Fibre Dimorphism: Cell Type Diversification As an Evolutionary Strategy in Angiosperm Woods

Total Page:16

File Type:pdf, Size:1020Kb

Fibre Dimorphism: Cell Type Diversification As an Evolutionary Strategy in Angiosperm Woods bs_bs_banner Botanical Journal of the Linnean Society, 2014, 174, 44–67. With 9 figures Fibre dimorphism: cell type diversification as an evolutionary strategy in angiosperm woods SHERWIN CARLQUIST* FLS Santa Barbara Botanic Garden, 1212 Mission Canyon Road, Santa Barbara, CA 93105, USA Received 15 May 2013; revised 4 August 2013; accepted for publication 14 August 2013 Dimorphic fibres in angiosperm woods are designated when zones of two different kinds of fibres can be distinguished in transverse sections. The usage of most authors contrasts wider, thinner-walled, shorter (some- times storied) fibres with narrower, thicker-walled fibres that have narrower lumina. The wider fibres can be distinguished in longitudinal sections from axial parenchyma, which usually consists of strands of two or more cells each surrounded by secondary walls (and thus different from septate fibres). This phenomenon occurs in some Araliaceae, Asteraceae, Fabaceae, Myrtales (notably Lythraceae), Sapindales (especially Sapindaceae), Urticales and even some Gnetales. Additional instances can doubtless be found, especially if instances of wide latewood fibres together with narrow earlywood fibres are included. There is little physiological evidence on differential functions of dimorphic fibres, except in Acer, in which hydrolysis of starch in the wide fibres is known to result in transfer of sugar into vessels early in the growing season. Starch storage in axial parenchyma may, in a complementary way, serve for embolism reversal and prevention and thus for maintenance of the water columns. Crystalliferous fibres (Myrtales, Sapindales) can be considered a form of fibre dimorphism that deters predation. Gelatinous fibres, often equated with tension wood, can also be considered as a form of fibre dimorphism. The evolutionary significance of fibre dimorphism is that a few small changes in fibre structure can result in the accomplishment of diversified functions. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174, 44–67. ADDITIONAL KEYWORDS: Acer – aerating cells – axial parenchyma – crystalliferous fibres – gelatinous fibres. INTRODUCTION this definition woods in which earlywood fibres corre- spond to the wider fibres, with narrower fibres in The phenomenon of fibre dimorphism was first latewood. A large proportion of instances of fibre described in wood of helianthoid Asteraceae (Carlquist, dimorphism involve living fibres, either septate or 1958), and subsequently cited as a product of imper- nucleate, but without septa. This cursory description forate tracheary element evolution (Carlquist, 1961). does not include the full variety one observes, and the The concept has since been readily accepted, and has present account is designed to characterize fibre been recorded in wood anatomical monographs of dimorphism more fully so that the phenomenon can be families and genera of Myrtales, Sapindales and Urti- noted and mentioned more frequently. cales, as noted in detail below, but is likely to be found In searching for diversity of expressions of fibre more widely. In the usual sense, fibre dimorphism dimorphism, two other manifestations must inevita- consists of coexistence of zones of wide, thin-walled, bly be considered. Crystalliferous fibres are pertinent shorter fibres (usually libriform fibres, occasionally in this respect, and have been described for several fibre-tracheids) and zones of narrower, longer, thicker- families of Myrtales. An expanded consideration of walled fibres. These zones may not correspond at all to crystalliferous fibres and similar crystalliferous fibri- latewood and earlywood. However, one may include in form cells in wood is an additional concern of the present study. Likewise, gelatinous fibres (character- *E-mail: [email protected] istic of tension wood) and similar fibres with 44 © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174, 44–67 FIBRE DIMORPHISM IN ANGIOSPERM WOOD 45 differentiation between inner- and outer-wall layers of view. When examining a transverse section, in fibriform cells should be included in the concept of however, wide libriform fibres (or fibre-tracheids) may fibre dimorphism. resemble axial parenchyma, and examination of lon- Fibre dimorphism can range from subtle to promi- gitudinal sections is necessary to distinguish between nent as seen in wood sections. To introduce the topic, wide, thin-walled libriform fibres and axial paren- the characteristics that may qualify under the rubric chyma strands. Radial sections are perhaps most of fibre dimorphism are each discussed. This is fol- useful in this respect. Tangential sections, however, lowed by a systematic section, in which genera that are required when one is deciding whether storying exemplify these characteristics are described and occurs in a given wood. Thus, the typical assemblage illustrated in detail. The full extent of fibre dimor- of transverse (cross), tangential and radial sections phism in angiosperm woods cannot be presented at that one commonly sees on permanent slides of woods this point. Wood of only a small fraction of woody is a requisite. Such sections, made with the typical species has been collected to date, and study of all of methods by means of sliding microtome techniques, those collections is not feasible. Before I explore account for the bulk of the collections cited below. angiosperms further for fibre dimorphism, we must be Although sections made from dried wood specimens aware of the range of characteristics that have thus can be entirely satisfactory in many cases, additional far been reported. Most angiosperm woods have important information (e.g. occurrence of nuclei and monomorphic fibres (= monomorphic imperforate tra- starch) can be obtained reliably only from liquid- cheary elements). In certain families, additional preserved material. Comparisons of liquid-preserved examples are likely to be discovered once workers and dried wood specimens of a given species often become familiar with the appearances cited here. show disappearance or alteration of starch during the Some preliminary patterns of systematic occurrence drying process because of hydrolysis and fungal and are evident and can be mentioned, however. Fibre microbial action. For liquid-preserved material in dimorphism in its various manifestations has arisen which thin cell walls are prevalent, the paraffin independently in a number of clades. methods described by Carlquist (1982) have been Fibre dimorphism can be interpreted in terms of followed. wood physiology and mechanics, together with other The term ‘fibre’ is used throughout this paper as a features of any given wood. Fibres can be distin- synonym for ‘imperforate tracheary element’. Most of guished from axial parenchyma in longitudinal sec- the species studied have libriform fibres; a few have tions (in a small number of species, there can be fibre-tracheids, and none was observed to have trac- admixture of the two cell types), and the probable heids. The correlation with libriform fibres is strong, physiological differences between axial parenchyma because nearly all instances of living (including and wide fibres can account for why fibre dimorphism septate) fibres involve libriform fibres. Living fibres should have evolved in a number of woods, rather have contents with potential physiological value and than simply an increase in the amount of axial paren- thereby evolutionary possibilities of more than a chyma. Dimorphism and polymorphism have occurred mechanical nature. Fibre dimorphism in the case of in several cell types. One can point to vessel origin gelatinous fibres (non-lignified fibres), however, from tracheids as a major instance of dimorphism in usually does not involve living fibres. a cell type, resulting in division of labour. Dimor- The collections studied are as follows. Araliaceae: phism in wood cells (vessels, tracheids, fibre- Aralia spinosa L., USw-12014. Asteraceae: Dubautia tracheids) has occurred repeatedly in angiosperm menziesii (A.Gray) D.D.Keck, Carlquist H17 (UC); woods (e.g. coexistence of vasicentric tracheids and D. platyphylla (A.Gray) D.D.Keck, J. W. H. 19188, libriform fibres as a result of tracheid dimorphism, 1948, University of Illinois; D. raillardioides Hillebr., Carlquist, 1988; vessel dimorphism in lianas, Carlquist H16 (UC); Wilkesia gymnoxiphium A.Gray, Carlquist, 1985). Such repatterning by means of cell Carlquist H10 (UC). Burseraceae: Santiria laevigata type diversification represents a salient feature of Blume, Yw-19880. Combretaceae: Combretum eryth- wood evolution, and probably accounts not only for a rophyllum Sond., cultivated at the Vavra Estate of considerable portion of the amazing amount of phyl- (UCLA) C. farinosum Kunth., Henrickson & Christ- etic change that has occurred in angiosperm woods, man 2101 (RSA). Fabaceae: Acacia dealbata Link, but also the physiological success of various clades. cultivated at the Vavra Estate (UCLA); A. urophylla Benth. ex Lindl., Carlquist 5563 (RSA). Fouquie- riaceae: Fouquieria splendens Engelm., stem SJRw- MATERIALS AND METHODS 14358; root Henrickson 21437 (RSA). Moraceae: Fibre dimorphism is conspicuous in wood transverse Maclura pomifera (Rob.) C.K.Schneid., Utrecht sections because wall thickness, lumen diameter and UN-262; Morus rubra L. Ripon W-252. Onagraceae: cell diameter are most easily discerned in this plane Diplandra lopezioides Hook. & Arn., Breedlove 8052 © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174, 44–67 46 S. CARLQUIST
Recommended publications
  • South West Region
    Regional Services Division – South West Region South West Region ‐ Parks & Wildlife and FPC Disturbance Operations Flora and Vegetation Survey Assessment Form 1. Proposed Operations: (to be completed by proponent) NBX0217 Summary of Proposed Operation: Road Construction and Timber Harvesting New road construction – 3.75km Existing road upgrade – 14.9km New gravel pit construction – 2ha (exploration area) Contact Person and Contact Details: Adam Powell [email protected] 0427 191 332 Area of impact; District/Region, State Forest Block, Coupe/Compartment (shapefile to be provided): Blackwood District South West Region Barrabup 0317 Period of proposed disturbance: November 2016 to December 2017 1 2.Desktop Assessment: (to be completed by the Region) ‐ Check Forest Ecosystem reservation. Forest Ecosystems proposed for impact: Jarrah Forest‐Blackwood Plateau, Shrub, herb and sedgelands, Darling Scarp Y Are activities in a Forest Ecosystem that triggers informal reservation under the FMP? The Darling Scarp Forest Ecosystem is a Poorly Reserved Forest Ecosystem and needs to be protected as an Informal Reserve under the Forest Management Plan (Appendix 11) ‐ Check Vegetation Complexes, extents remaining uncleared and in reservation (DEC 2007/EPA 2006). Vegetation Complex Pre‐European extent (%) Pre‐European extent (Ha) Extent in formal/informal reservation (%) Bidella (BD) 94% 44,898 47% Darling Scarp (DS) Figures not available Corresponds to Darling Scarp Forest Ecosystem extent Gale (GA) 80% 899 17% Jalbarragup (JL) 91% 14,786 32% Kingia (KI) 96% 97,735 34% Telerah (TL) 92% 25,548 33% Wishart (WS2) 84% 2,796 35% Y Do any complexes trigger informal reservation under the FMP? Darling Scarp complex as discussed above Y Are any complexes significant as per EPA regionally significant vegetation? Gale (GA) complex is cleared below the recommended retention of 1,500ha (Molloy et.al 2007) ‐ Check Threatened flora and TEC/PEC databases over an appropriate radius of the disturbance boundary.
    [Show full text]
  • List 01 Hawaiian Names 01 Plants
    V\.{). 3 v BOTANICAL BULLETIN NO.2 JUNE. 1913 TERRITORY OF HAWAII BOARD OF AGRICULTURE AND FORESTRY List 01 Hawaiian Names 01 Plants BY JOSEPH F. ROCK Consulting Botanist, Board of Agriculture and Forestry HONOLULU: HAWAIIAN GAZETTE CO., LTD. 1913 ALPHABETICAL LIST OF HAWAIIAN NAMES OF PLANTS. The following list of Hawaiian plant-names has been compiled from various sources. Hillebrand in his valuable Flora of the Hawaiian Islands has given many Hawaiian names, especially of the more common species; these are incorporated in this list with a few corrections. Nearly all Hawaiian plant-names found in this list and not in Hillebrand's Flora were secured from Mr. Francis Gay of the Island of Kauai, an old resident in this Terri­ tory and well acquainted with its plants from a layman's stand­ point. It was the writer's privilege to camp with Mr. Gay in the mountains of Kauai collecting botanical material; for almost every species he could give the native name, which he had se­ cured in the early days from old and reliable natives. Mr. Gay had made spatter prints of many of the native plants in a large record book with their names and uses, as well as their symbolic meaning when occurring in mele (songs) or olioli (chants), at­ tached to them. For all this information the writer is indebted mainly to Mr. Francis Gay and also to Mr. Augustus F. Knudsen of the same Island. The writer also secured Hawaiian names from old na­ tives and Kahunas (priests) in the various islands of the group.
    [Show full text]
  • Vertebrate Fauna in the Southern Forests of Western Australia
    tssN 0085-8129 ODC151:146 VertebrateFauna in The SouthernForests of WesternAustralia A Survey P. CHRISTENSEN,A. ANNELS, G. LIDDELOW AND P. SKINNER FORESTS DEPARTMENT OF WESTERN AUSTRALIA BULLETIN94, 1985 T:- VertebrateFauna in The SouthernForests of WesternAustralia A Survey By P. CHRISTENSEN, A. ANNELS, G. LIDDELOW AND P. SKINNER Edited by Liana ChristensenM.A. (w.A.I.T.) Preparedfor Publicationby Andrew C.A. Cribb B.A. (U.W.A.) P.J. McNamara Acting Conservator of Forcsts 1985 I I r FRONT COVER The Bush R.at (Rattus fuscipes): the most abundantof the native mammals recordedby the surueyteams in WesternAustralia's southernforests. Coverphotograph: B. A. & A. C. WELLS Printed in WesternAustralia Publishedby the ForestsDepartmeDt of WesternAustralia Editor MarianneR.L. Lewis AssistantEditor Andrew C.A. Cribb DesignTrish Ryder CPl9425/7/85- Bf Atthority WILLIAM BENBOW,Aciing Cov€mmenaPrinter, Wesrern Ausrralia + Contents Page SUMMARY SECTION I-INTRODUCTION HistoricalBackground. Recent Perspectives SECTION II-DESCRIPTION OF SURVEY AREA Boundariesand PhysicalFeatures 3 Geology 3 Soils 3 Climate 6 Vegetation 6 VegetationTypes. 8 SECTION III-SURVEY METHODS 13 SECTION IV-SURVEY RESULTSAND LIST OF SPECIES. l6 (A) MAMMALS Discussionof Findings. l6 List of Species (i) IndigenousSpecies .17 (ii) IntroducedSpecies .30 (B) BIRDS Discussionof Findings List of Species .34 (C) REPTILES Discussionof Findings. List of Species. .49 (D) AMPHIBIANS Discussionof Findings. 55 List of Species. 55 (E) FRESHWATER FISH Discussionof Findings. .59 List of Species (i) IndigenousSpecies 59 (ii) IntroducedSpecies 6l SECTION V-GENERALDISCUSSION 63 ACKNOWLEDGEMENTS 68 REFERENCES 69 APPENDICES I-Results from Fauna Surveys 1912-t982 72 II-Results from Other ResearchStudies '74 Within The SurveyArea 1970-1982.
    [Show full text]
  • Vestured Pits in Wood of Onagraceae: Correlations with Ecology, Habit, and Phylogeny1
    VESTURED PITS IN WOOD OF Sherwin Carlquist2 and Peter H. Raven3 ONAGRACEAE: CORRELATIONS WITH ECOLOGY, HABIT, AND PHYLOGENY1 ABSTRACT All Onagraceae for which data are available have vestured pits on vessel-to-vessel pit pairs. Vestures may also be present in some species on the vessel side of vessel-to-ray pit pairs. Herbaceous Onagraceae do not have fewer vestures, although woods with lower density (Circaea L. and Oenothera L.) have fewer vestures. Some Onagraceae from drier areas tend to have smaller vessel pits, and on that account may have fewer vestures (Epilobium L. and Megacorax S. Gonz´alez & W. L. Wagner). Pit apertures as seen on the lumen side of vessel walls are elliptical, occasionally oval, throughout the family. Vestures are predominantly attached to pit aperture margins. As seen from the outer surfaces of vessels, vestures may extend across the pit cavities. Vestures are usually absent or smaller on the distal portions of pit borders (except for Ludwigia L., which grows consistently in wet areas). Distinctive vesture patterns were observed in the several species of Lopezia Cav. and in Xylonagra Donn. Sm. & Rose. Vestures spread onto the lumen-facing vessel walls of Ludwigia octovalvis (Jacq.) P. H. Raven. Although the genera are presented here in the sequence of a recent molecular phylogeny of Onagraceae, ecology and growth forms are more important than evolutionary relationships with respect to abundance, degree of grouping, and morphology of vestured pits. Designation of vesture types is not warranted based on the distribution of named types in Onagraceae and descriptive adjectives seem more useful, although more data on vesturing in the family are needed before patterns of diversity and their extent can be fully ascertained.
    [Show full text]
  • Combretaceae: Phylogeny, Biogeography and DNA
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujdigispace.uj.ac.za (Accessed: Date). Combretaceae: Phylogeny, Biogeography and DNA Barcoding by JEPHRIS GERE THESIS Submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR in BOTANY in the Faculty of Science at the University of Johannesburg December 2013 Supervisor: Prof Michelle van der Bank Co-supervisor: Dr Olivier Maurin Declaration I declare that this thesis has been composed by me and the work contained within, unless otherwise stated, is my own. _____________________ J. Gere (December 2013) Table of contents Table of contents i Abstract v Foreword vii Index to figures ix Index to tables xv Acknowledgements xviii List of abbreviations xxi Chapter 1: General introduction and objectives 1.1 General introduction 1 1.2 Vegetative morphology 2 1.2.1 Leaf morphology and anatomy 2 1.2.2. Inflorescence 3 1.2.3 Fruit morphology 4 1.3 DNA barcoding 5 1.4 Cytology 6 1.5 Fossil record 7 1.6 Distribution and habitat 7 1.7 Economic Importance 8 1.8 Taxonomic history 9 1.9 Aims and objectives of the study 11 i Table of contents Chapter 2: Molecular phylogeny of Combretaceae with implications for infrageneric classification within subtribe Terminaliinae.
    [Show full text]
  • Forest Vegetation Cover in Binh Chau - Phuoc Buu Nature Reserve in Southern Vietnam
    E3S Web of Conferences 175, 14016 (2020) https://doi.org/10.1051/e3sconf/202017514016 INTERAGROMASH 2020 Forest Vegetation Cover in Binh Chau - Phuoc Buu Nature Reserve in Southern Vietnam Viet Hung Dang¹ʾ²*, Alexander Potokin¹, Thi Lan Anh Dang², Thi Ha Nguyen², and Van Son Le³ 1 Saint-Petersburg State Forest Technical University, Instytutskiy 5U, 194021, St. Petersburg, Russia 2 Vietnam National University of Forestry - Dong Nai Campus, Vietnam, Dong Nai Province, Trang Bom District, Trang Bom town, Tran Phu st., 54 3 Binh Chau - Phuoc Buu Nature Reserve, Ba Ria - Vung Tau Province, Xuyen Moc District, Vietnam Abstract. Binh Chau - Phuoc Buu Nature Reserve is located in the tropical rainforest zone of southeast Vietnam. The obtained results from the study undertaken on the composition of plant species and forest vegetation in Binh Chau - Phuoc Buu Nature Reserve indicated a record of 743 species, 423 genera and 122 families that belongs to the three divisions of vascular plants. These includes: Polypodiophyta, Pinophyta and Magnoliophyta. Useful plants of 743 taxonomy species listed consists of 328 species of medicinal plants, 205 species of timber plants, 168 species of edible plants, 159 species of ornamental plants, 56 species of industrial plants, 10 species of fiber plants and 29 species of unknown use plants, respectively. During the duration of investigation, Nervilia aragoana Gaudich. was newly recorded in the forest vegetation of Binh Chau - Phuoc Buu Reserve. A variety of forest vegetations in the area under study is described. In this study, two major vegetation types of forest were identified in Binh Chau - Phuoc Buu Reserve.
    [Show full text]
  • THE HAWAIIAN SILVERSWORDS Systematics, Affinities, and Phytogeographic Problems of the Genus Argyroxiphium
    THE HAWAIIAN SILVERSWORDS Systematics, Affinities, and Phytogeographic Problems of the Genus Argyroxiphium By DAVID D. KECK BERNICE P. BISHOP MUSEUM OCCASIONAL PAPERS VOLUME XI, NUMBER 19 HONOLULU, HAWAII PUBLISHED BY THE MuSEUM March 20, 1936 THE HAW AllAN SILVERSWORDS: Systematics, Affinities, and Phytogeographic Problems of the Argyroxiphium By DAVID D. KF;CK Carnegie Institution of Washington, Stanford University, California INTRODUCTION Theories as to the origin of the Hawaiian islands and the deriva­ tion of their flora and fauna have appeared with frequency and aroused the greatest interest among biologists. Probably no other region in the world has developed so extraordinary a degree of endemism, which, according to Hillebrand (9) 1, for the indigenous vascular plants is 75.93 percent. Much more recent figures for the indigenous flowering plants given by Campbell (5) reach the remark­ able figure of 9°04 percent! This endemism is directly connected with the fact that the Hawaiian Archipelago is the most isolated area of equal size in the world. There have been many advocates of the theory that the Hawaiian islands are of oceanic origin, that they were elevated from the bottom of the ocean by volcanic action, and that they have always been completely isolated. Others have taken the opposing view that the islands have not always been so isolated, but may even be considered of continental origin. Those with the latter viewpoint believe that the present archipelago represents but the tips of volcanic mountain masses superimposed upon a large block that has undergone sub­ sidence. For instance, Campbell (4) believes there may have been a more or less direct connection.
    [Show full text]
  • Lao Flora a Checklist of Plants Found in Lao PDR with Scientific and Vernacular Names
    Lao Flora A checklist of plants found in Lao PDR with scientific and vernacular names 2 L. Inthakoun and C. O. Delang Lao Flora A checklist of plants found in Lao PDR with scientific and vernacular names Lamphay Inthakoun Claudio O. Delang Lulu Press First published 2008 by Lulu Enterprises, Inc. 860 Aviation Parkway, Suite 300 Morrisville, NC 27560 The book can be purchased or downloaded from http://lulu.com/lao_flora. Contents Introduction 1 Lao Flora Listed by Lao Script 13-121 Lao Flora Listed by Genus and Species 123-238 Introduction This introduction1 provides a brief synopsis of the forest habitats and ecoregions found in Lao PDR, as well as an overview of the related research on plant taxonomy. This is followed by a description of the structure and contents of the present volume and a citation of sources used to compile the present checklist. 1. Forest habitats and ecoregions in Lao PDR 1.1. Forest habitats Forest classifications can be vegetation-related (which implies that the factors used to distinguish forests are the physiognomic or floristic characteristics of the vegetation), biophysically- and climate-related (where broad environmental or geographic characteristics become the distinguishing factors), or management- related (which involves utilizing combinations of vegetation and non-vegetation criteria). These modes of classification are scale-specific: while global-scale classifications are largely based on climatic criteria such as rainfall and temperature, classification systems used at country- or smaller regional-level scales emphasise floristic and physiognomic characteristics as well as physical site factors (Wong, Delang, Schmidt-Vogt, 2007). These latter variables were taken into account by the National Office of Forest Inventory and Planning (NOFIP) when it classified the forests of Lao PDR (Manivong and Sandewall, 1992).
    [Show full text]
  • Anatomy, Cytology, and Evolutionary Relationships Sherwin Carlquist Claremont Graduate School
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 4 | Issue 2 Article 2 1959 Studies on Madinae: Anatomy, Cytology, and Evolutionary Relationships Sherwin Carlquist Claremont Graduate School Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1959) "Studies on Madinae: Anatomy, Cytology, and Evolutionary Relationships," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 4: Iss. 2, Article 2. Available at: http://scholarship.claremont.edu/aliso/vol4/iss2/2 ALISO VoL. 4, No.2, pp. 171-236 }UNE 26, 1959 STUDIES ON MADINAE: ANATOMY, CYTOLOGY, AND EVOLUTIONARY RELATIONSHIPS SHERWIN CARLQUIST Claremont Graduate School, Claremont, California INTRODUCTION The tarweeds (Compositae, tribe Heliantheae, subtribe Madinae) are one of the best-known groups of western plants from the aspects of gross morphology, cytology, and genetics. I have desired to complement this body of information with studies on the anatomy of the subtribe so that a more adequate picture of variation and evolution in this remarkable group could be obtained. The anatomical diversity of the Madinae is, in fact, no less interesting than the variation patterns in cytological, genetical, and morphological characters. The latter features lend themselves well to studies of speci­ ation, whereas the anatomical characters evidence trends in the development of genera or criteria for defining the group as a whole. In a number of instances, species dif­ ferences are also revealed by anatomical studies. The primary focus of this study is the definition of the subtribe and its genera, and the exposition of phyletic tendencies within the Madinae by combination of anatomical data with that of other disciplines.
    [Show full text]
  • Levin Et Al. 2004
    Systematic Botany (2004), 29(1): pp. 147–164 q Copyright 2004 by the American Society of Plant Taxonomists Paraphyly in Tribe Onagreae: Insights into Phylogenetic Relationships of Onagraceae Based on Nuclear and Chloroplast Sequence Data RACHEL A. LEVIN,1,7 WARREN L. WAGNER,1 PETER C. HOCH,2 WILLIAM J. HAHN,3 AARON RODRIGUEZ,4 DAVID A. BAUM,5 LILIANA KATINAS,6 ELIZABETH A. ZIMMER,1 and KENNETH J. SYTSMA5 1Department of Systematic Biology, Botany, MRC 166, Smithsonian Institution, P. O. Box 37012, Washington, District of Columbia 20013-7012; 2Missouri Botanical Garden, P. O. Box 299, St. Louis, Missouri 63166-0299; 3108 White-Gravenor, Box 571003, Georgetown University, Washington, District of Columbia, 20057-1003; 4Departamento de Botan´‡ca y Zoolog´‡a, Apartado Postal 139, 45101 Zapopan, Jalisco, Mexico; 5Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706; 6Departamento Cienti!co de Plantas Vasculares, Museo de Ciencias Naturales, Paseo del Bosque s/n, 1900 La Plata, Provincia de Buenos Aires, Argentina 7Author for correspondence ([email protected]) Communicating Editor: Thomas G. Lammers ABSTRACT. Onagraceae are a family of 17 genera in seven tribes, with the majority of species in tribes Onagreae and Epilobieae. Despite the species-richness of these two tribes, to date no phylogenetic study has been done with suf!cient taxon sampling to examine relationships between and within these tribes. In this study, we used DNA sequence data from one nuclear region (ITS) and two chloroplast regions (trnL-trnF and rps16) to infer phylogenetic relationships among 93 taxa across the family, with concentrated sampling in the large tribe Onagreae.
    [Show full text]
  • Check List the Journal Of
    12 2 1859 the journal of biodiversity data 21 March 2016 Check List LISTS OF SPECIES Check List 12(2): 1859, 21 March 2016 doi: http://dx.doi.org/10.15560/12.2.1859 ISSN 1809-127X © 2016 Check List and Authors Checklist of the vascular flora of Reserva Biológica San Luis, Costa Rica José Esteban Jiménez1*, Pedro Juárez2 and Armando Díaz2 1 Programa Regional de Posgrado en Biología, Universidad de Costa Rica, Apdo. 11501−2060, San José, Costa Rica 2 Escuela de Ciencias Ambientales, Universidad Nacional de Costa Rica, Heredia, Costa Rica * Corresponding author. E-mail: [email protected] Abstract: The Reserva Biológica San Luis is a small vegetation. Located on the Pacific slope of the Cordillera protected area located on the Pacific side of the de Tilarán, the Reserva Biologica San Luis (RBSL) is a Cordillera de Tilarán, northwestern Costa Rica, with a small protected area that preserves a seasonal and forest transitioning between the basal and premontane transitional vegetation between the lowland tropical floras according to Holdridge’s Life Zones. An inventory wet forest and premontane wet forest (Holdridge 1967). of the vascular flora of the reserve was performed by This vegetation type is usually located between 500–800 collecting botanical samples during three years and m on the Pacific slope of Costa Rican mountain ranges, consulting the databases of the CR, INB, MO and USJ especially in the seasonal Central Pacific region, the herbaria. We report 130 families, 477 genera and 716 North Pacific region and in the Central Valley. species of native vascular plants.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Revista mexicana de biodiversidad ISSN: 1870-3453 ISSN: 2007-8706 Instituto de Biología Cocoletzi, Eliezer; Contreras-Varela, Ximena; García-Pozos, María José; López-Portilla, Lourdes; Gaspariano-Machorro, María Dolores; García-Chávez, Juan; Fernandes, G. Wilson; Aguirre-Jaimes, Armando Incidence of galls on fruits of Parkinsonia praecox and its consequences on structure and physiology traits in a Mexican semi-arid region Revista mexicana de biodiversidad, vol. 90, 2019 Instituto de Biología DOI: 10.22201/ib.20078706e.2019.90.2758 Available in: http://www.redalyc.org/articulo.oa?id=42562784019 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Project academic non-profit, developed under the open access initiative Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 90 (2019): e902758 Ecology Incidence of galls on fruits of Parkinsonia praecox and its consequences on structure and physiology traits in a Mexican semi-arid region Incidencia de agallas en frutos de Parkinsonia praecox y sus consecuencias sobre atributos morfológicos y fisiológicos en una zona semiárida de México Eliezer Cocoletzi a, Ximena Contreras-Varela a, b, María José García-Pozos c, Lourdes López-Portilla c, María Dolores Gaspariano-Machorro c, Juan García-Chávez c, G. Wilson Fernandes d, Armando Aguirre-Jaimes a, * a Red de Interacciones Multitróficas, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Congregación El Haya, 91070 Xalapa , Veracruz, Mexico 91070 Xalapa, Veracruz, Mexico b Universidad Veracruzana, Facultad de Biología, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria, 91090 Xalapa, Veracruz, Mexico c Benemérita Universidad Autónoma de Puebla, Facultad de Biología, Blvd.
    [Show full text]