sheath with contrast freely flowing Note the stylet location Peritoneal Dialysis Catheter Placement Peritoneal Dialysis Catheter Placement Lastly, check the catheter function and close the incision Head Feet • confirm catheter position by contrast injection • check catheter function with 250 cc of dialysate or NS flush The deep cuff is implanted into the rectus muscle prior to tunneling the catheter to the exit site Peritoneal Dialysis Catheter Placement Head Feet The catheter is oriented inferior-lateral Post-procedure checklist Sutures is the coil center no more than 5 cm cranial to the top of the symphysis pubis ? is the angle of the intraperitoneal straight portion more than absorbable subcutaneous sutures are used to close 15 degrees from the horizontal? dead space only if it is “excessive” is the coil of the catheter in its natural shape (me(meaninganing that no part appears to cross any other part)? non-absorbable sutures are used to close the skin are there any kinks in the catheter? was the deep cuff visible in the rectus? sutures are not usually placed at the exit site is the angle of the catheter at the exit site horizohorizontalntal or downward (not upward)? 8th ASDIN Annual Scientific Meeting Peritoneal Dialysis Catheter Placement Post-procedure the patient must have a follow-up appointment for dressing change and flush consider Rx stool softeners postoperatively and analgesic medications that do not cause constipation patients should expect minimal post-operative discomfort and must be given instructions to call for any sign of symptom that requires medical attention.
Recommended publications
  • Catheter Associated Urinary Tract Infection (CAUTI) Prevention
    Catheter Associated Urinary Tract Infection (CAUTI) Prevention System CAUTI Prevention Team 1 Objectives At the end of this module, the participant will be able to: Identify risk factors for CAUTI Explain the relationship between catheter duration and CAUTI risk List the appropriate indications for urinary catheter insertion and continued use Implement evidence-based nursing practice to decrease the risk and incidence of CAUTI 2 The Problem All patients with an indwelling urinary catheter are at risk for developing a CAUTI. CAUTI increases pain and suffering, morbidity & mortality, length of stay, and healthcare costs. Appropriate indwelling catheter use can prevent about 400,000 infections and 9,000 deaths every year! (APIC, 2008; Gould et al, 2009) 3 2012 National Patient Safety Goal Implement evidence-based practices to prevent indwelling catheter associated urinary tract infections (CAUTI) Insert indwelling urinary catheters according to evidence-based guidelines Limit catheter use and duration Use aseptic technique for site preparation, equipment, and supplies (The Joint Commission (TJC), 2011) 4 2012 National Patient Safety Goal Manage indwelling urinary catheters according to evidence-based guidelines Secure catheters for unobstructed urine flow and drainage Maintain the sterility of the urine collection system Replace the urine collection system when required Collect urine samples using aseptic technique (TJC, 2011) 5 Sources of CAUTI Microorganisms Endogenous Meatal, rectal, or vaginal colonization Exogenous
    [Show full text]
  • Caring for Your Urinary (Foley) Catheter
    Caring for Your Urinary (Foley) Catheter This information will help you care for your urinary (Foley) catheter while you’re at home. You have had a urinary catheter (a thin, flexible tube) placed in your bladder to drain your urine (pee). It’s held inside your bladder by a balloon filled with water. The parts of the catheter outside your body are shown in Figure 1. Catheter Care ● You need to clean your catheter, change your drainage bags, and wash your drainage bags every day. ● You may see some blood or urine around where the catheter enters your body, especially when walking or having a bowel movement. This is normal, as long as there’s urine draining into the drainage bag. If there’s not, call your healthcare provider. ● While you have your catheter, drink 1 to 2 glasses of liquids every 2 hours while you’re awake. ● Make sure that the catheter is in place in a tension free manner. The catheter should not be tight and should sit loosely. Showering ● You can shower while you have your catheter in place. Don’t take a bath until after your catheter is removed. ● Make sure you always shower with your night bag. Don’t shower with your leg bag. You may find it easier to shower in the morning. Cleaning Your Catheter You can clean your catheter while you’re in the shower. You will need the following supplies: 1. Gather your supplies. You will need: ○ Mild soap ○ Water 2. Wash your hands with soap and water for at least 20 seconds.
    [Show full text]
  • Answer Key Chapter 1
    Instructor's Guide AC210610: Basic CPT/HCPCS Exercises Page 1 of 101 Answer Key Chapter 1 Introduction to Clinical Coding 1.1: Self-Assessment Exercise 1. The patient is seen as an outpatient for a bilateral mammogram. CPT Code: 77055-50 Note that the description for code 77055 is for a unilateral (one side) mammogram. 77056 is the correct code for a bilateral mammogram. Use of modifier -50 for bilateral is not appropriate when CPT code descriptions differentiate between unilateral and bilateral. 2. Physician performs a closed manipulation of a medial malleolus fracture—left ankle. CPT Code: 27766-LT The code represents an open treatment of the fracture, but the physician performed a closed manipulation. Correct code: 27762-LT 3. Surgeon performs a cystourethroscopy with dilation of a urethral stricture. CPT Code: 52341 The documentation states that it was a urethral stricture, but the CPT code identifies treatment of ureteral stricture. Correct code: 52281 4. The operative report states that the physician performed Strabismus surgery, requiring resection of the medial rectus muscle. CPT Code: 67314 The CPT code selection is for resection of one vertical muscle, but the medial rectus muscle is horizontal. Correct code: 67311 5. The chiropractor documents that he performed osteopathic manipulation on the neck and back (lumbar/thoracic). CPT Code: 98925 Note in the paragraph before code 98925, the body regions are identified. The neck would be the cervical region; the thoracic and lumbar regions are identified separately. Therefore, three body regions are identified. Correct code: 98926 Instructor's Guide AC210610: Basic CPT/HCPCS Exercises Page 2 of 101 6.
    [Show full text]
  • Early Activation of Artificial Urinary Sphincter: a Pilot Study
    Early Activation of Artificial Urinary Sphincter: A Pilot study Abstract: Urinary incontinence or loss of bladder control is a troublesome issue for all affected patients. The causes of urinary incontinence and its treatment options vary widely. A commonly encountered reason for urinary incontinence in men is related to treatment for prostate cancer. These treatment options can range from surgical removal of the prostate, external beam radiation therapy, and/or brachytherapy, the insertion of radioactive implants directly into the tissue. Mild cases of incontinence are responsive to more conservative measures, but moderate to severe cases often require placement of an artificial urinary sphincter. Typically, these devices are left deactivated for a period of 4- 6 weeks following implantation to allow swelling to subside before use. We hypothesize that the device could be activated within an earlier timeframe without increasing the risk of complications. No studies to date have evaluated this; therefore we plan to conduct a prospective study in which we will activate the device 3 weeks after placement and monitor for complications. Aim of the study: To assess the safety and feasibility of early activation of an artificial urinary sphincter and assess whether or not this increases the risk of postoperative complications. We hypothesize that a period of 3 weeks should allow adequate time for the resolution of urethral and scrotal swelling following artificial urinary sphincter placement, and that activation of the device at that time, as opposed to traditional 4-6 weeks post-operatively, will lead to improved patient satisfaction with no increase in postoperative complications. Background: Urinary incontinence is one of the most common complications following surgical treatment of prostate cancer via radical prostatectomy.
    [Show full text]
  • Surgery Instrumnts Khaled Khalilia Group 7
    Surgery Instrumnts khaled khalilia Group 7 Scalpel handle blade +blade scalpel blade disposable fixed blade knife (Péan - Hand-grip : This grip is best for initial incisions and larger cuts. - Pen-grip : used for more precise cuts with smaller blades. - Changing Blade with Hemostat Liston Charrière Saw AmputationAmputati knife on knife Gigli Saw . a flexible wire saw used by surgeons for bone cutting .A gigli saw is used mainly for amputation surgeries. is the removal of a body extremity by trauma, prolonged constriction, or surgery. Scissors: here are two types of scissors used in surgeries.( zirconia/ ceramic,/ nitinol /titanium) . Ring scissors look much like standard utility scissors with two finger loops. Spring scissors are small scissors used mostly in eye surgery or microsurgery . Bandage scissors: Bandage scissors are angled tip scissors. helps in cutting bandages without gouging the skin. To size bandages and dressings. To cut through medical gauze. To cut through bandages already in place. Tenotomy Scissors: used to perform delicate surgery. used to cut small tissues They can be straight or curved, and blunt or sharp, depending upon necessity. operations in ophthalmic surgery or in neurosurgery. 10 c”m Metzenbaum scissors: designed for cutting delicate tissue come in variable lengths and have a relatively long shank-to-blade ratio blades can be curved or straight. the most commonly used scissors for cutting tissue. Use: ental, obstetrical, gynecological, dermatological, ophthalmological. Metzenbaum scissors Bandage scissors Tenotomy scissors Surgical scissors Forceps: Without teeth With teeth Dissecting forceps (Anatomical) With teeth: for tougher(hart) tissue: Fascia,Skin Without teeth: (atraumatic): for delicate tissues (empfindlich): Bowel Vessels.
    [Show full text]
  • Official Proceedings
    Scientific Session Awards Abstracts presented at the Society’s annual meeting will be considered for the following awards: • The George Peters Award recognizes the best presentation by a breast fellow. In addition to a plaque, the winner receives $1,000. The winner is selected by the Society’s Publications Committee. The award was established in 2004 by the Society to honor Dr. George N. Peters, who was instrumental in bringing together the Susan G. Komen Breast Cancer Foundation, The American Society of Breast Surgeons, the American Society of Breast Disease, and the Society of Surgical Oncology to develop educational objectives for breast fellowships. The educational objectives were first used to award Komen Interdisciplinary Breast Fellowships. Subsequently the curriculum was used for the breast fellowship credentialing process that has led to the development of a nationwide matching program for breast fellowships. • The Scientific Presentation Award recognizes an outstanding presentation by a resident, fellow, or trainee. The winner of this award is also determined by the Publications Committee. In addition to a plaque, the winner receives $500. • All presenters are eligible for the Scientific Impact Award. The recipient of the award, selected by audience vote, is honored with a plaque. All awards are supported by The American Society of Breast Surgeons Foundation. The American Society of Breast Surgeons 2 2017 Official Proceedings Publications Committee Chair Judy C. Boughey, MD Members Charles Balch, MD Sarah Blair, MD Katherina Zabicki Calvillo, MD Suzanne Brooks Coopey, MD Emilia Diego, MD Jill Dietz, MD Mahmoud El-Tamer, MD Mehra Golshan, MD E. Shelley Hwang, MD Susan Kesmodel, MD Brigid Killelea, MD Michael Koretz, MD Henry Kuerer, MD, PhD Swati A.
    [Show full text]
  • Fine Surgical Instruments for Research™
    FINE SCIENCE TOOLS CATALOG 2021 FINE SCIENCE TOOLS CATALOG FINE SURGICAL INSTRUMENTS FOR RESEARCH™ TABLE OF CONTENTS | CATALOG 2021 Scissors 3 – 35 Spring 3 – 14 Fine 15 – 28 Letter from the Managing Partner Surgical 29 – 35 Bone Instruments 36 – 49 Rongeurs 36 – 38 Dear Customers, Cutters 39 – 47 Other Bone Instruments 47 – 48 After my uncle and founder of Fine Science Tools, Hans, handed Curettes & Chisels 49 over the management of the company to my cousin Rob and I Scalpels & Knives 50 – 61 last year, a lot has happened. Coming to FST as an “outsider”, my primary goal was to learn everything about the products, customers and the entire company. From my very first day, Forceps 63 – 91 I learned just how much my uncle Hans and the excellent Dumont 63 – 73 managerial team, Rob, Michael and Christina were able to Fine 72 – 80 grow the company over the last 45 years from a single office in Moria 74 S&T 75, 77 Vancouver into a global enterprise, a tremendous achievement Standard 81 – 91 that they should be proud of. Through excellent customer Hemostats 92 – 97 service, impeccable product quality and a passionate team, FST has become a household name in surgical and microsurgical instruments and accessories. During the COVID19 pandemic and the following worldwide lockdown, whether at their home office or on-site, our teams Probes & Hooks 99 – 103 around the world were able to provide our customers with the Spatulae 102 – 105 instruments and accessories they needed. Under challenging Hippocampal Tools & Spoons 106 – 107 circumstances, we kept our warehouses open in order to ship Pins & Holders 108 – 109 products to research laboratories, biotech’s and academic Wound Closure 110 – 121 institutions around the world while our support staff actively Needle Holders & Suture 110 – 118 Staplers, Clips & Applicators 119 – 121 continued to provide assistance to all customer questions and Retractors 122 – 129 inquiries.
    [Show full text]
  • Information for Females Considering an Artificial Urinary Sphincter Device
    Information for Females Considering an Artificial Urinary Sphincter Device UHB is a no smoking Trust Introduction This leaflet is designed to give you information about the artificial urethral sphincter (AUS) procedure. It is essential that you read this booklet carefully before the surgery, so that you fully understand the operation and the care that is required before and after the operation. If you have any questions or concerns about the procedure you can contact the specialist urology nurses on 0121 371 6929. Why do I need an artificial urethral sphincter (AUS)? A sphincter is a muscle structure, normally circular, which controls the flow of bodily fluids such as urine. A normal sphincter prevents urine from leaking however sometimes the sphincter fails and urine leaks out making you incontinent. Artificial urinary sphincter implantation is usually second line treatment for moderate to severe stress urinary incontinence. Your consultant may recommend it when other treatment options have a low chance of being successful or after a previous surgical treatment has failed. The goal of the device implantation is to reduce leakage of urine during activities such as sneezing, coughing, laughing or running. Urodynamic testing (see Urodynamic Studies leaflet PI/0185/4) will be required to ensure that there are no contraindications for this surgery. What is an AUS? An AUS is an artificial device that takes the place of the damaged sphincter to restore control of the flow of urine. It is a hand-controlled device filled with a sterile saline solution that opens and closes the urethra to give you control of your bladder.
    [Show full text]
  • CATHETER CARE a Guide for Users of Indwelling Catheters and Their Carers
    CATHETER CARE A guide for users of indwelling catheters and their carers www.bladderandbowelfoundation.org INTRODUCTION Catheterisation of the bladder has been anaesthetic or coma provides the clinician performed since time immemorial to drain with vital evidence about their condition. urine from the bladder when it fails to empty. Under any of these circumstances drainage The bladder acts as a temporary reservoir for of the bladder to collect the urine becomes a urine on its passage out of the body through vital aspect of patient care. the urethra. About 1500 ml of urine a day are The modern catheter consists of a thin, flexible produced, containing soluble waste products hollow tube made of silicone or of latex which filtered by the kidneys from the bloodstream. will normally be coated. A wide variety of With a limited capacity of 300 – 500 ml, the polymer coatings have been introduced bladder evacuates its contents intermittently in recent years to reduce friction by use of about 6 – 10 times in 24 hours. This cyclical hydrogels which can provide a hydrophilic filling and emptying of the bladder demands slippery surface and antimicrobials such perfect paradoxical coordination between as silver or antibiotics to counter the risk of bladder and urethra; as the bladder relaxes to urinary tract infections. accommodate the increasing volume of urine so the urethra contracts to prevent leakage Two main types of urinary catheter are and vice versa when the bladder empties. manufactured either for single-use or for The control mechanism is masterminded by continuous indwelling drainage. The single- the network of nerves that pass between use catheter is selected for intermittent bladder and brain via the spinal cord, catheterisation, passing the catheter through ensuring the bladder not only evacuates its the urethra into the bladder to drain the urine contents completely at each void but also and then it is removed.
    [Show full text]
  • Endometrial Biopsy
    Practice Tips Series on women’s health Endometrial biopsy Christiane Kuntz, MD, CCFP, FCFP bnormal uterine bleeding is common among peri- or oral nonsteroidal anti-inflammatory drugs, such as Amenopausal and postmenopausal (amenorrheic for ibuprofen 600 mg, naproxen 500 mg, or ketorolac 10 mg 12 months or longer) women. During perimenopause, (taken with food or milk), about 30 minutes before the which can last up to 8 years, frequent anovulatory cycles biopsy, to alleviate or prevent uterine cramping. A 3-mm can result in proliferative changes in the endometrial lin- osmotic laminaria (seaweed) can also be inserted in the ing and possibly in irregular and heavier vaginal bleeding. os 4 to 6 hours before the biopsy to promote cervical Postmenopausal bleeding, often caused by endometrial dilatation. atrophy, must always be investigated.1 Controversy per- An endometrial suction catheter is a thin, somewhat sists about whether initial workup should include endo- flexible, hollow plastic tube about 3.1 mm in diameter, metrial biopsy (sensitivity up to 97.5% for the detection with a suction piston inside the lumen.2 In order to facil- of endometrial carcinoma) or transvaginal (most helpful itate insertion, the sampling catheter could be placed to assess endometrial lining) pelvic ultrasound (sensitiv- in a freezer for a few minutes to stiffen the tube. Prior ity 90% to detect abnormalities).2 Guidelines suggest that knowledge of uterine position, obtained through biman- if results of pelvic ultrasound show endometrial thickness ual examination or pelvic ultrasound, influences the of 5 mm or more, it is advisable to perform an endome- angle of catheter insertion.
    [Show full text]
  • Cardiovascular Catalog - U.S
    Cardiovascular Catalog - U.S. Table of Contents About Us . 3 STABILIZER® Marker Steerable Guidewire 44 MYNXGRIP® Vascular Closure Device 91 CORDIS® Access Portfolio. .4 . SHINOBI® Steerable Guidewire 45 RAILWAY® Sheathless Access System 91 SHINOBI® Plus Steerable Guidewire 45 RAIN Sheath™ Transradial Thin-Walled Introducer 92 CORDIS® Sheath Portfolio . 5 REFLEX® Steerable Guidewire 46 Standard Biopsy Forceps 93 AVANTI®+ Sheath Introducer 5 WIZDOM® Steerable Guidewire 47 SUPER TORQUE® Diagnostic Catheter 94 AVANTI®+ Mid-Length Sheath Introducer 6 CORDIS® Guiding Catheters . 49 TRYTON Side Branch Stent 94 AVANTI®+ Valveless Portless Sheath Introducer With Mini- VISTA BRITE TIP® Guiding Catheter 96 ADROIT® Guiding Catheter 49 Guidewire 7 ZEPHYR® Vascular Compression Band 96 AVANTI®+ Brachial Sheath Introducer With Mini-Guidewire 7 ADROIT®Guiding Catheter - EcoPac Five Pacs 58 AVANTI®+ Sheath Introducer With Mini-Guidewire 8 CORDIS® Guiding Catheters . 59 General Information. 98 . AVANTI®+ Transradial Sheath Introducer Kit 8 VISTA BRITE TIP® and Long VISTA BRITE TIP® Guiding Catheters U S Headquarters 98 59 Customer Service Center 98 CORDIS® Accessories Portfolio . 9 Technical Information 98 Obturators 9 VISTA BRITE TIP® and Long VISTA BRITE TIP® Guiding Catheters - EcoPac Five Pacs 71 Terms 98 Vessel Dilators 10 Standing Purchase Orders 98 CORDIS® RADIAL360 Portfolio. 11 . PTCA Balloons. 72. Intended Product Usage/Storage 98 RAIN Sheath™ Transradial Thin-Walled Introducer 12 EMPIRA® RX Pre-Dilatation Catheter 72 Return Policy 98 RAILWAY® Sheathless Access System 13 EMPIRA NC® RX Post-Dilatation Catheter 73 Return Authorization 98 ZEPHYR® Vascular Compression Band 14 MOZEC™ PTCA Balloon Dilatation Catheter 74 Credits 98 INFINITI® & SUPER TORQUE® PLUS Diagnostic Catheters 15 MOZEC™ NC PTCA Balloon Dilatation Catheter 75 Return Logistics 99 Product Complaints 99 CORDIS® Diagnostic Portfolio.
    [Show full text]
  • Development of an Intraperitoneal Catheter Placement Device for Use on the Battlefield
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mechanical (and Materials) Engineering -- Mechanical & Materials Engineering, Dissertations, Theses, and Student Research Department of 5-2021 Development of an Intraperitoneal Catheter Placement Device for Use on the Battlefield Riley Reynolds University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/mechengdiss Part of the Biomedical Devices and Instrumentation Commons, Materials Science and Engineering Commons, and the Mechanical Engineering Commons Reynolds, Riley, "Development of an Intraperitoneal Catheter Placement Device for Use on the Battlefield" (2021). Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research. 164. https://digitalcommons.unl.edu/mechengdiss/164 This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DEVELOPMENT OF AN INTRAPERITONEAL CATHETER PLACEMENT DEVICE FOR USE ON THE BATTLEFIELD By Riley Reynolds A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Mechanical Engineering and Applied Mechanics Under the Supervision of Professor Benjamin S. Terry Lincoln, Nebraska May 2021 DEVELOPMENT OF AN INTRAPERITONEAL CATHETER PLACEMENT DEVICE FOR USE ON THE BATTLEFIELD Riley Reynolds, M.S. University of Nebraska, 2021 Adviser: Benjamin Terry The objective of this project was to simplify peritoneal cavity access so an Airforce field medic can safely infuse oxygen microbubbles (OMBs) into the intraperitoneal space for the emergency treatment of hypoxia due to lung damage.
    [Show full text]