Research Masterclass - 2009 Lecture 1 Steve Watts Physics and Astronomy, University of Manchester

Total Page:16

File Type:pdf, Size:1020Kb

Research Masterclass - 2009 Lecture 1 Steve Watts Physics and Astronomy, University of Manchester Research Masterclass - 2009 Lecture 1 Steve Watts Physics and Astronomy, University of Manchester. Advanced Detector Design for Particle Physics (A story of designing an upgrade for ATLAS) First there has to be a physics case. Then, is it technically feasible ? Yes ? But you have to do a lot of detector R&D and work through the problems Succeed ? Yes ? Will someone give the money ? Yes ? Complicated project management to final installation Succeed ? Yes ….get some data Do you find the physics you wanted ???? Note: lecture will be delivered in the form of a research seminar….. ASIDE: COORDINATE SYSTEM AND UNITS Centre of Mass Energy = sqrt(s) = 14 TeV Z-axis Z, θ , φ Use rapidity (y) /pseudo-rapidity ( η ) rather than theta. Why ? dN/dy is Lorentz invariant Units such that c=1……energy, GeV, mass, GeV/c2, momentun GeV/c • A theorist publishes a paper with a new idea – Khoze/Martin/Ryskin Physics Archive – http://arxiv.org/ Higgs or dijet production in double rapidity gap events Authors: V.A. Khoze (U. of Durham), A.D. Martin (U. of Durham), M.G. Ryskin (U. of Durham) (Submitted on 1 Jun 2000) hep-ph/0006005 • Idea is picked up by experimental physicists who look to see if an experiment can be done. Searching for the Higgs Boson at Hadron Colliders using the Missing Mass Method Authors: M.G.Albrow (Fermilab), A.Rostovtsev (ITEP) (Submitted on 28 Sep 2000) hep-ph/0009336 • Not as easy as it looks……years of detector R&D follows….. The FP420 R&D Project: Higgs and New Physics with forward protons at the LHC Authors: M.G. Albrow, and a lot of other people, including Brian Cox, Jeff Forshaw, Cinzia Da Via, Rob Appleby, Andy Pilkington, Steve Watts Fred Loebinger and graduate students from Manchester arXiv:0806.0302 Just published in JINST Nice slide Andrew Brandt The Large Hadron Collider proton-proton collisions at an energy of 14 TeV CMS 26.7 km circumference LHCb ATLAS ALICE Start: September/October 2008 Pictures in this presentation are almost all from the public outreach ATLAS site http://atlas.ch/ LHC - Superconducting 1.8K !! Coldest place on the planet TheTheThe ATLASATLASATLAS DetectorDetectorDetector Diameter 25 m Barrel toroid length 26 m End-cap end-wall chamber span 46 m Overall weight 7000 tons Barcelona October 2009 + Executive Board October 2009 Proposal to STFC sent today. If £££££££ then ready by 2014 !!! MASS ACCEPTANCE – This is a crucial plot……. NOTE 70 GeV/c2 < Mass < 150 420 + 420 120 GeV/c2 < Mass < 500 GeV/c2 420 + 220 300 GeV/c2 < Mass < 1400 GeV/c2 220 + 220 SM = Standard Model Will return to the problem of “overlap background “………………. Luminosity x cross section = events per second Integrated Luminosity ( inverse fb) What level of cross-section can one get ? L = 1034 cm-2sec-1 is nominal LHC luminosity. 80 fb-1 at 14 TeV in year. “30 fb-1” is expected integrated luminosity after first three years WARNING: Total Cross Section is around 100 mb. Trigger rate 100 kHz! There is no reason to think the Higgs is a standard model version…… New results arrive all the time. THE ASSUMPTIONS YOU HAD WHEN YOU STARTED THE JOURNEY MAY NO LONGER BE TRUE. BEWARE !!! AFP ADDS TO THE ATLAS PHYSICS PROGRAMME – COMPLEMENTARY! PLUS LOTS OF STANDARD MODEL “BREAD AND BUTTER” PHYSICS THANKS TO ANDREW BRANDT AND ANDY PILKINGTON FOR UPDATED CASE WHAT ARE THE TECHNICAL AFP = uses LHC beam-line as a spectrometer PROBLEMS ??????? Proton energy loss results in proton trajectory horizontal departure IP1 220m 420m beam y(mm) y(mm) beam V. Avati/ Totem V. Avati/ Totem x(mm) x(mm) Q. How to track the forward protons with standard LHC optics and L = 1034 cm-2s-1 ? A. Hamburg pipe + rad. hard silicon tracking with active edge sensors (3D technology) + fast timing detectors ( 30 ps -> 10 ps) to reject pile up events In principle possible to trigger on protons at Level 1 for 220 detector – important to get at the Higgs to bbar channel.. EXPERIMENTAL PROBLEMS • How to get within a few millimetres of the LHC beam. • Radiation levels are very high close to the beam • Need to track the protons with 1 micro-radian angular precision • 420 m region of the LHC is currently at 1. 8 Kelvin – but it has no magnetic fields !! • To remove pile-up problem you need a radiation hard timing detector with at least 10 pico-second timing resolution. • Need a trigger to select events due to very small cross-section, but, 220 and 420 m are a long way from the central detector ( speed of light) • All components have to work reliably in the LHC tunnel – radiation environment. NONE OF THESE ARE SIMPLE – BUT SOLUTIONS HAVE BEEN FOUND OR R&D IN THE NEXT 1-2 YEARS WILL SOLVE REMAINING PROBLEMS THE STORY CONTINUES NEXT WEEK DIRECTED LEARNING FOR THE NEXT WEEK • Prove that the relationship between the momentum of a charged particle moving in a constant magnetic field and its radius of curvature is; P ( GeV/c) = 0.3 B (Tesla) R (metres) • Derive the missing-mass formula on slide 10. • Estimate the fractional momentum loss for CEP protons at 220 and 420m. Explain why the 220 m region selects a higher mass range than the 420 m region. • Look up and understand rapidity and pseudorapidity • Make estimates for the signal rates for a Standard Model Higgs at various masses for the CEP process at the LHC. Assume a centre of mass energy of 14 TeV. ( Hint: Repeat the exercise in Table 1 of the paper by Albrow et al.) • What is the current state of knowledge of the existence of the Higgs Boson ?? • Look over the FP420 Design Report to prepare for the next lecture on the silicon tracking system..
Recommended publications
  • CONTENTS Group Membership, January 2002 2
    CONTENTS Group Membership, January 2002 2 APPENDIX 1: Report on Activities 2000-2002 & Proposed Programme 2002-2006 4 1OPAL 4 2H1 7 3 ATLAS 11 4 BABAR 19 5DØ 24 6 e-Science 29 7 Geant4 32 8 Blue Sky and applied R&D 33 9 Computing 36 10 Activities in Support of Public Understanding of Science 38 11 Collaborations and contacts with Industry 41 12 Other Research Related Activities by Group Members 41 13 Staff Management and Implementation of Concordat 41 APPENDIX 2: Request for Funds 1. Support staff 43 2. Travel 55 3. Consumables 56 4. Equipment 58 APPENDIX 3: Publications 61 1 Group Membership, May 2002 Academic Staff Dr John Allison Senior Lecturer Professor Roger Barlow Professor Dr Ian Duerdoth Senior Lecturer Dr Mike Ibbotson Reader Dr George Lafferty Reader Dr Fred Loebinger Senior Lecturer Professor Robin Marshall Professor, Group Leader Dr Terry Wyatt Reader Dr A N Other (from Sept 2002) Lecturer Fellows Dr Brian Cox PPARC Advanced Fellow Dr Graham Wilson (leave of absence for 2 yrs) PPARC Advanced Fellow James Weatherall PPARC Fellow PPARC funded Research Associates∗ Dr Nick Malden Dr Joleen Pater Dr Michiel Sanders Dr Ben Waugh Dr Jenny Williams PPARC funded Responsive Research Associate Dr Liang Han PPARC funded e-Science Research Associates Steve Dallison core e-Science Sergey Dolgobrodov core e-Science Gareth Fairey EU/PPARC DataGrid Alessandra Forti GridPP Andrew McNab EU/PPARC DataGrid PPARC funded Support Staff∗ Phil Dunn (replacement) Technician Andrew Elvin Technician Dr Joe Foster Physicist Programmer Julian Freestone
    [Show full text]
  • Coulomb Gluons and Colour Evolution
    Coulomb gluons and colour evolution René Ángeles-Martínez in collaboration with Jeff Forshaw Mike Seymour JHEP 1512 (2015) 091 DPyC, BUAP & arXiv:1602.00623 (accepted for publication) 2016 In this talk: Progress towards including the colour interference of soft gluons in partons showers. PDF Hard process (Q) Parton Shower: Approx: Collinear + Soft radiation Q qµ ⇤ QCD Underlying event Hadronization Hadron-Hadron collision, Soper (CTEQ School) … 2 Motivation • Why? Increase precision of theoretical predictions for the LHC • Is this necessary? Yes, for particular non-inclusive observables. • Are those relevant to search for new physics? Yes, these can tell us about the (absence of) colour of the production mechanism (couplings). 3 Outline • Coulomb gluons, collinear factorisation & colour interference. • Concrete effect: super-leading-logs. • Including colour interference in partons showers. (Also see JHEP 07, 119 (2015), arXiv:1312.2448 & 1412.3967) 4 One-loop in the soft approximation kµ Q ⌧ ij Hard subprocess is a vector Colour matrices acting on 2 colour + spin d d k ↵ pi pj ig2T T − · 2 s i · j (2⇡)d [p k i0][ p k i0][k2+i0] Z j · ± − i · ± ↵ i : i0 i :+i0 i : i0 − − j : i0 j :+i0 j :+i0 − 2 ↵ Introduction: one-loop soft gluon correction After contour integration: d4k (2⇡)δ(k2)✓(k0) (2⇡)2δ(p k)δ( p k) g2µ2✏T T p p + iδ˜ i · − j · 2 s i · j i · j (2⇡)4 [p k][p k] ij 2[k2] Z j · i · ↵ (On-shell gluon: Purely real) (Coulomb gluon: Purely imaginary) 1ifi, j in , ˜ δij = 81ifi, j out , <>0 otherwise.
    [Show full text]
  • Arxiv:Hep-Ph/0403045V2 5 Mar 2004 .Maltoni F
    Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics Editors: M.A. Dobbs1, S. Frixione2, E. Laenen3, K. Tollefson4 Contributing Authors: H. Baer5, E. Boos6, B. Cox7, M.A. Dobbs1, R. Engel8, S. Frixione2, W. Giele9, J. Huston4, S. Ilyin6, B. Kersevan10, F. Krauss11, Y. Kurihara12, E. Laenen3,L.Lonnblad¨ 13, F. Maltoni14, M. Mangano15, S. Odaka12, P. Richardson16, A. Ryd17, T. Sjostrand¨ 13, P. Skands13, Z. Was18, B.R. Webber19, D. Zeppenfeld20 1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 2INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy 3NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands 4Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1116, USA 5Department of Physics, Florida State University, 511 Keen Building, Tallahassee, FL 32306-4350, USA 6Moscow State University, Moscow, Russia 7Dept of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. 8 Institut f¨ur Kernphysik, Forschungszentrum Karlsruhe, Postfach 3640, D - 76021 Karlsruhe, Germany 9Fermi National Accelerator Laboratory, Batavia, IL 60510-500, USA 10Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana,Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19,SI-1000 Ljubljana, Slovenia 11Institut f¨ur Theoretische Physik, TU Dresden, 01062 Dresden, Germany 12KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan 13Department of Theoretical Physics, Lund University, S-223 62 Lund, Sweden 14Centro Studi e Ricerche “Enrico Fermi”, via Panisperna, 89/A - 00184 Rome, Italy 15CERN, CH–1211 Geneva 23, Switzerland 16Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, U.K. 17Caltech, 1200 E.
    [Show full text]
  • Double Diffractive Higgs and Di-Photon Production at The
    MAN/HEP/2001/03 MC-TH-01/09 October 2001 Double Diffractive Higgs and Di-photon Production at the Tevatron and LHC Brian Cox and Jeff Forshaw Dept. of Physics and Astronomy, University of Manchester Manchester M13 9PL, England [email protected] Beate Heinemann Oliver Lodge Laboratory, University of Liverpool Liverpool, L69 7ZE, England [email protected] Abstract We use the POMWIG Monte Carlo generator to predict the cross-sections for double diffractive higgs and di-photon production at the Tevatron and LHC. We find that the higgs production cross-section is too small to be observable at Tevatron energies, and even at arXiv:hep-ph/0110173v2 13 Oct 2001 the LHC observation would be difficult. Double diffractive di-photon production, however, should be observable within one year of Tevatron Run II. 1 Introduction With the start of Run II at the Tevatron the possibility of detecting a light higgs boson has of course been the focus of much attention. One suggested experimentally clean search strategy is to look in double diffractive collisions in which the final state contains only intact protons, which escape the central detectors, and the decay products of the higgs, in this case two b quark jets. The protons would be tagged in roman pot detectors a long way down stream of the interaction point, allowing a very precise determination of the higgs mass, using the so-called missing mass method [1]. With such proton tagging, the available center of mass energy of up to 200 GeV means that the preferred higgs mass of around 115 GeV is kinematically accessible, at least in principle.
    [Show full text]
  • Report from Science Committee
    Report From Science Committee JennyReport Thomas, IoP Town Meeting From Science Committee One year since last Town Meeting SC scientific business Reapproval of LHC-GPDs High Performance Computing Funding of new projects Statements of Interest Accelerator Centres SC administrative business New Members/Retiring members Meetings with Peer-Review and AP chairs Visits to PP institutes SLA Review Review of Peer Review Structure Jenny Thomas, IoP Town Meeting SCSC StrategyStrategy SC has defined a strategy over the last few years New projects are essential to the life blood of our field Longer term and shorter term projects must be planned for High impact science will be funded where: UK can play a major and intellectually leading role Science is internationally excellent, timely and fundamental Sun-setting is a natural part of a vibrant programme Blue skies R&D is an important investment in the future The financial outlook Jenny Thomas, IoP TownThe Meeting financial outlook We have a balanced budget over 10 year period SC has wrestled with the spreadsheets and understands the numbers In the short term, there are shortfalls We don’t have much wiggle room until 05/06 We do have lots of stuff we want to do Ian just has to get the money from OST. If we get 4% we may be able to do everything we want Start thinking of great new science to do. Who is SC? Jenny Thomas, IoP Town Meeting Who is SC? Martin Ward, Leicester (Chair) Jenny Thomas, UCL (Deputy Chair) Jordan Nash, IC Richard Hills, Cambridge Jeff Forshaw, Manchester John Peacock, Edinburgh
    [Show full text]
  • {PDF} Why Does E=Mc2?: (And Why Should We Care?)
    WHY DOES E=MC2?: (AND WHY SHOULD WE CARE?) PDF, EPUB, EBOOK Brian Cox,Jeff Forshaw | 272 pages | 09 Mar 2010 | The Perseus Books Group | 9780306819117 | English | Cambridge, MA, United States Why Does E=mc2?: (And Why Should We Care?) by Brian Cox, Jeff Forshaw, Paperback | Barnes & Noble® NOOK Book. Home 1 Books 2. Add to Wishlist. Sign in to Purchase Instantly. Members save with free shipping everyday! See details. Brian Cox and Professor Jeff Forshaw go on a journey to the frontier of twenty-first century science to unpack Einstein's famous equation. Explaining and simplifying notions of energy, mass, and light-while exploding commonly held misconceptions-they demonstrate how the structure of nature itself is contained within this equation. Along the way, we visit the site of one of the largest scientific experiments ever conducted: the now-famous Large Hadron Collider, a gigantic particle accelerator capable of re-creating conditions that existed fractions of a second after the Big Bang. Jeff Forshaw is a Professor of Theoretical Physics at the University of Manchester, specializing in the physics of elementary particles. He was awarded the Institute of Physics Maxwell Medal in for outstanding contributions to theoretical physics. Related Searches. A nutritionist offers recipes and a diet program to aid in determining which foods cause View Product. Between You and Me. At the age of 87, Mike Wallace is a legendary figure in broadcast journalism. Now, after 60 years of reporting on important events around the world, he shares his personal
    [Show full text]
  • Soft Gluons and Non-Global Observables Mike Seymour – University of Manchester / CERN TH on Behalf of Rene Angeles Martinez, Matthew De Angelis, Jeffrey R
    Soft Gluons and Non-global Observables Mike Seymour – University of Manchester / CERN TH on behalf of Rene Angeles Martinez, Matthew De Angelis, Jeffrey R. Forshaw, Simon Plätzer, Michael H. Seymour based on JHEP 05 (2018) 044 (arxiv:1802.08531) Soft gluon evolution • In particular, how does soft gluon emission affect subsequent soft gluon evolution? Soft Gluons and Non-global Observables • Soft gluon emission evolution algorithm • An IR-finite reformulation • The ordering variable • Colour flow basis • (Towards) an exact numerical implementation • (“amplitude-level parton shower”) et al [14], as well as Weigert and Caron-Huot [7, 11, 30]. In Appendix B we make the can- cellation of infrared divergences explicit for observables that are inclusive below a resolution scale, and in Appendix C we explicitly calculate contributions in a fixed-order expansion. Finally, Appendix D sets up the machinery to deal with the fact that most colour bases are not orthogonal (see [31] for a notable exception). 2Thegeneralalgorithm Our starting point is the cross section for emitting n soft gluons. At this stage we will assume that it is ok to order successive emissions in energy. This assumption is ok for processes that are insensitive to Coulomb gluon exchanges but appears not to be valid otherwise [29, 32]. We have that σ =Tr(V H(Q)V† ) Tr A (µ) 0 µ,Q µ,Q ⌘ 0 µ σ =Tr(V D V H(Q)V† D† V† ) ⇧ d 1 µ,E1 1 E1,Q E1,Q 1µ µ,E1 d 1 Tr A (µ) d⇧ ⌘ 1 1 ⌫ µ σ =Tr(V D V D V H(Q)V† D† V† D† V† ) ⇧ ⇧ d 2 µ,E2 2 E2,E1 1 E1,Q E1,Q 1µ E2,E1 2⌫ µ,E2 d 1d 2 Tr A (µ) d⇧ d⇧ ⌘ 2 1 2 etc.
    [Show full text]
  • Forward Physics at 420M at LHC
    Brian Cox DIS 2005, Madison, April 2005 Forward Physics at 420m at LHC • Selection rules mean that central system is (to a good approx) 0++ • If you see a new particle produced exclusively with proton tags you know its quantum numbers • CP violation in the Higgs sector shows up directly as azimuthal asymmetries • Proton tagging may be the discovery channel in certain regions of the MSSM • Tagging the protons means excellent mass resolution (~ GeV) irrespective of the decay products of the central system • Unique access to a host of interesting QCD Very schematically it’s a glue – glue collider where you know the beam energy of the gluons - source of pure gluon jets - and central production of any 0++ state which couples strongly to glue is a possibility … Central Production at LHC xIP~ 0.007 xIP~ 0.03 Plots from Henri Kowalski and TOTEM (Helsinki group) Central Production at LHC xIP~ 0.007 xIP~ 0.03 The KMR Calculation of the Exclusive Process q -> Proton Dominant uncertainty: KMR estimate factor of 2-3. Independent estimate by Lund group “definitely less than 10”. Divergent: controlled by Sudakov Jeff Forshaw, HERA LHC Workshop The KMR Calculation of the Exclusive Process q -> Proton Dominant uncertainty: KMR estimate factor of 2-3. Independent estimate by Lund group “definitely less than 10”. Divergent: controlled by Sudakov Jeff Forshaw, HERA LHC Workshop Latest Acceptance curves from Helsinki Group R. Orava, FP420 FNAL meeting , 26 April The Benchmark process : SM Higgs production The Benchmark process : SM Higgs production b jets : MH = 120 GeV = 2 fb MH = 140 GeV = 0.7 fb -1 MH = 120 GeV : 11 signal, S/B ~ 1 in 30 fb 0++ Selection rule Also, since resolution of taggers > Higgs width: QCD Background ~ •The b jet channel is possible, with a good understanding of detectors and clever level 1 trigger •The WW* (ZZ*) channel is extremely promising : no trigger problems, better mass resolution at higher masses (even in leptonic / semi-leptonic channel) •If we see Higgs + tags - the quantum numbers are 0++ Resolution from R.
    [Show full text]
  • Gaps Between Jets at the LHC
    Gaps between jets at the LHC Simone Marzani University of Manchester Collider Physics 2009: Joint Argonne & IIT Theory Institute May 18th -22nd , 2009 In collaboration with Jeff Forshaw and James Keates arXiv:0905.1350 [hep-ph] Outline • Jet vetoing: Gaps between jets – Global and non-global logarithms – Discovery of super-leading logarithms • Some LHC phenomenology – Global logarithms – Super-leading logarithms • Conclusions and Outlook Jet vetoing:" Gaps between jets! The observable Production of two jets with! • transverse momentum Q ! • rapidity separation Y! jet radius R! Y! • Emission with !kT >Q0 forbidden in the inter-jet region! Plenty of QCD effects! “wider” gaps! Y! Forward BFKL Non- forward BFKL (Mueller-Navelet jets) (Mueller-Tang jets) Super-leading logs Wide-angle soft radiation Fixed order Q L = ln “emptier” gaps! Q0 Higgs +2 jets! Weak boson fusion! Gluon fusion! • Different QCD radiation in the inter-jet region! • To enhance the WBF channel, one can make a veto Q0 on additional radiation between the tagged jets! • QCD radiation as in dijet production! Forshaw and Sjödahl arXiv:0705.1504 [hep-ph] • Important in order to extract the VVH coupling! Soft gluons in QCD! • What happens if we dress a hard scattering with soft gluons?! • Sufficiently inclusive observables are not affected: real and virtual cancel via Bloch-Nordsieck theorem! • Soft gluon corrections are important if the real radiation is constrained into a small region of phase-space! • In such cases BN fails and miscancellation between real and virtual induces
    [Show full text]
  • A Guide to the Cosmos Brian Cox
    A Guide To The Cosmos Brian Cox homologous!Maurits syllabicates Hari antagonising her anklebone heroically ne'er, Origenisticwhile vapourish and Madagascan. Nealy osculating Reverse sparkishly Bert empowers or jobes ruddy. some arteriole and mitring his Klein so Failed to sender name cannot be to buy official wonders of reshipping the cosmos brian cox as normal Author Brian Cox J R ForshawPublisher Allen Lane 2016ISBN-10 146144361ISBN-13 97146144363Condition Very GoodBinding Hardcover with dust. This accessible illustrated guide plug the cosmos is for switch the new. Brian Cox and Adele's producer Paul Epworth discuss music. Deep Astronomy Bookshelf Universal A look to the Cosmos by Brian Cox u0026 Jeff Foreshaw by Deep Astronomy 3 years ago 13 minutes 30 seconds. Wonders app also something to rigorously derived theory of consciousness, cox to a the cosmos brian cox. Podcaster Tony Darnell Title Universal A Guide tap the Cosmos by Brian Cox Jeff Foreshaw Organization Deep Astronomy. An awe-inspiring unforgettable journey of scientific exploration from Brian Cox and Jeff Forshaw the time ten bestselling authors of The Quantum UniverseWe dare to fact a time before the whole Bang when we entire tower was compressed into our space smaller than an atom. Professor Brian Cox 3Arena. And has recently co-written Universal A Guide all the Cosmos with Professor Brian Cox. Universal A high to the Cosmos de Cox Brian en Gandhi. ProfBrianCox my doctor is wants a good beginner's guide to stars their feature in the universe Do only have one probe's it called please X. New developments like a popular and the whole new posts can confirm the magic show and a guide to radio and buy and dig into this.
    [Show full text]
  • Phenomenology of a Triplet Higgs and Searching for a MSSM Higgs in Diffraction
    Phenomenology of a Triplet Higgs and Searching for a MSSM Higgs in Diffraction Jeff Forshaw University of Manchester XXXVIIIth Rencontres de Moriond QCD & High Energy Hadron Interactions Triplet Higgs Model: How to avoid a light higgs boson. MSSM Higgs with CP violation: How to have a very light higgs boson. Triplet Model: with B. White, D. Ross, A. Sabio-Vera JHEP 0110:007,2001; hep-ph/0302256. MSSM Higgs: with B. Cox, J-S. Lee, J. Monk, A. Pilaftsis. hep-ph/0303206 Precise data (0.1%) from LEP/SLC/Tevatron imply a light Higgs boson when interpreted within the Standard Model: 53 mh 87 34 GeV Similar conclusions in SUSY extensions (< 130 GeV). See lepewwg.web.cern.ch [Blank & Hollik] I ntroduce a real triplet (Y= 0): v 246 GeV Mass spectrum 2 MW 1 2 2 2 M Z cos W cos 2 2 mh 1v 2 2 2 mk m 4v / 0 3 2 4 / 4 2 m mk m v [Custodial symmetry] One-loop RG analysis reveals model is well defined up to 1 TeV. Mass splitting need not be much smaller than v if appreciable mixing in neutral sector. Oblique Corrections i.e. not vertex or box (q) g (q2 ) (m) (m2 ) (0) [Lynn, Stuart; Peskin, Takeuchi] S, T and U are gauge invariant and finite: SM (mh ) ASM S({mi }) BSM T ({mi }) CSM U ({mi }) General observable New physics enters only via S, T and U In the triplet model we work to lowest order in Hence quantum corrections are negligible: S 0 No hypercharge T 0 Custodial symmetry But tree level corrections are interesting: • Direct correction to W mass since 2 2 2 2 MW M Z cos W (1 ) 2 • Indirect correction to all observables since tree level SM 2 GF GF (1 ) SM (mh ) ASM STM (mk ,m ) BSM ( TTM (mk ,m ) tree ) CSM UTM (mk ,m ) Tree Level Effects 95% CL contour Standard Model ref mh 100 GeV Tree level violation of custodial symmetry can permit the lightest higgs to be as heavy as 500 GeV.
    [Show full text]
  • CERN Courier – Digital Edition Welcome to the Digital Edition of the December 2013 Issue of CERN Courier
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 1 0 D ECEMBER 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the December 2013 issue of CERN Courier. This edition celebrates a number of anniversaries. Starting with the “oldest”, 2013 saw the centenary of the birth of Bruno Pontecorvo, whose life and Towards the contributions to neutrino physics were celebrated with a symposium in Rome in September. Moving forwards, it is the 50th anniversary of the Institute for intensity frontier High Energy Physics in Protvino, Russia, and also of CESAR – CERN’s first storage ring, which saw the first beam in December 1963 and paved the way for the LHC. More recently, a new network for mathematical and theoretical physics started up 10 years ago, re-establishing connections between scientists in the Balkans. At the same time, the longer-standing CERN School of Computing began a phase of reinvigoration. There is also a selection of books for more relaxed reading during the festive season. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. JUBILEE ALICE SCIENCE IN IHEP, Protvino, Forward muons celebrates its join the upgrade THE BALKANS EDITOR: CHRISTINE SUTTON, CERN 50th anniversary programme The story behind a DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p28 p6 physics network p21 CERNCOURIER www. V OLUME 5 3 N UMBER 1 0 D ECEMBER 2 0 1 3 CERN Courier December 2013 Contents Covering current developments in high-energy physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affi liated with CERN, and to their personnel.
    [Show full text]