Assessmemnt of the Phylogenetic Identity of Some Culture Collection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Composition and Diversity of Endophytic Bacterial Communities in Noni (Morinda Citrifolia L.) Seeds
International Journal of Agricultural Policy and Research Vol.2 (3), pp. 098-104, March 2014 Available online at http://www.journalissues.org/ijapr/ © 2014 Journal Issues ISSN 2350-1561 Original Research Paper Composition and diversity of endophytic bacterial communities in noni (Morinda citrifolia L.) seeds Accepted 14 February, 2014 *1Liu Yang, 1Yao Su , 2Xu The objective of this study is to investigate the endophytic bacterial Pengpeng , 1Cao Yanhua , communities in Noni (Morinda citrifolia L.) seeds. By using high-throughput 1 1 sequencing (HTS) technique, a research on the diversity of endophytic Li Jinxia , Wang bacterial communities in Noni seed samples was conducted by this paper, 3 Jiemiao , Tan Wangqiao, which were collected from four planting locations in the introduction and 1Cheng Chi cultivation base of Hainan Noni Biological Engineering Development Co., Ltd. in Sanya. A total of 268159 sequences and 2870 Operational Taxonomic Units 1 China National Research Institute (OTUs) were obtained from the seed samples, which were classified into N1, of Food and Fermentation N2, N3 and N4, through HTS by bioinformatics analysis. The results showed Industries, Beijing 100015, People’s that there was a good consistency between bacterial community structure and Republic of China distribution of dominant genus in all samples. A mount of 10 OTUs of the most 2 Beijing Geneway Technology Co., Ltd., Beijing 100010, People’s abundance associated with the four sample libraries were found to be related Republic of China. to Pelomonas sp., Ochrobactrum intermedium, Kinneretia sp., Serratia sp., 3 Hainan Noni Biological Paucibacter sp., Leptothrix sp., Inhella sp., Ewingella sp., Thiomonas sp. and Engineering Development Co., Ltd., Massilia sp..This study has laid a solid foundation for further study in Haikou 570125, People’s Republic beneficial microbes, which would help to improve the growth and efficacy of of China. -
Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli
International Journal of Environmental Research and Public Health Article Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli Surendra K. Pradhan 1,* , Helvi Heinonen-Tanski 1, Anna-Maria Veijalainen 1, Sirpa Peräniemi 2 and Eila Torvinen 1 1 Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; helvi.heinonentanski@uef.fi (H.H.-T.); anna-maria.veijalainen@uef.fi (A.-M.V.); eila.torvinen@uef.fi (E.T.) 2 Department of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland; sirpa.peraniemi@uef.fi * Correspondence: surendra.pradhan@uef.fi Abstract: Sewage sludge contains a significant amount of phosphorus (P), which could be recycled to address the global demand for this non-renewable, important plant nutrient. The P in sludge can be solubilized and recovered so that it can be recycled when needed. This study investigated the P solubilization from sewage sludge using Acidithiobacillus thiooxidans and Acidithiobacillus ferroox- idans. The experiment was conducted by mixing 10 mL of sewage sludge with 90 mL of different water/liquid medium/inoculum and incubated at 30 ◦C. The experiment was conducted in three semi-continuous phases by replacing 10% of the mixed incubated medium with fresh sewage sludge. In addition, 10 g/L elemental sulfur (S) was supplemented into the medium in the third phase. The pH of the A. thiooxidans and A. ferrooxidans treated sludge solutions was between 2.2 and 6.3 until day 42. In phase 3, after supplementing with S, the pH of A. thiooxidans treated sludge was reduced to 0.9, Citation: Pradhan, S.K.; which solubilized and extracted 92% of P. -
7. References
University of Akureyri Department of Natural Resource Science 7. References Ammann, E. C., Reed, L. L., & Durichek, J. J. (1968). Gas consumptions and Growth Rate of Hydrogenomonas eutropha in Continuous Culture. Applied Microbiology , 16, (6), 822-826. Aguiar, P., Beveridge, T. J., & Reysenbach, A.-L. (2004). Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen oxidizing microaerophile from terrestrial hot springs in the Azores. International Journal of Systematic and Evolutionary Microbiology , 54, 33-39. Altschul, S., Gish, W., Miller, W., Myers, E., & Lipman, D. (1990). "Basic local alignment search tool.". J. Mol. Biol. , 215:403-410. Amend, J., & Shock, E. (2001). Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews , 25, 175-243. Aragno, M. (1978). Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Micobiol. Lett. , 3: 13-15. Aragno, M. (1992). The Thermophilic, Aerobic, Hydrogen-Oxidizing (Knallgas) Bacteria. In A. Balows, H. Trüper, M. Dworkin, W. Harder, & K. Schleifer, The Prokaryotes, a handbook on biology of bacteria. 2nd ed. vol. 4 (pp. 3917-3933.). New York: Springer Verlag. Aragno, M., & Schlegel, H. G. (1992). The mesophilic Hydrogen-Oxidizing (Knallgas) Bacteria. In A. Balows, H. Truper, M. Dworkin, W. Harder, & K.-H. Schleifer, The Prokaryotes 2nd. ed. (pp. 344-384). New York: Springer. Ármannson, H. (2002, May 30-31). Erindi á ráðstefnu um málefni veitufyrirtækja . Grænt bókhald í jarðhita- samanburður á útblæstri við aðra orkugjafa . Akureyri, Iceland: Samorka. Bae, S., Kwak, K., Kim, S., Chung, S., & Igarashi, Y. (2001). Isolation and Characterization of CO2-Fixing Hydrogen -Oxidizing Marine 109 University of Akureyri Department of Natural Resource Science Bacteria. -
Taxonomy JN869023
Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075 -
Acteurs Et Mécanismes Des Bio-Transformations De L'arsenic, De
Acteurs et mécanismes des bio-transformations de l’arsenic, de l’antimoine et du thallium pour la mise en place d’éco-technologies appliquées à la gestion d’anciens sites miniers Elia Laroche To cite this version: Elia Laroche. Acteurs et mécanismes des bio-transformations de l’arsenic, de l’antimoine et du thallium pour la mise en place d’éco-technologies appliquées à la gestion d’anciens sites miniers. Sciences de la Terre. Université Montpellier, 2019. Français. NNT : 2019MONTG048. tel-02611018 HAL Id: tel-02611018 https://tel.archives-ouvertes.fr/tel-02611018 Submitted on 18 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONT PELLIER En Sciences de l’Eau École doctorale GAIA Unité de recherche Hydrosciences Montpellier UMR 5569 Unité de recherche GME (Géomicrobiologie et Monitoring Environnemental) du BRGM, Orléans Acteurs et mécanismes des bio-transformations de l’arsenic, de l’antimoine et du thallium pour la mise en place d’éco -technologies appliquées à la gestion d’anciens -
A Survey of Carbon Fixation Pathways Through a Quantitative Lens
Journal of Experimental Botany, Vol. 63, No. 6, pp. 2325–2342, 2012 doi:10.1093/jxb/err417 Advance Access publication 26 December, 2011 REVIEW PAPER A survey of carbon fixation pathways through a quantitative lens Arren Bar-Even, Elad Noor and Ron Milo* Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel * To whom correspondence should be addressed. E-mail: [email protected] Received 15 August 2011; Revised 4 November 2011; Accepted 8 November 2011 Downloaded from Abstract While the reductive pentose phosphate cycle is responsible for the fixation of most of the carbon in the biosphere, it http://jxb.oxfordjournals.org/ has several natural substitutes. In fact, due to the characterization of three new carbon fixation pathways in the last decade, the diversity of known metabolic solutions for autotrophic growth has doubled. In this review, the different pathways are analysed and compared according to various criteria, trying to connect each of the different metabolic alternatives to suitable environments or metabolic goals. The different roles of carbon fixation are discussed; in addition to sustaining autotrophic growth it can also be used for energy conservation and as an electron sink for the recycling of reduced electron carriers. Our main focus in this review is on thermodynamic and kinetic aspects, including thermodynamically challenging reactions, the ATP requirement of each pathway, energetic constraints on carbon fixation, and factors that are expected to limit the rate of the pathways. Finally, possible metabolic structures at Weizmann Institute of Science on July 3, 2016 of yet unknown carbon fixation pathways are suggested and discussed. -
Simple Or Complex Organic Substrates Inhibit Arsenite
Simple or complex organic substrates inhibit arsenite oxidation and aioA gene expression in two β-Proteobacteria strains Tiffanie Lescure, Catherine Joulian, Clément Charles, Taoikal BenAli Saanda, Mickael Charron, Dominique Breeze, Pascale Bauda, Fabienne Battaglia-Brunet To cite this version: Tiffanie Lescure, Catherine Joulian, Clément Charles, Taoikal Ben Ali Saanda, Mickael Charron, et al.. Simple or complex organic substrates inhibit arsenite oxidation and aioA gene expres- sion in two β-Proteobacteria strains. Research in Microbiology, Elsevier, 2020, 171 (1), pp.13-20. 10.1016/j.resmic.2019.09.006. insu-02298717 HAL Id: insu-02298717 https://hal-insu.archives-ouvertes.fr/insu-02298717 Submitted on 27 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Journal Pre-proof Simple or complex organic substrates inhibit arsenite oxidation and aioA gene expression in two β-Proteobacteria strains Tiffanie Lescure, Catherine Joulian, Clément Charles, Taoikal Ben Ali Saanda, Mickael Charron, Dominique Breeze, Pascale Bauda, Fabienne Battaglia-Brunet PII: S0923-2508(19)30100-7 DOI: https://doi.org/10.1016/j.resmic.2019.09.006 Reference: RESMIC 3741 To appear in: Research in Microbiology Received Date: 21 June 2019 Revised Date: 4 September 2019 Accepted Date: 6 September 2019 Please cite this article as: T. -
Bakterielle Diversität in Einer Wasserbehandlungsanlage Zur Reini- Gung Saurer Grubenwässer
Bakterielle Diversität in einer Wasserbehandlungsanlage zur Reini- gung saurer Grubenwässer E. Heinzel1, S. Hedrich1, G. Rätzel2, M. Wolf2, E. Janneck2, J. Seifert1, F. Glombitza2, M. Schlömann1 1AG Umweltmikrobiologie, IÖZ, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, [email protected], 2Fa. G.E.O.S. Ingenieurgesellschaft mbH, Gewerbepark „Schwarze Kiefern“, 09633 Halsbrücke In einer Versuchsanlage zur Gewinnung von Eisenhydroxysulfaten durch biologische Oxidation von zweiwertigem Eisen wurde die Zusammensetzung der bakteriellen Lebensgemeinschaft mit moleku- largenetischen Methoden analysiert. Die 16S rDNA-Klonbank wurde von zwei Sequenztypen, denen 68 % der Klone zugeordnet werden konnten, dominiert. Ein Sequenztyp kann phylogenetisch in die Ordnung der Nitrosomonadales eingeordnet werden, zu deren Vertretern sowohl chemo-heterotrophe Bakterien als auch autotrophe Eisen und Ammonium oxidierende Bakterien gehören. Der zweite Se- quenztyp ist ähnlich zu „Ferrimicrobium acidiphilum“, einem heterotrophen Eisenoxidierer. The microbial community of a pilot plant for the production of iron hydroxysulfates by biological oxidation of ferrous iron was studied using molecular techniques. The 16S rDNA clone library was dominated by two sequence types, to which 68 % of all clones could be assigned. One sequence type is phylogenetically classified to the order of Nitrosomonadales. Both chemoheterotrophic bacteria and autotrophic iron or ammonium oxidizing bacteria belong to this order. The second sequence type is related to “Ferrimicrobium acidiphilum”, a heterotrophic iron oxidizing bacteria. 1 Einleitung und Projektziel die biologische Oxidationskapazität zu optimie- ren. Zur Gewährleistung einer konstanten Pro- Stark eisenhaltige und saure Bergbauwässer aus duktqualität muss die Oxidation sicher be- Tagebaufolgelandschaften bedingen einen erheb- herrscht und gesteuert werden können. Dies er- lichen Sanierungsaufwand. Die konventionelle fordert die Analyse der mikrobiellen Lebens- Reinigung dieser Wässer findet durch pH- gemeinschaft. -
I. General Introduction
SECTION 3 ACIDITHIOBACILLUS I. General Introduction This document presents information that is accepted in the literature about the known characteristics of bacteria in the genus Acidithiobacillus. Regulatory officials may find the technical information useful in evaluating properties of micro-organisms that have been derived for various environmental applications. Consequently, this document provides a wide range of information without prescribing when the information would or would not be relevant to a specific risk assessment. The document represents a snapshot of current information (end-2002) that may be potentially relevant to such assessments. In considering information that should be presented on this taxonomic grouping, the Task Group on Micro-organisms has discussed the list of topics presented in the “Blue Book” (i.e. Recombinant DNA Safety Considerations (OECD, 1986)) and attempted to pare down that list to eliminate duplications as well as those topics whose meaning is unclear, and to rearrange the presentation of the topics covered to be more easily understood (the Task Group met in Vienna, 15-16 June, 2000). This document is a first draft of a proposed Consensus Document for environmental applications involving organisms from the genus Acidithiobacillus. II. General Considerations 1. Subject of Document: Species Included and Taxonomic Considerations The four species of Acidithiobacillus covered in this document were formerly placed in the genus Thiobacillus Beijerinck. In recent years several members of Thiobacillus were transferred to other genera while the remainder became part of three newly created genera, Acidithiobacillus, Halothiobacillus, Thermithiobacillus, and to the revised genus Thiobacillus sensu stricto (Kelly and Harrison, 1989; Kelly and Wood, 2000). -
Advances in Applied Microbiology, Voume 49 (Advances in Applied
ADVANCES IN Applied Microbiology VOLUME 49 ThisPageIntentionallyLeftBlank ADVANCES IN Applied Microbiology Edited by ALLEN I. LASKIN JOAN W. BENNETT Somerset, New Jersey New Orleans, Louisiana GEOFFREY M. GADD Dundee, United Kingdom VOLUME 49 San Diego New York Boston London Sydney Tokyo Toronto This book is printed on acid-free paper. ∞ Copyright C 2001 by ACADEMIC PRESS All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (222 Rosewood Drive, Danvers, Massachusetts 01923), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2000 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0065-2164/01 $35.00 Academic Press A division of Harcourt, Inc. 525 B Street, Suite 1900, San Diego, California 92101-4495, USA http://www.academicpress.com Academic Press Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK http://www.academicpress.com International Standard Serial Number: 0065-2164 International Standard Book Number: 0-12-002649-X PRINTED IN THE UNITED STATES OF AMERICA 010203040506MM987654321 CONTENTS Microbial Transformations of Explosives SUSAN J. -
1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds. -
Studies on Microbial Biodiversity of Acidophilic Heterotrophs in Acid Rock Drainage Samples of Eastern Himalaya
Studies on microbial biodiversity of acidophilic heterotrophs in Acid Rock Drainage samples of Eastern Himalaya THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN SCIENCE (BIOTECHNOLOGY) OF THE UNIVERSITY OF NORTH BENGAL Suparna CBiiowa( Microbial Biotechnology Laboratory Department of Biotechnology University of North Bengal 2011 'lTie onfy way offindi11f1 tlie Bmits oftlie possi6(e is 6y going 6eyontf tfiem into tlie impossi6fe. -l/.rtfiur C Cfar&e Ae/CNOWI.B'DQBMBN7S This is a solemn opportunity to express my veneration to the entire magnanimous fraternity to those who directly or indirectly have contributed or associated to this work and made it possible. No words or mere accolades are big enough to express my gratitude towards, the person who stood rock solid beside me during the entire tenure of my research career, yes he is my guide, my supervisor, my guardian Dr. Ranadhir Chakraborty. His guidance, continuous inspiration and boundless optimism encouraged me to pull the worl< and give it a meaningful conclusion. Not even a part of the work would have reached its culmination without him. I owe special thanks and gratitude to my teachers Mr. T. Gopalan and Mr. Balwinder Singh Bajwa, who seeded and cultured the scientific research aptitude within me. · Right from my first day in the Department o(Biot~chnology, I had the opportunity to gain some good advice and wisdom from my teachers Dr. Shilpi Ghosh and Dr. Dipanwita Saha. I express my sincere thanks to my teachers Prof. B.N. Chakraborty, Prof. P.K. Sarkar, Prof. A.P. Das, Prof. Usha Chakraborty, Prof.