Quantum Communication, Sensing and Measurement in Space
Total Page:16
File Type:pdf, Size:1020Kb
Quantum Communication, Sensing and Measurement in Space Study start date: June 25, 2012 Study end date: December 14, 2012 Final Report submission date: December 14, 2012 Team Leads: Baris I. Erkmen Jet Propulsion Laboratory, California Institute of Technology [email protected] Jeffrey H. Shapiro Massachusetts Institute of Technology [email protected] Keith Schwab California Institute of Technology [email protected] © 2012. All rights reserved. 2 Core Participants of Study Program and Co-authors Name Affiliation E-mail 1 Adhikari, Rana California Institute of [email protected] Technology 2 Aspelmeyer, University of Vienna [email protected] Markus 3 Baumgartel, University of Southern [email protected] Lukas California 4 Birnbaum, Kevin Jet Propulsion [email protected] Laboratory 5 Boroson, Don MIT Lincoln Laboratory [email protected] 6 Caves, Carlton University of New [email protected] Mexico 7 Chen, Yanbei California Institute of [email protected] Technology 8 Combes, Joshua University of New [email protected] Mexico 9 Dixon, Ben Massachusetts [email protected] Institute of Technology 10 Dolinar, Sam Jet Propulsion [email protected] Laboratory 11 Durkin, Gabriel NASA Ames Research [email protected] Center 12 Erkmen, Baris Jet Propulsion [email protected] Laboratory 13 Giovannetti, Scuola Normale [email protected] Vittorio Superiore 14 Guha, Saikat Raytheon BBN [email protected] Technologies 15 Hindi, Munther NASA SCaN/ASRC [email protected] 16 Hughes, Richard Los Alamos National [email protected] Laboratory 17 Kaltenbaek, University of Vienna [email protected] Rainer 18 Kumar, Prem Northwestern [email protected] University 19 Kwiat, Paul University of Illinois at [email protected] Urbana-Champaign 20 Nordholt, Jane Los Alamos National [email protected] Laboratory continues on next page… 3 …continued from previous page 21 Rambo, Timothy Northwestern [email protected] University rn.edu 22 Schwab, Keith California Institute of [email protected] Technology 23 Shapiro, Jeffrey Massachusetts [email protected] Institute of Technology 24 Spero, Robert Jet Propulsion [email protected] Laboratory 25 Tsang, Mankei National University of [email protected] Singapore 26 Turyshev, Slava Jet Propulsion [email protected] Laboratory 27 Vallisneri, Jet Propulsion [email protected] Michelé Laboratory 28 Wong, Franco Massachusetts [email protected] Institute of Technology 29 Yu, Nan Jet Propulsion [email protected] Laboratory 4 Table of Contents I. Executive Summary ............................................................................................................................... 8 II. Introduction ......................................................................................................................................... 14 II.1. A clarifying note on ‘quantum’ versus ‘classical’ ......................................................... 14 II.2. The promise of quantum‐enhanced technologies ....................................................... 15 II.3. The timing of our study program ....................................................................................... 17 II.4. Objectives of the workshop and study program .......................................................... 19 III. Scope and Organization of the Study Program .................................................................... 20 III.1. Scope of the workshop and study program ................................................................. 20 III.2. Organization of the workshop and study program ................................................... 21 IV. Results Emerging from the Study .............................................................................................. 24 IV.1. Fundamental science in space ............................................................................................ 24 IV.1.1. Opportunities for fundamental physics measurements in space ............... 25 IV.1.2. Low‐frequency gravitational‐wave interferometer in space ....................... 27 IV.1.3. A space‐based ultra‐stable laser frequency reference derived from gravitational wave technology ................................................................................................ 29 IV.1.4. Atomic clocks and quantum sensors for science applications..................... 32 IV.1.4.1. Atomic quantum inertial sensors .................................................................... 33 IV.1.4.2. High accuracy optical clocks .............................................................................. 35 IV.1.5. Science motivations and technology priorities .................................................. 36 Atomic quantum sensor enabled science .................................................................. 38 Clock enabled science ........................................................................................................ 39 Meeting technology challenges ...................................................................................... 40 IV.2. Sensing and Measurement in Space ................................................................................. 42 IV.2.1. Opportunities for quantum enhancements .......................................................... 42 IV.2.1.1. No‐go theorems for remote target detection with Type I and Type III sensors .......................................................................................................................................... 44 IV.2.2. Recent advances in quantum‐enhanced sensing systems ............................. 45 IV.2.2.1. Type II sensing systems: nonclassical receivers for classical (coherent‐state) illumination .............................................................................................. 45 IV.2.2.2. Quantum filtering and smoothing in Type II systems ............................ 48 Quantum filtering ................................................................................................................ 48 Quantum smoothing ........................................................................................................... 49 IV.2.2.3. Quantum illumination: a Type III sensor for high noise and loss ...... 50 5 IV.2.2.4. Active ghost imaging: classical (Type 0) and quantum (Type III) ..... 51 Computational ghost imaging ........................................................................................ 55 Comparison of Computational Ghost imaging with floodlight LADAR ........ 56 IV.2.2.5. Interferometry ......................................................................................................... 57 Active interferometry with classical and nonclassical light ............................. 57 Passive stellar interferometry ....................................................................................... 58 Quantum information‐theoretic perspective ..................................................................... 59 Entangled interferometry .......................................................................................................... 59 Passive ghost imaging (intensity interferometry) using stellar light ........... 60 IV.2.2.6. Weak measurements for space applications .............................................. 60 Weak‐value based signal amplification ..................................................................... 61 Illustrative weak‐values example ........................................................................................... 63 Rover‐based detection and observation .............................................................................. 64 Communication and control signaling between a planet and a satellite ................ 65 Detection and observation of astronomical objects ........................................................ 66 Weak‐value based simultaneous measurements of non‐commuting observables ............................................................................................................................ 67 Additional possibilities for weak‐value based measurements in space ...... 68 IV.2.2.7. Quantum parameter estimation bounds for sensing .............................. 68 Quantum Cramér‐Rao bounds ....................................................................................... 69 Beyond quantum Cramér‐Rao bounds ....................................................................... 69 Quantum‐optimal imaging systems ............................................................................. 70 IV.2.3. A cross‐cutting enabling technology: multifunction and reconfigurable entangled‐photon source in space ......................................................................................... 70 IV.2.3.1. Applications enabled by multifunction nonclassical sources .............. 71 Scientific exploration using nonclassical sources of light in space ................ 71 Quantum measurements in space ................................................................................ 73 IV.2.3.2. Nonclassical sources .............................................................................................. 74 Sources based on three‐wave mixing in nonlinear crystals .............................. 74 Sources based on four‐wave mixing in optical fibers .......................................... 76 Sources based on semiconductors ............................................................................... 77 Future source