Quantum Communication, Sensing and Measurement in Space

Quantum Communication, Sensing and Measurement in Space

Quantum Communication, Sensing and Measurement in Space Study start date: June 25, 2012 Study end date: December 14, 2012 Final Report submission date: December 14, 2012 Team Leads: Baris I. Erkmen Jet Propulsion Laboratory, California Institute of Technology [email protected] Jeffrey H. Shapiro Massachusetts Institute of Technology [email protected] Keith Schwab California Institute of Technology [email protected] © 2012. All rights reserved. 2 Core Participants of Study Program and Co-authors Name Affiliation E-mail 1 Adhikari, Rana California Institute of [email protected] Technology 2 Aspelmeyer, University of Vienna [email protected] Markus 3 Baumgartel, University of Southern [email protected] Lukas California 4 Birnbaum, Kevin Jet Propulsion [email protected] Laboratory 5 Boroson, Don MIT Lincoln Laboratory [email protected] 6 Caves, Carlton University of New [email protected] Mexico 7 Chen, Yanbei California Institute of [email protected] Technology 8 Combes, Joshua University of New [email protected] Mexico 9 Dixon, Ben Massachusetts [email protected] Institute of Technology 10 Dolinar, Sam Jet Propulsion [email protected] Laboratory 11 Durkin, Gabriel NASA Ames Research [email protected] Center 12 Erkmen, Baris Jet Propulsion [email protected] Laboratory 13 Giovannetti, Scuola Normale [email protected] Vittorio Superiore 14 Guha, Saikat Raytheon BBN [email protected] Technologies 15 Hindi, Munther NASA SCaN/ASRC [email protected] 16 Hughes, Richard Los Alamos National [email protected] Laboratory 17 Kaltenbaek, University of Vienna [email protected] Rainer 18 Kumar, Prem Northwestern [email protected] University 19 Kwiat, Paul University of Illinois at [email protected] Urbana-Champaign 20 Nordholt, Jane Los Alamos National [email protected] Laboratory continues on next page… 3 …continued from previous page 21 Rambo, Timothy Northwestern [email protected] University rn.edu 22 Schwab, Keith California Institute of [email protected] Technology 23 Shapiro, Jeffrey Massachusetts [email protected] Institute of Technology 24 Spero, Robert Jet Propulsion [email protected] Laboratory 25 Tsang, Mankei National University of [email protected] Singapore 26 Turyshev, Slava Jet Propulsion [email protected] Laboratory 27 Vallisneri, Jet Propulsion [email protected] Michelé Laboratory 28 Wong, Franco Massachusetts [email protected] Institute of Technology 29 Yu, Nan Jet Propulsion [email protected] Laboratory 4 Table of Contents I. Executive Summary ............................................................................................................................... 8 II. Introduction ......................................................................................................................................... 14 II.1. A clarifying note on ‘quantum’ versus ‘classical’ ......................................................... 14 II.2. The promise of quantum‐enhanced technologies ....................................................... 15 II.3. The timing of our study program ....................................................................................... 17 II.4. Objectives of the workshop and study program .......................................................... 19 III. Scope and Organization of the Study Program .................................................................... 20 III.1. Scope of the workshop and study program ................................................................. 20 III.2. Organization of the workshop and study program ................................................... 21 IV. Results Emerging from the Study .............................................................................................. 24 IV.1. Fundamental science in space ............................................................................................ 24 IV.1.1. Opportunities for fundamental physics measurements in space ............... 25 IV.1.2. Low‐frequency gravitational‐wave interferometer in space ....................... 27 IV.1.3. A space‐based ultra‐stable laser frequency reference derived from gravitational wave technology ................................................................................................ 29 IV.1.4. Atomic clocks and quantum sensors for science applications..................... 32 IV.1.4.1. Atomic quantum inertial sensors .................................................................... 33 IV.1.4.2. High accuracy optical clocks .............................................................................. 35 IV.1.5. Science motivations and technology priorities .................................................. 36 Atomic quantum sensor enabled science .................................................................. 38 Clock enabled science ........................................................................................................ 39 Meeting technology challenges ...................................................................................... 40 IV.2. Sensing and Measurement in Space ................................................................................. 42 IV.2.1. Opportunities for quantum enhancements .......................................................... 42 IV.2.1.1. No‐go theorems for remote target detection with Type I and Type III sensors .......................................................................................................................................... 44 IV.2.2. Recent advances in quantum‐enhanced sensing systems ............................. 45 IV.2.2.1. Type II sensing systems: nonclassical receivers for classical (coherent‐state) illumination .............................................................................................. 45 IV.2.2.2. Quantum filtering and smoothing in Type II systems ............................ 48 Quantum filtering ................................................................................................................ 48 Quantum smoothing ........................................................................................................... 49 IV.2.2.3. Quantum illumination: a Type III sensor for high noise and loss ...... 50 5 IV.2.2.4. Active ghost imaging: classical (Type 0) and quantum (Type III) ..... 51 Computational ghost imaging ........................................................................................ 55 Comparison of Computational Ghost imaging with floodlight LADAR ........ 56 IV.2.2.5. Interferometry ......................................................................................................... 57 Active interferometry with classical and nonclassical light ............................. 57 Passive stellar interferometry ....................................................................................... 58 Quantum information‐theoretic perspective ..................................................................... 59 Entangled interferometry .......................................................................................................... 59 Passive ghost imaging (intensity interferometry) using stellar light ........... 60 IV.2.2.6. Weak measurements for space applications .............................................. 60 Weak‐value based signal amplification ..................................................................... 61 Illustrative weak‐values example ........................................................................................... 63 Rover‐based detection and observation .............................................................................. 64 Communication and control signaling between a planet and a satellite ................ 65 Detection and observation of astronomical objects ........................................................ 66 Weak‐value based simultaneous measurements of non‐commuting observables ............................................................................................................................ 67 Additional possibilities for weak‐value based measurements in space ...... 68 IV.2.2.7. Quantum parameter estimation bounds for sensing .............................. 68 Quantum Cramér‐Rao bounds ....................................................................................... 69 Beyond quantum Cramér‐Rao bounds ....................................................................... 69 Quantum‐optimal imaging systems ............................................................................. 70 IV.2.3. A cross‐cutting enabling technology: multifunction and reconfigurable entangled‐photon source in space ......................................................................................... 70 IV.2.3.1. Applications enabled by multifunction nonclassical sources .............. 71 Scientific exploration using nonclassical sources of light in space ................ 71 Quantum measurements in space ................................................................................ 73 IV.2.3.2. Nonclassical sources .............................................................................................. 74 Sources based on three‐wave mixing in nonlinear crystals .............................. 74 Sources based on four‐wave mixing in optical fibers .......................................... 76 Sources based on semiconductors ............................................................................... 77 Future source

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    136 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us