Polyhedral Harmonics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equivelar Octahedron of Genus 3 in 3-Space
Equivelar octahedron of genus 3 in 3-space Ruslan Mizhaev ([email protected]) Apr. 2020 ABSTRACT . Building up a toroidal polyhedron of genus 3, consisting of 8 nine-sided faces, is given. From the point of view of topology, a polyhedron can be considered as an embedding of a cubic graph with 24 vertices and 36 edges in a surface of genus 3. This polyhedron is a contender for the maximal genus among octahedrons in 3-space. 1. Introduction This solution can be attributed to the problem of determining the maximal genus of polyhedra with the number of faces - . As is known, at least 7 faces are required for a polyhedron of genus = 1 . For cases ≥ 8 , there are currently few examples. If all faces of the toroidal polyhedron are – gons and all vertices are q-valence ( ≥ 3), such polyhedral are called either locally regular or simply equivelar [1]. The characteristics of polyhedra are abbreviated as , ; [1]. 2. Polyhedron {9, 3; 3} V1. The paper considers building up a polyhedron 9, 3; 3 in 3-space. The faces of a polyhedron are non- convex flat 9-gons without self-intersections. The polyhedron is symmetric when rotated through 1804 around the axis (Fig. 3). One of the features of this polyhedron is that any face has two pairs with which it borders two edges. The polyhedron also has a ratio of angles and faces - = − 1. To describe polyhedra with similar characteristics ( = − 1) we use the Euler formula − + = = 2 − 2, where is the Euler characteristic. Since = 3, the equality 3 = 2 holds true. -
Systematic Narcissism
Systematic Narcissism Wendy W. Fok University of Houston Systematic Narcissism is a hybridization through the notion of the plane- tary grid system and the symmetry of narcissism. The installation is based on the obsession of the physical reflection of the object/subject relation- ship, created by the idea of man-made versus planetary projected planes (grids) which humans have made onto the earth. ie: Pierre Charles L’Enfant plan 1791 of the golden section projected onto Washington DC. The fostered form is found based on a triacontahedron primitive and devel- oped according to the primitive angles. Every angle has an increment of 0.25m and is based on a system of derivatives. As indicated, the geometry of the world (or the globe) is based off the planetary grid system, which, according to Bethe Hagens and William S. Becker is a hexakis icosahedron grid system. The formal mathematical aspects of the installation are cre- ated by the offset of that geometric form. The base of the planetary grid and the narcissus reflection of the modular pieces intersect the geometry of the interfacing modular that structures the installation BACKGROUND: Poetics: Narcissism is a fixation with oneself. The Greek myth of Narcissus depicted a prince who sat by a reflective pond for days, self-absorbed by his own beauty. Mathematics: In 1978, Professors William Becker and Bethe Hagens extended the Russian model, inspired by Buckminster Fuller’s geodesic dome, into a grid based on the rhombic triacontahedron, the dual of the icosidodeca- heron Archimedean solid. The triacontahedron has 30 diamond-shaped faces, and possesses the combined vertices of the icosahedron and the dodecahedron. -
Platonic Solids Generate Their Four-Dimensional Analogues
1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a;b;c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone. Via the Cartan-Dieudonne´ theorem, the reflective symmetries of the arXiv:1307.6768v1 [math-ph] 25 Jul 2013 Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors gen- erating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic Solids can thus in turn be interpreted as vertices in four- dimensional space, giving a simple construction of the 4D polytopes 16-cell, 24-cell, the F4 root system and the 600-cell. In particular, these polytopes have ‘mysterious’ symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter PREPRINT: Acta Crystallographica Section A A Journal of the International Union of Crystallography 2 groups, which can be shown to be a general property of the spinor construction. -
Archimedean Solids
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat). -
Shape Skeletons Creating Polyhedra with Straws
Shape Skeletons Creating Polyhedra with Straws Topics: 3-Dimensional Shapes, Regular Solids, Geometry Materials List Drinking straws or stir straws, cut in Use simple materials to investigate regular or advanced 3-dimensional shapes. half Fun to create, these shapes make wonderful showpieces and learning tools! Paperclips to use with the drinking Assembly straws or chenille 1. Choose which shape to construct. Note: the 4-sided tetrahedron, 8-sided stems to use with octahedron, and 20-sided icosahedron have triangular faces and will form sturdier the stir straws skeletal shapes. The 6-sided cube with square faces and the 12-sided Scissors dodecahedron with pentagonal faces will be less sturdy. See the Taking it Appropriate tool for Further section. cutting the wire in the chenille stems, Platonic Solids if used This activity can be used to teach: Common Core Math Tetrahedron Cube Octahedron Dodecahedron Icosahedron Standards: Angles and volume Polyhedron Faces Shape of Face Edges Vertices and measurement Tetrahedron 4 Triangles 6 4 (Measurement & Cube 6 Squares 12 8 Data, Grade 4, 5, 6, & Octahedron 8 Triangles 12 6 7; Grade 5, 3, 4, & 5) Dodecahedron 12 Pentagons 30 20 2-Dimensional and 3- Dimensional Shapes Icosahedron 20 Triangles 30 12 (Geometry, Grades 2- 12) 2. Use the table and images above to construct the selected shape by creating one or Problem Solving and more face shapes and then add straws or join shapes at each of the vertices: Reasoning a. For drinking straws and paperclips: Bend the (Mathematical paperclips so that the 2 loops form a “V” or “L” Practices Grades 2- shape as needed, widen the narrower loop and insert 12) one loop into the end of one straw half, and the other loop into another straw half. -
Rhombic Triacontahedron
Rhombic Triacontahedron Figure 1 Rhombic Triacontahedron. Vertex labels as used for the corresponding vertices of the 120 Polyhedron. COPYRIGHT 2007, Robert W. Gray Page 1 of 11 Encyclopedia Polyhedra: Last Revision: August 5, 2007 RHOMBIC TRIACONTAHEDRON Figure 2 Icosahedron (red) and Dodecahedron (yellow) define the rhombic Triacontahedron (green). Figure 3 “Long” (red) and “short” (yellow) face diagonals and vertices. COPYRIGHT 2007, Robert W. Gray Page 2 of 11 Encyclopedia Polyhedra: Last Revision: August 5, 2007 RHOMBIC TRIACONTAHEDRON Topology: Vertices = 32 Edges = 60 Faces = 30 diamonds Lengths: 15+ ϕ = 2 EL ≡ Edge length of rhombic Triacontahedron. ϕ + 2 EL = FDL ≅ 0.587 785 252 FDL 2ϕ 3 − ϕ = DVF ϕ 2 FDL ≡ Long face diagonal = DVF ≅ 1.236 067 977 DVF ϕ 2 = EL ≅ 1.701 301 617 EL 3 − ϕ 1 FDS ≡ Short face diagonal = FDL ≅ 0.618 033 989 FDL ϕ 2 = DVF ≅ 0.763 932 023 DVF ϕ 2 2 = EL ≅ 1.051 462 224 EL ϕ + 2 COPYRIGHT 2007, Robert W. Gray Page 3 of 11 Encyclopedia Polyhedra: Last Revision: August 5, 2007 RHOMBIC TRIACONTAHEDRON DFVL ≡ Center of face to vertex at the end of a long face diagonal 1 = FDL 2 1 = DVF ≅ 0.618 033 989 DVF ϕ 1 = EL ≅ 0.850 650 808 EL 3 − ϕ DFVS ≡ Center of face to vertex at the end of a short face diagonal 1 = FDL ≅ 0.309 016 994 FDL 2 ϕ 1 = DVF ≅ 0.381 966 011 DVF ϕ 2 1 = EL ≅ 0.525 731 112 EL ϕ + 2 ϕ + 2 DFE = FDL ≅ 0.293 892 626 FDL 4 ϕ ϕ + 2 = DVF ≅ 0.363 271 264 DVF 21()ϕ + 1 = EL 2 ϕ 3 − ϕ DVVL = FDL ≅ 0.951 056 516 FDL 2 = 3 − ϕ DVF ≅ 1.175 570 505 DVF = ϕ EL ≅ 1.618 033 988 EL COPYRIGHT 2007, Robert W. -
VOLUME of POLYHEDRA USING a TETRAHEDRON BREAKUP We
VOLUME OF POLYHEDRA USING A TETRAHEDRON BREAKUP We have shown in an earlier note that any two dimensional polygon of N sides may be broken up into N-2 triangles T by drawing N-3 lines L connecting every second vertex. Thus the irregular pentagon shown has N=5,T=3, and L=2- With this information, one is at once led to the question-“ How can the volume of any polyhedron in 3D be determined using a set of smaller 3D volume elements”. These smaller 3D eelements are likely to be tetrahedra . This leads one to the conjecture that – A polyhedron with more four faces can have its volume represented by the sum of a certain number of sub-tetrahedra. The volume of any tetrahedron is given by the scalar triple product |V1xV2∙V3|/6, where the three Vs are vector representations of the three edges of the tetrahedron emanating from the same vertex. Here is a picture of one of these tetrahedra- Note that the base area of such a tetrahedron is given by |V1xV2]/2. When this area is multiplied by 1/3 of the height related to the third vector one finds the volume of any tetrahedron given by- x1 y1 z1 (V1xV2 ) V3 Abs Vol = x y z 6 6 2 2 2 x3 y3 z3 , where x,y, and z are the vector components. The next question which arises is how many tetrahedra are required to completely fill a polyhedron? We can arrive at an answer by looking at several different examples. Starting with one of the simplest examples consider the double-tetrahedron shown- It is clear that the entire volume can be generated by two equal volume tetrahedra whose vertexes are placed at [0,0,sqrt(2/3)] and [0,0,-sqrt(2/3)]. -
Binary Icosahedral Group and 600-Cell
Article Binary Icosahedral Group and 600-Cell Jihyun Choi and Jae-Hyouk Lee * Department of Mathematics, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3277-3346 Received: 10 July 2018; Accepted: 26 July 2018; Published: 7 August 2018 Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell. We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of a 600-cell by applying the Coxeter–Dynkin diagram of H4. Keywords: binary polyhedral group; icosahedron; dodecahedron; 600-cell MSC: 52B10, 52B11, 52B15 1. Introduction The classification of finite subgroups in SLn(C) derives attention from various research areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE singularity theory [1]. The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron), but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups, there are only three binary polyhedral groups(binary tetrahedral group 2T, binary octahedral group 2O, binary icosahedral group 2I) related to regular polyhedrons. -
Can Every Face of a Polyhedron Have Many Sides ?
Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1. -
The Truncated Icosahedron As an Inflatable Ball
https://doi.org/10.3311/PPar.12375 Creative Commons Attribution b |99 Periodica Polytechnica Architecture, 49(2), pp. 99–108, 2018 The Truncated Icosahedron as an Inflatable Ball Tibor Tarnai1, András Lengyel1* 1 Department of Structural Mechanics, Faculty of Civil Engineering, Budapest University of Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary * Corresponding author, e-mail: [email protected] Received: 09 April 2018, Accepted: 20 June 2018, Published online: 29 October 2018 Abstract In the late 1930s, an inflatable truncated icosahedral beach-ball was made such that its hexagonal faces were coloured with five different colours. This ball was an unnoticed invention. It appeared more than twenty years earlier than the first truncated icosahedral soccer ball. In connection with the colouring of this beach-ball, the present paper investigates the following problem: How many colourings of the dodecahedron with five colours exist such that all vertices of each face are coloured differently? The paper shows that four ways of colouring exist and refers to other colouring problems, pointing out a defect in the colouring of the original beach-ball. Keywords polyhedron, truncated icosahedron, compound of five tetrahedra, colouring of polyhedra, permutation, inflatable ball 1 Introduction Spherical forms play an important role in different fields – not even among the relics of the Romans who inherited of science and technology, and in different areas of every- many ball games from the Greeks. day life. For example, spherical domes are quite com- The Romans mainly used balls composed of equal mon in architecture, and spherical balls are used in most digonal panels, forming a regular hosohedron (Coxeter, 1973, ball games. -
Putting the Icosahedron Into the Octahedron
Forum Geometricorum Volume 17 (2017) 63–71. FORUM GEOM ISSN 1534-1178 Putting the Icosahedron into the Octahedron Paris Pamfilos Abstract. We compute the dimensions of a regular tetragonal pyramid, which allows a cut by a plane along a regular pentagon. In addition, we relate this construction to a simple construction of the icosahedron and make a conjecture on the impossibility to generalize such sections of regular pyramids. 1. Pentagonal sections The present discussion could be entitled Organizing calculations with Menelaos, and originates from a problem from the book of Sharygin [2, p. 147], in which it is required to construct a pentagonal section of a regular pyramid with quadrangular F J I D T L C K H E M a x A G B U V Figure 1. Pentagonal section of quadrangular pyramid basis. The basis of the pyramid is a square of side-length a and the pyramid is assumed to be regular, i.e. its apex F is located on the orthogonal at the center E of the square at a distance h = |EF| from it (See Figure 1). The exercise asks for the determination of the height h if we know that there is a section GHIJK of the pyramid by a plane which is a regular pentagon. The section is tacitly assumed to be symmetric with respect to the diagonal symmetry plane AF C of the pyramid and defined by a plane through the three points K, G, I. The first two, K and G, lying symmetric with respect to the diagonal AC of the square. -
Platonic Solids Generate Their Four-Dimensional Analogues
This is a repository copy of Platonic solids generate their four-dimensional analogues. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85590/ Version: Accepted Version Article: Dechant, Pierre-Philippe orcid.org/0000-0002-4694-4010 (2013) Platonic solids generate their four-dimensional analogues. Acta Crystallographica Section A : Foundations of Crystallography. pp. 592-602. ISSN 1600-5724 https://doi.org/10.1107/S0108767313021442 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a,b,c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone.