RNA Activation flew in the Face of at Dallas, Was Convinced She Had Messed Would Be Even More Unbelievable Than What Everyone’S Perceived Wisdom Regarding Something Up

Total Page:16

File Type:pdf, Size:1020Kb

RNA Activation flew in the Face of at Dallas, Was Convinced She Had Messed Would Be Even More Unbelievable Than What Everyone’S Perceived Wisdom Regarding Something Up MODIFIED FROM ORIGINAL PHOTO. © 2009, THE ANN ARBOR NEWS. ALL RIGHTS RESERVED. REPRINTED WITH PERMISSION. fter getting the tion by as much as 90%.1 Interestingly, the other genes could also switch on gene data back from the findings confirmed work by Kevin Morris, mkZgl\kbimbhg'Ebd^<hk^rZg]CZghpldb% very first experi- now at the Scripps Research Institute in EbZg]IeZ\^p^k^^qi^\mbg`bgZ\mboZmbhg% ment at her new EZCheeZ%<Zeb_'%pahaZ]in[ebla^]ma^Öklm ghmma^hiihlbm^'ÊP^p^k^lnkikbl^]maZm job, Rosalyn Ram, evidence of this phenomenon in human we didn’t observe gene silencing by the a lab technician cells a year earlier. ]hn[e^&lmkZg]^]KG:%ËlZrlEb'ÊBglm^Z]% at the University ;nm<hk^rZg]CZghpldbZelhghmb\^] we observed strong gene activation.” of Texas Southwestern Medical Center something in their data that, if correct, RNA activation flew in the face of at Dallas, was convinced she had messed would be even more unbelievable than what everyone’s perceived wisdom regarding something up. The results were decidedly Ram saw on her first day at the bench. A few RNA-based regulation. RNA was thought Êp^bk]%Ëla^k^\Zeel'A^keZ[a^Z]l%ma^ h_<hk^rZg]CZghpldbÍll^^fbg`erÊbgZ\- to silence genes only by cutting up mRNA husband-and-wife research duo David tive” RNAs that did not reduce gene expres- via the RNAi pathway, not at the point <hk^rZg];^maZgrCZghpldb%aZ]Zek^Z]r sion reproducibly enhanced transcription of gene transcription and definitely not shown that synthetic DNA molecules with by around 25% to 50%. Such relatively through activation. As such, many of the protein-like backbones, known as peptide small changes weren’t enough to say defin- big names in the RNA world dismissed the nucleic acids, could block gene transcrip- findings out of hand. tion. And as a long shot, in October 2004 ÊBmpZllhaZk]mh`^mmablphkdin[- they had tasked the new lab tech with ebla^]%ËlZrlCZghpldb'ÊBmpZlebd^Zibm\a- trying to do the same with small RNA fork coming out. The RNAi community molecules, fully expecting it not to work. “RNA activation was so hostile.” ;nm bm ]b] phkd3 Ebd^ ma^ i^imb]^ . went against the N nucleic acids, the RNAs targeted to the oth groups had trouble pub- O same promoter also silenced gene expres- grain of everything lishing their papers. Corey MISSI lbhgZmma^e^o^eh_mkZgl\kbimbhg'ÊPa^g Zg] CZghpldbÍl phkd pZl PER [Ram] saw the silencing, she thought we knew about rejected by Science before it was published she had done something wrong,” says in Nature Chemical Biology bg CZgnZkr WITH CZghpldb'ÊLa^]b]gÍmpZgmmhlahpf^ma^ how small RNAs 2007,3pabe^EbZg]IeZ\^[Zmme^]_hkmph ED data because she thought it was supposed years and faced four rejections before INT regulate gene to be a negative result.” they finally published their paper in the The data just didn’t make sense: Sin- expression.” Proceedings of the National Academy of ED. REPR 2 V gle-stranded peptide nucleic acids bind Sciences in November 2006. So, when ER S directly to unwound DNA at the transcrip- —John Rossi <hk^r Zg] CZghpldbÍl iZi^k \Zf^ hnm E R tion start site, and double-stranded RNAs two months later showing the same basic were thought only to target messenger h[l^koZmbhg%ÊbmpZldbg]h_Zk^eb^_%ËEb RIGHTS KG:!fKG:"mhik^o^gmmkZgleZmbhgÉZ lZrl'ÊBm_^em`hh]maZmlhf^hg^^el^Zelh LL . A well characterized process known as RNA itively that the researchers had observed saw a phenomenon that was similar to WS interference, or RNAi. So how could they `^g^Z\mboZmbhg%Ê[nmbmieZgm^]ma^l^^]l ours,” adds Place. both be causing the same effect? With in our minds that maybe activation could However, neither group offered a mablhg^Ög]bg`%ÊZeemahl^mabg`lmaZmrhn be occurring,” says Corey. To investigate the plausible mechanism for how RNA acti- ARBOR NE thought you could predict just flew out the trend further, the researchers switched to a oZmbhgfb`amh\\nk'ÊB]b]gÍmmabgdmaZm NN pbg]hp%ËCZghpldblZrl' cell line with much lower background activ- ma^ ^ob]^g\^ maZm TEb Zg] IeZ\^V aZ] E A H ÊBmmhhdfhgmal[^_hk^p^\hgobg\^] ity levels of their gene of interest, the human really supported the mechanism they were ourselves that the results were real,” says progesterone receptor, and the data became k^ihkmbg`%ËlZrlChagKhllb%Zfhe^\neZk 2009, T Corey. But eventually they did. They tested glaringly obvious: The same RNAs that did geneticist at City of Hope Comprehensive © several different double-stranded RNAs— not inhibit transcription could now trigger Cancer Center in Duarte, Calif., who was O. T O each 21 nucleotides long, just like standard, as much as 10- to 20-fold increases in gene Zk^ob^p^k_hkma^iZi^k'ÊBmp^gmZ`Zbglm H P small interfering RNAs used in RNAi. All expression. The activation effect was real. the grain of everything we knew about of these RNAs perfectly matched regions Before they could publish the findings, how small RNAs regulate gene expression. IGINAL of the DNA promoter but had little to no however, another lab published results The data were clear, but were they looking OR 2 M overlap with the gene’s mRNA, to ensure showing essentially the same effect. A at something indirect? We wanted more the RNAs were acting on transcription, m^Zfe^][rEhg`&<a^g`EbZg]Kh[^km experiments to validate the mechanism ED FRO not translation. Ultimately, in September Place at the University of California, San Zg]ma^rTEbZg]IeZ\^Vg^o^k]b]ma^f'Ë I F I +)).<hk^rZg] CZghpldb lahp^] maZm Francisco, discovered that small RNAs Nonreviewers alike were unconvinced. MOD introduced RNAs could inhibit transcrip- targeting the DNA promoters of three ÊBaZo^ZaZk]mbf^mh^qieZbgma^Ög]bg`l% Ω May 2009 THE SCIENTIST 35 RNA and what mechanism can explain it,” says Argonaute proteins—known members the same direction as mRNA transcription Thomas Tuschl, an RNA expert at New of the RNAi pathway—help facilitiate Zlp^eeZlbgma^hiihlbm^ÉhkÊZgmbl^gl^ËÉ York’s Rockefeller University, in an email. RNA-RNA interactions. Thus, the new- orientation. These ubiquitous noncoding ÊBml^^fllhb]bhlrg\kZmb\Zg]li^\bZeZm found connection between transcrip- RNAs probably served some purpose, the moment,” adds Timothy Nilsen, an tional regulation and Argonaute proteins perhaps even in RNA activation, the sci- RNAi researcher at Case Western Reserve indicated that RNA activation’s target entists reasoned. Ngbo^klbmrbg<e^o^eZg]%Habh'ÊBmÍlcnlmghm was naturally occurring RNA, not DNA, Using reverse transcription–PCR, a generalizable phenomenon like RNAi. as was the case for peptide nucleic acids <hk^rÍl `kZ] lmn]^gm CZ\h[ L\apZkms With RNAi, you know it’s going to work.” !Zg]pab\ama^k^l^Zk\a^klaZ]gZbo^er scanned for noncoding RNAs around The concerns are valid. Introducing assumed would be true of activating the progesterone receptor promoter. He nucleic acids into cells is a notoriously KG:l%mhh"'Fhkkblma^gm^lm^]mablb]^Z couldn’t find any RNA coded in the direc- artifact-prone experiment, so the observed directly and confirmed that RNAs were, tion of transcription, but did discover effects could easily be due to the intro- indeed, interacting with each other.4 three antisense transcripts spanning duced RNA interacting with nontarget :ee mh`^ma^k% Êbm ^lmZ[ebla^] ma^ the promoter region. At first, however, molecules, such as unintended proteins link between transcriptional and post- Schwartz didn’t believe his own results. or RNA that in turn cause the activation, transcriptional gene silencing,” says L\apZkmsÍl Ê_bklm r^Zk `kZ]nZm^ \hnkl^ the skeptics argued. CZghpldb' FZr[^% ma^r k^Zlhg^]% mabl perspective of transcription” led him to Another part of the problem was that believe that there wasn’t going to be any unlike RNAi, in which the introduced RNA transcripts in the promoter region, RNA always perfectly matches the mRNA he says, so he thought he was just seeing targets, RNA activation did not seem to genomic DNA contamination. For two follow any predictable set of rules. The “One can be picky p^^dl%a^mkb^]Ê^o^krpab\apZrËmh`^m researchers constructed the activating about the mecha- rid of the bands in his PCR before he RNAs to match stretches of the promoter convinced himself otherwise. In the end, DNA, but couldn’t devise a reliable design nism, but it’s early Schwartz showed that activating RNAs, scheme: Single-base differences in the together with Argonaute, bound to these RNA’s target sequence could turn an acti- days. What’s clear antisense transcripts in the vicinity of the vator into a repressor and vice versa, they is that RNA activa- promoter. This RNA-protein complex found. What’s more, the most effective then acted as a scaffold to recruit and activator RNAs for some genes matched tion exists.” redirect other protein modifiers to either DNA sequences right at the transcrip- crank up or slow down transcription.5 tional start site, but for others the target —John Mattick ÊRhnk^ZeeraZo^mhmabgdh_ma^l^ikh- site was way upstream. moters as very dynamic,” explains Corey. The RNA community adopted a wait- Ê@^g^lZk^ihbl^]mh^bma^k[^mnkg^]hghk Zg]&l^^Zmmbmn]^'ÊPa^g^o^klhf^\hg- off.” In his view, antisense transcripts act troversial findings like these ones emerge, wasn’t such a new and implausible phe- as the regulators of this delicate balance. I will not touch the topic and I wait for nomenon after all. But the question still So by introducing RNAs that interacted follow-up by the labs that brought the remained: How could their introduced with these RNA gatekeepers, his team topic up,” says Tuschl.
Recommended publications
  • Abou Alezz, Monah Characterization of the Genomic and Splicing Features of Long 51 Non-Coding Rnas Using Bioinformatics Approaches
    Posters A-Z Abou Alezz, Monah Characterization of the genomic and splicing features of long 51 non-coding RNAs using bioinformatics approaches Aguilera-Cortés, Paulina Identification of cellular lncRNAs associated to the HIV-1 genomic RNA 52 by interactome capture Ahram, Mamoun The androgen, dihydrotestosterone, induces chemoresistance of triple 53 negative breast cancer cells independent of ABCG2 and microRNA-328-3p Ahunbay, Esra Watching the self-catalyzed splicing of a group II intron with 54 single-molecule sensitivity Alemu, Endalkachew Integrated Global Mapping of miRNA:target-RNA Interactions 55 Ali, Tamer The lncRNA locus Handsdown regulates cardiac gene programs and is 56 essential for early mouse development Alzahrani, Salma Revisiting the sRNAome Under a Revised MicroRNA Annotation Criteria 57 Amorim, Marcella Dissecting the threshold-based readout of mobile small RNA gradients 58 Arnoldi, Michele SINEUPs technology: a new route to possibly treat 59 haploinsufficiency-induced Epilepsy and Autism Spectrum Disorders (ASDs) Azhikina, Tatyana Small RNA F6 influences Mycobacterium smegmatis entry into 60 dormancy EMBO | EMBL Symposium: The Non-Coding Genome Barasa, Sheila Olendo Long non-coding RNAs in High Grade Serous Ovarian Carcinoma 61 Behera, Alok LIN28 as a new drug target 62 Behrmann, Iris Modulation of the IL-6-Signaling Pathway in Liver Cells by miRNAs 63 Targeting gp130, JAK1, and/or STAT3 Bencurova, Petra Inhibition of miRNA-129-2-3p increases risk and severity of seizures in 64 developing brain Bica, Cecilia The emerging
    [Show full text]
  • Enhancer Rnas: Transcriptional Regulators and Workmates of Namirnas in Myogenesis
    Odame et al. Cell Mol Biol Lett (2021) 26:4 https://doi.org/10.1186/s11658-021-00248-x Cellular & Molecular Biology Letters REVIEW Open Access Enhancer RNAs: transcriptional regulators and workmates of NamiRNAs in myogenesis Emmanuel Odame , Yuan Chen, Shuailong Zheng, Dinghui Dai, Bismark Kyei, Siyuan Zhan, Jiaxue Cao, Jiazhong Guo, Tao Zhong, Linjie Wang, Li Li* and Hongping Zhang* *Correspondence: [email protected]; zhp@sicau. Abstract edu.cn miRNAs are well known to be gene repressors. A newly identifed class of miRNAs Farm Animal Genetic Resources Exploration termed nuclear activating miRNAs (NamiRNAs), transcribed from miRNA loci that and Innovation Key exhibit enhancer features, promote gene expression via binding to the promoter and Laboratory of Sichuan enhancer marker regions of the target genes. Meanwhile, activated enhancers pro- Province, College of Animal Science and Technology, duce endogenous non-coding RNAs (named enhancer RNAs, eRNAs) to activate gene Sichuan Agricultural expression. During chromatin looping, transcribed eRNAs interact with NamiRNAs University, Chengdu 611130, through enhancer-promoter interaction to perform similar functions. Here, we review China the functional diferences and similarities between eRNAs and NamiRNAs in myogen- esis and disease. We also propose models demonstrating their mutual mechanism and function. We conclude that eRNAs are active molecules, transcriptional regulators, and partners of NamiRNAs, rather than mere RNAs produced during enhancer activation. Keywords: Enhancer RNA, NamiRNAs, MicroRNA, Myogenesis, Transcriptional regulator Introduction Te identifcation of lin-4 miRNA in Caenorhabditis elegans in 1993 [1] triggered research to discover and understand small microRNAs’ (miRNAs) mechanisms. Recently, some miRNAs are reported to activate target genes during transcription via base pairing to the 3ʹ or 5ʹ untranslated regions (3ʹ or 5ʹ UTRs), the promoter [2], and the enhancer regions [3].
    [Show full text]
  • Mirna Goes Nuclear
    POINT-OF-VIEW RNA Biology 9:3, 1–5; March 2012; G 2012 Landes Bioscience miRNA goes nuclear Vera Huang and Long-Cheng Li Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California—San Francisco; San Francisco, CA USA icroRNAs (miRNAs), defined as to target(s). miRNAs are convention- m 21–24 nucleotide non-coding ally regarded as negative regulators of RNAs, are important regulators of gene gene expression, mostly through post- expression. Initially, the functions of transcriptional events taking place in the miRNAs were recognized as post- cytoplasm. They are known to target transcriptional regulators on mRNAs complementary sequence on the mRNA that result in mRNA degradation and/or at different sites or on many different translational repression. It is becoming mRNAs through base-pairing between evident that miRNAs are not only the miRNA seed region and the 3' restricted to function in the cytoplasm, untranslated region (UTR) in the target they can also regulate gene expression in mRNA. It has been reported that other cellular compartments by a spec- miRNAs can also regulate gene expres- trum of targeting mechanisms via coding sion by targeting the 5' UTR,3 coding © 2012 Landesregions, 5' and 3'untransalated Bioscience. regions regions,4 promoters,5-8 and gene termini.9 (UTRs), promoters, and gene termini. In addition, miRNAs are predicted by In this point-of-view, we will speci- several genome-wide computational ana- fically focus on the nuclear functions lyses to target gene promoters because of miRNAs and discuss examples of potential targets for miRNAs are com- miRNA-directed transcriptional gene monly found based on sequence homo- regulation identified in recent years.
    [Show full text]
  • Mirna Activation Is an Endogenous Gene Expression Pathway
    RNA Biology ISSN: 1547-6286 (Print) 1555-8584 (Online) Journal homepage: http://www.tandfonline.com/loi/krnb20 miRNA activation is an endogenous gene expression pathway Dr. Luis M. Vaschetto To cite this article: Dr. Luis M. Vaschetto (2018): miRNA activation is an endogenous gene expression pathway, RNA Biology, DOI: 10.1080/15476286.2018.1451722 To link to this article: https://doi.org/10.1080/15476286.2018.1451722 Accepted author version posted online: 14 Mar 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=krnb20 Publisher: Taylor & Francis Journal: RNA Biology DOI: https://doi.org/10.1080/15476286.2018.1451722 Title: miRNA activation is an endogenous gene expression pathway Author Dr. Luis M. Vaschetto*1,2 Affiliations 1 Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina. 2 Cátedra de Diversidad Animal I, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina. Corresponding author’s phone and e-mails Phone: 0054-3572- 445-6144 E-mails: [email protected] (primary e-mail); [email protected] Abstract Transfection of small non-coding RNAs (sncRNAs) molecules has become a routine technique widely used for silencing gene expression by triggering post- transcriptional and transcriptional RNA interference (RNAi) pathways. Moreover, in the past decade, small activating (saRNA) sequences targeting promoter regions were also reported, thereby a RNA-based gene activation (RNAa) mechanism has been proposed.
    [Show full text]
  • Small Activating Rnas: Towards the Development of New Therapeutic Agents and Clinical Treatments
    cells Review Small Activating RNAs: Towards the Development of New Therapeutic Agents and Clinical Treatments Hossein Ghanbarian 1,2, Shahin Aghamiri 3 , Mohamad Eftekhary 2 , Nicole Wagner 4,*,† and Kay-Dietrich Wagner 4,*,† 1 Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; [email protected] 2 Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran; [email protected] 3 Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran; [email protected] 4 Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France * Correspondence: [email protected] (N.W.); [email protected] (K.-D.W.); Tel.: +33-493-3776-65 (K.-D.W.) † Equal Contribution. Abstract: Small double-strand RNA (dsRNA) molecules can activate endogenous genes via an RNA-based promoter targeting mechanism. RNA activation (RNAa) is an evolutionarily conserved mechanism present in diverse eukaryotic organisms ranging from nematodes to humans. Small acti- vating RNAs (saRNAs) involved in RNAa have been successfully used to activate gene expression in cultured cells, and thereby this emergent technique might allow us to develop various biotechnologi- cal applications, without the need to synthesize hazardous construct systems harboring exogenous Citation: Ghanbarian, H.; Aghamiri, S.; Eftekhary, M.; Wagner, N.; Wagner, DNA sequences. Accordingly, this thematic issue aims to provide insights into how RNAa cellular K.-D. Small Activating RNAs: machinery can be harnessed to activate gene expression leading to a more effective clinical treatment Towards the Development of New of various diseases.
    [Show full text]
  • RNA Activation: a Diamond in the Rough for Genome Engineers†
    Letter to the Editor RNA activation: a diamond in the rough for genome engineers† Running title: RNA activation Dr. Luis María Vaschetto*1,2 Affiliations 1 Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina. 2 Cátedra de Diversidad Animal I, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina. Corresponding author’s phone and e-mails Phone: 0054-3572- 445-6144 E-mails: [email protected] (primary e-mail); [email protected] †This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1002/jcb.26228] Received 6 May 2017; Revised 18 June 2017; Accepted 20 June 2017 Journal of Cellular Biochemistry This article is protected by copyright. All rights reserved DOI 10.1002/jcb.26228 This article is protected by copyright. All rights reserved Abstract The ability to develop efficient and versatile technologies for manipulating gene expression is a fundamental issue both in biotechnology and therapeutics. The endogenous RNA interference (RNAi) pathway which mediates gene silencing was discovered at the end of the 20th century and it is nowadays considered as an essential strategy for knockdown of specific genes and for studying gene function. Remarkably, during the past decade, a RNA-induced mechanism of gene activation has also been reported.
    [Show full text]
  • Mireya: a Computational Approach to Detect Mirna- Directed Gene Activation [Version 2; Peer Review: 1 Approved, 2 Approved with Reservations]
    F1000Research 2021, 10:249 Last updated: 01 SEP 2021 SOFTWARE TOOL ARTICLE MIREyA: a computational approach to detect miRNA- directed gene activation [version 2; peer review: 1 approved, 2 approved with reservations] Anna Elizarova 1,2, Mumin Ozturk3,4, Reto Guler3-5, Yulia A. Medvedeva1,2 1Group of Regulatory Transcriptomics and Epigenomics, Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, 117312, Russian Federation 2Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701, Russian Federation 3International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, 7925, South Africa 4Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Cape Town, 7925, South Africa 5Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa v2 First published: 29 Mar 2021, 10:249 Open Peer Review https://doi.org/10.12688/f1000research.28142.1 Latest published: 26 Aug 2021, 10:249 https://doi.org/10.12688/f1000research.28142.2 Reviewer Status Invited Reviewers Abstract Emerging studies demonstrate the ability of microRNAs (miRNAs) to 1 2 3 activate genes via different mechanisms. Specifically, miRNAs may trigger an enhancer promoting chromatin remodelling in the version 2 enhancer region, thus activating the enhancer and its target genes. (revision) report Here we present MIREyA, a pipeline developed to predict such miRNA- 26 Aug 2021 gene-enhancer trios based on an expression dataset which obviates the need to write custom scripts.
    [Show full text]
  • Development of MTL-CEPBA: Sarna Drug for Liver Disease
    Send Orders for Reprints to [email protected] Journal Name, Year, Volume 1 Development of MTL-CEPBA: SaRNA drug for Liver Disease Helen L Lightfoot†a, Ryan L Setten†b,c, John J Rossib,c and Nagy A Habibd* aMiNA Therapeutics Limited, Translation & Innovation Hub, 80 Wood Lane, London, W12 0BZ, United Kingdom; bDepartment of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA; cIrell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA; dDepartment of Surgery and Cancer, Imperial College London, London, UK. †authors contributed equally Abstract: Oligonucleotide drug development has revolutionised the drug discovery field allowing the notorious “undruggable” genome to become “druggable”. Of course, as with all, there are caveats to this new technology, which include restricted delivery and mode of actions – such drugs usually alter splicing and reduce RNA at the post- transcriptional level. Small activating RNA (saRNA)-mediated gene activation has opened a new potential therapeutic avenue for oligonucleotide drugs. SaRNAs promote endogenous transcription, a phenomenon known as RNA activation (RNAa), hence they function to increase gene expression levels. SaRNA based oligonucleotide therapeutics present great promise in expanding the “druggable” genome, with particular areas of interest including transcription factor activation and haploinsufficency. In this mini-review, we describe the pre-clinical development of the first saRNA drug to enter the clinic. This saRNA, referred to as MTL-CEPBA, targets the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα), a tumour suppressor and critical regulator of hepatocyte function. MTL-CEPBA is presently in Phase I clinical trials for hepatocellularcarcinoma (HCC).
    [Show full text]
  • Nucleoside Modifications Suppress RNA Activation of Cytoplasmic RNA Sensors
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Nucleoside Modifications Suppress RNA Activation of Cytoplasmic RNA Sensors Bart R. Anderson University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Molecular Biology Commons Recommended Citation Anderson, Bart R., "Nucleoside Modifications Suppress RNA Activation of Cytoplasmic RNA Sensors" (2010). Publicly Accessible Penn Dissertations. 1567. https://repository.upenn.edu/edissertations/1567 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1567 For more information, please contact [email protected]. Nucleoside Modifications Suppress RNA Activation of Cytoplasmic RNA Sensors Abstract Multiple innate defense pathways exist to recognize and defend against foreign nucleic acids. Unlike innate immune receptors that recognize structures specific for pathogens that are not shared by mammalian hosts — for example, toll-like receptor (TLR)4-lipopolysaccharide, TLR5-flagellin, NOD1 and 2-peptidoglycan — all nucleic acids are made from four components that are identical from bacteria to man. Nucleoside modifications are prevalent in nature but vary greatly in their distribution and frequency, and therefore could serve as patterns for recognition of pathogenic nucleic acids. The presence of modified nucleosides in RNA reduces the activation of RNA-sensing TLRs and retinoic acid inducible gene I (RIG-I), which initiate signaling
    [Show full text]
  • Current Pharmaceutical Biotechnology, 2018, 19, 611-621 REVIEW ARTICLE
    Send Orders for Reprints to [email protected] 611 Current Pharmaceutical Biotechnology, 2018, 19, 611-621 REVIEW ARTICLE ISSN: 1389-2010 eISSN: 1873-4316 Current Pharmaceutical Development of MTL-CEBPA: Small Activating RNA Drug for Hepatocel- Biotechnology Impact Factor: 1.819 The international lular Carcinoma journal for timely in-depth reviews in Pharmaceutical Biotechnology BENTHAM SCIENCE Ryan L. Setten†1,2, Helen L. Lightfoot†3, Nagy A. Habib4 and John J. Rossi1,2* 1Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA; 2Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA; 3MiNA Therapeutics Limited, Translation & Innovation Hub, 80 Wood Lane, London, W12 0BZ, United Kingdom; 4Department of Surgery and Cancer, Imperial College London, London, UK Abstract: Background: Oligonucleotide drug development has revolutionised the drug discovery field. Within this field, ‘small’ or ‘short’ activating RNAs (saRNA) are a more recently discovered category of short double-stranded RNA with clinical potential. saRNAs promote transcription from target loci, a phenomenon widely observed in mammals known as RNA activation (RNAa). Objective: The ability to target a particular gene is dependent on the sequence of the saRNA. Hence, A R T I C L E H I S T O R Y the potential clinical application of saRNAs is to increase target gene expression in a sequence-specific manner. saRNA-based therapeutics present opportunities for expanding the “druggable genome” with Received: January 20, 2018 particular areas of interest including transcription factor activation and cases of haploinsufficiency. Revised: May 30, 2018 Accepted: June 01, 2018 Results and Conclusion: In this mini-review, we describe the pre-clinical development of the first DOI: saRNA drug to enter the clinic.
    [Show full text]
  • Microrna in Control of Gene Expression: an Overview of Nuclear Functions
    International Journal of Molecular Sciences Review MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions Caterina Catalanotto *,†, Carlo Cogoni *,† and Giuseppe Zardo *,† Department of Cellular Biotechnologies and Hematology, University of Rome Sapienza, Rome 00179, Italy * Correspondence: [email protected] (Ca.Ca.); [email protected] (Ca.Co.); [email protected] (G.Z.); Tel.: +39-064-991-8247 (G.Z.); Fax: +39-064-991-8251 (G.Z.) † These authors contributed equally to this work. Academic Editor: Y-h. Taguchi Received: 26 August 2016; Accepted: 7 October 2016; Published: 13 October 2016 Abstract: The finding that small non-coding RNAs (ncRNAs) are able to control gene expression in a sequence specific manner has had a massive impact on biology. Recent improvements in high throughput sequencing and computational prediction methods have allowed the discovery and classification of several types of ncRNAs. Based on their precursor structures, biogenesis pathways and modes of action, ncRNAs are classified as small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), endogenous small interfering RNAs (endo-siRNAs or esiRNAs), promoter associate RNAs (pRNAs), small nucleolar RNAs (snoRNAs) and sno-derived RNAs. Among these, miRNAs appear as important cytoplasmic regulators of gene expression. miRNAs act as post-transcriptional regulators of their messenger RNA (mRNA) targets via mRNA degradation and/or translational repression. However, it is becoming evident that miRNAs also have specific nuclear functions. Among these, the most studied and debated activity is the miRNA-guided transcriptional control of gene expression. Although available data detail quite precisely the effectors of this activity, the mechanisms by which miRNAs identify their gene targets to control transcription are still a matter of debate.
    [Show full text]
  • Nuclear Functions of Mammalian Micrornas in Gene Regulation
    Liu et al. Molecular Cancer (2018) 17:64 DOI 10.1186/s12943-018-0765-5 REVIEW Open Access Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer Hongyu Liu1,2, Cheng Lei1,2, Qin He1,2, Zou Pan1,2, Desheng Xiao3 and Yongguang Tao1,2,4* Abstract MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain approximately 22 nucleotides. They serve as key regulators in various biological processes and their dysregulation is implicated in many diseases including cancer and autoimmune disorders. It has been well established that the maturation of miRNAs occurs in the cytoplasm and miRNAs exert post-transcriptional gene silencing (PTGS) via RNA-induced silencing complex (RISC) pathway in the cytoplasm. However, numerous studies reaffirm the existence of mature miRNA in the nucleus, and nucleus- cytoplasm transport mechanism has also been illustrated. Moreover, active regulatory functions of nuclear miRNAs were found including PTGS, transcriptional gene silencing (TGS), and transcriptional gene activation (TGA), in which miRNAs bind nascent RNA transcripts, gene promoter regions or enhancer regions and exert further effects via epigenetic pathways. Based on existing interaction rules, some miRNA binding sites prediction software tools are developed, which are evaluated in this article. In addition, we attempt to explore and review the nuclear functions of miRNA in immunity, tumorigenesis and invasiveness of tumor. As a non-canonical aspect of miRNA action, nuclear miRNAs supplement miRNA regulatory networks and could be applied in miRNA based therapies. Keywords: microRNA, Nucleus, PTGS, TGS, TGA, Cancer, Immunity, Metastasis, Invasion MicroRNA (miRNA) is a group of small non-coding induced the expression of cold-shock domain-containing RNA that plays significant roles in multiple metabolic protein C2 (CSDC2) and E-cadherin [2].
    [Show full text]