UC Santa Cruz UC Santa Cruz Previously Published Works

Title Measurement of dijet production with a veto on additional central jet activity in pp collisions at √s = 7TeV using the ATLAS detector

Permalink https://escholarship.org/uc/item/65v7p0wf

Journal Journal of High Energy Physics, 2011(9)

ISSN 1126-6708

Authors Aad, G Abbott, B Abdallah, J et al.

Publication Date 2011

DOI 10.1007/JHEP09(2011)053

License https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed

eScholarship.org Powered by the California Digital Library University of California JHEP09(2011)053 event Springer July 8, 2011 : , an all-order August 26, 2011 alpgen : September 12, 2011 : and ed by a dijet system = 7 TeV using data Received s √ ++ 10.1007/JHEP09(2011)053 Accepted events that survive the jet powheg-box o six units of rapidity and ntum greater than 20 GeV Published doi: ystem is also presented as an the ion. The data are compared to collisions at herwig , collisions at pp pp Published for SISSA by pythia 500 GeV. The mean multiplicity of jets above < T p < calculation and the hej Hadron-Hadron Scattering TeV using the ATLAS detector A measurement of jet activity in the rapidity interval bound , Copyright CERN, = 7 s Open Access for the benefit of the ATLAS collaboration Keywords: recorded by the ATLAS detector in 2010. additional central√ jet activity in Measurement of dijet production with a veto on The ATLAS collaboration Abstract: is found between theveto two is boundary presented jets. for Thewith boundary mean fraction jets transverse of that momentum dijet 50 are separated by up t is presented. Events are vetoed if a jet with transverse mome a next-to-leading order plus parton shower prediction from generators. The measurement was performed using the veto scale in thealternative method rapidity for interval bounded quantifying perturbative by QCD the emiss dijet s resummation using the JHEP09(2011)053 1 2 3 3 4 5 5 6 8 13 19 pidity ]. The Large 8 – . First, BFKL- 4 ation can be studied QCD e of additional activity. n Λ tween the jets (less than a jets. Historically, the main e of colour singlet exchange. ocess at an increased centre- ch larger than the scale used erturbative QCD phenomena ns from colour octet exchange. y in the rapidity interval between is the Bjorken variable, as opposed to the ] and the [ x 3 – 1 ), where – 1 – /x ]. Finally, colour singlet exchange is expected to 19 , is the parton virtuality 2 18 Q ), where 2 Q ] are expected to become increasingly important for large ra 13 – 10 [ ]. Alternatively, the effects of wide-angle soft- radi 1 17 – 14 ] evolution in ln( 9 In this measurement, a jet veto is used to identify the absenc BFKL dynamics propose an evolution in ln(1 1 Dijet production with a veto onthe additional hadronic jets activit has previously been studied at HERA [ 1 Introduction 9 Results and discussion 10 Summary The ATLAS collaboration 6 Jet reconstruction and energy7 scale determination Event selection 8 Correction for detector effects 3 Measurement definition 4 Monte Carlo event simulation 5 Theory predictions Contents 1 Introduction 2 The ATLAS detector intervals [ in the limit that theto average dijet veto transverse on momentum additional is mu jet activity [ DGLAP [ few GeV) was traditionally chosen, to suppress contributio This approach is useful becauseto it be allows a studied, diverse as range the of p veto scale is chosen to be much larger tha Hadron Collider (LHC) offers theof-mass opportunity energy to study and this with pr purpose a of wider these coverage measurements in has rapidityWith been between this to aim, search a for very evidenc low cut on the total hadronic activity be like dynamics JHEP09(2011)053 2 9 ]. . rd 4 25 , < | 24 η defined as | < 2 . the calorimeter jet ve medium is liquid urement using a fully ]. This measurement, ) are used in the transverse 23 consists of 32 scintillator icon pixel detector, the sverse momentum. The – eld provided by the inner ion via vector boson fusion rd event generators. he electromagnetic calorime- r, φ he inner tracking detector, pidity is defined in terms of the 20 age of the ATLAS calorime- adronic calorimeters are di- on to this channel needs to the jets are widely separated p calorimeter cryostats. The ling in current Higgs searches QCD radiation in those regions s (MBTS). The inner tracking ergy in the range 3 7); the hadronic endcap covers -axis points from the IP to the centre ounds. Furthermore, should the on point one of the LHC [ . x detector. These components are 1 at the nominal interaction point (IP) in imeter is used in both the barrel < | 5, and has full coverage in azimuth. η . | 2 < < 8 . | η | – 2 – 8. . 3 < | η | -axis along the beam pipe. The z < 2). The rapidity of a particle with respect to the beam axis is 1 θ/ 2 and consists of LAr/copper calorimeter modules; the forwa . . axis points upward. Cylindrical coordinates ( 3 y < ln tan( | η − | = < η 9. . 5 4 . as . 2) is a high-granularity sampling detector in which the acti ]. The calorimeter jet triggers were validated for this meas . z z θ 3 < p p 0) and extended barrel cylinders (0 26 + | − . being the azimuthal angle around the beam pipe. The pseudora < E η E 1 | | φ ln η | < The ATLAS calorimeter is also divided into sub-detectors. T A central jet veto is also used in the search for Higgs product The primary triggers used to readout the ATLAS detector were 1 2 ATLAS uses a right-handed coordinate system with its origin | 2 = η | plane, polar angle y of the LHC ring, and the the centre of the detector and the solenoid magnet. ter ( There are threesilicon main microstrip components detector to andarranged the the in concentric inner transition-radiation layers tracker; and immersed the in sil a 2 T magnetic fi bebe discovered, determined the in contribution order from to gluon extract fusi the Higgs boson couplings [ and the jetmeasurement veto is scale therefore targeted is at studyingof small the phase effects in space of comparison that may to not the be adequately dijet described tran in by the standa Higgs-plus-two-jet channel in order to reject backgr be important if both limits are satisfied at the same time, i.e ( argon (LAr) inter-spaced withvided layers of into lead three absorber. sections: The a h tile scintillator/steel calor the region 1 efficient minimum bias trigger derived from thecounters MBTS. arranged The MBTS on two disksMBTS located cover the in region front 2 of the end-ca the calorimeters and thedetector minimum covers bias the trigger pseudorapidity scintillator range 2 The ATLAS detector ATLAS is a general-purpose detector surroundingThe interacti main detector components relevant to this analysis are t therefore, could be usedand to future constrain precision Higgs the measurements. theoretical model calorimeter measures both electromagnetic and hadronic en triggers [ using LAr/copper and LAr/tungsten modules.ters The is total cover JHEP09(2011)053 , , 6 ]. . T 29 p 36 fault ] and = 0 pythia 34 R -ordered T p state. The 2.5.0 [ rlying event [ ++ ], which implements 28 adiation in the rapidity asurement is in the high event are used (i.e. those tion functions (PDF) [ fine the dijet system, ave transverse momentum tion, which is the fraction herwig momentum greater than a ntum of the jets. For both event samples are generated tic uncertainties and correct e underlying event in model. The underlying event experimental effects. The final 6.4.2.3 [ nger than 10 ps. This includes -ordered jet configurations. In 2 matrix elements, but uses an momentum jets in the event are ++ T th the initial state parton shower. p ). → ] with distance parameter 7 , in which the jets are reconstructed ] and reconstructed using the same 2 processes followed by a 27 33 pythia herwig → = 20 GeV. The second variable is the mean 0 – 3 – = 7 TeV were produced using Monte Carlo (MC) algorithm [ Q ). The dijet system is identified using two different ), which favours BFKL-like dynamics because the s 6 t y k √ 4, ensuring that they are in a region in which the jet . 4 < in the rapidity interval bounded by the dijet system. The ]. The final state particles were passed through a detailed | 0 y 31 | implements leading order 2 > Q ++ T p , in the rapidity interval bounded by the dijet system. The de 0 Q herwig ] simulation of the ATLAS detector [ ]. 32 35 [ provides LO matrix elements with up to six partons in the final [ 20 GeV and rapidity Fully simulated event samples were also generated using Two variables are used to quantify the amount of additional r > ] and the AMBT1 tune [ T event generators. These samplesfor were detector used to effects. derive systema The reference generator was is required to beefficiency greater region than of 50 the GeV. calorimeter This jet ensures trigger that (section the me 30 Jets are reconstructed using the anti- 3 Measurement definition value of the veto scale is chosen to be alpgen alpgen geant4 analysis chain as for the data. leading-order (LO) QCD matrix elements for 2 given veto scale, interval bounded by theof dijet events system. that The do first not is have an the additional gap jet frac with a transverse used, which probes wide-angle soft gluon radiation in selection criteria. In the first, the two highest transverse and full four momentump recombination. Jets are required to h angular-ordered parton shower andis a modelled cluster by hadronisation multiple partonusing interactions. the The MRST LO* PDF set with the LHC-UE7-1 tune for the unde number of jets with energy scale has been validated (section dijet invariant mass isdefinitions, much larger the than mean the transverse transverse momentum mome of the jets that de the second, the most forwardwith and the the largest most rapidity backward separation, jets ∆ in the parton shower and the Lund string model of hadronisation. Th Simulated proton-proton collisions at using all final statemuons particles and that neutrinos. have a proper lifetime lo 4 Monte Carlo event simulation measurements of these two variablesdistributions are therefore fully correspond corrected to for the ‘hadron-level’ is modelled by multiple parton interactionsThe interleaved events wi were generated using the MRST LO* parton distribu JHEP09(2011)053 r 3 – — re- 42 hej → [ (tune . The hej ion and describe is chosen algorithm 0 pythia predictions t Q k pythia powheg-box actorisation scales set r description of wide- ] and passed through events were generated 37 L-inspired limit, theory is necessary. The nded by the dijet system. y 5% for the gap fraction nvector errors provided by ents with at least two jets ] and the er than the intrinsic uncer- tor of two. The uncertainty and the renormalisation and as less than 4%. onal running coupling terms from vent on and off in e change in the mean number 41 e QCD in the region where the powheg+herwig hysics corrections and the , e additional radiation. At large powheg tive physics because 15 ]. The overall uncertainty in the [ ry comparisons. and 37 hej matches the resummation to leading order 2 ]. hej – 4 – 40 The events were generated with the MSTW 2008 3 powheg+pythia to provide all-order resummation of soft and collinear 6. The renormalisation/factorisation scale (one paramete ] to provide parton showering, hadronisation and multiple of the leading parton and the uncertainty due to this choice . . The net effect of the non-perturbative physics corrections T 39 [ p = 0 herwig QCD R or provides a full next-to-leading order (NLO) dijet calculat (tune AUET1) to provide different hadron-level predictions , it is expected that fixed order calculations are unlikely to jimmy y ] and the partons were clustered into jets using the anti- or ∆ 29 pythia ] and 0 herwig 38 /Q of the leading parton. These events were passed through both T is a parton-level event generator that provides an all-orde p samples are generated using the CTEQ6L1 PDF set [ powheg-box 6.5 [ T 4 matrix elements. However, the option to include the additi p ) was chosen to be the → hej calculation is dominated by the scale choice and is typicall The theoretical predictions were produced using The In the default setup (used in this analysis), 3 hej ]. next-to-leading-log BFKL was not used. angle emissions of similar transverse momentum. In this BFK the resulting shift in theof gap fraction jets was in less the than rapidity 2% interval and bounded th by the dijet system w to be much greater than Λ and 2 are both used for data-theory comparisons. was estimated by turning the hadronisation and underlying e produces the full QCDseparated by results a and large is rapidity interval. especially suited for ev the data and thatmeasurement a is not resummation particularly to sensitive to all non-perturba orders in perturbation 44 alpgen and 8% for the meanThese number uncertainties of are jets larger inparton-level than the predictions the rapidity are non-perturbative interval therefore bou p used for data-theo is interfaced to hej NLO PDF set [ The measurements presented in this paperenergy probe scale perturbativ of the dijetvalues system of is larger than the scale of th herwig partonic interactions with tune AUET1 [ 5 Theory predictions factorisation scales. Therefore, the difference between these twotainty predictions in was the NLO found calculation, to estimated be by varying larg the PDFs AMBT1) and with distance parameter emissions using the parton shower approximation. The using the MSTW 2008 NLOto PDF the set with the renormalisation and f in was estimated by increasing andfrom the decreasing choice the of scale PDFMSTW by was a and estimated fac also using by the changing full the set of PDF eige to CTEQ61 [ JHEP09(2011)053 - ]. η ed 46 cific ]. An esponse, 47 of jets that 3 (6). The η n was studied ∼ regions were de- y ]. The jet energies T p 45 production with a jet etector-level jet. The constituents [ for the well-understood adrature of the absolute . The effect of the JES al bounded by the dijet y The primary trigger selec- region, but rises to 13% in r cells [ r jet triggers. In particular, tions. The total JES uncer- eter regions using dijet event record (i.e. excluding 7%) for ∆ sed. The ainty estimated by comparing caused by the constituents of r than the ATLAS geometric e JES uncertainty, allowing for se. The final stage recalculates asurement for most of the phase etic (EM) scale topological clus- m the dijet intercalibration [ ated calorimeter responses. The cale for the ATLAS calorimeters. It gives the ic showers, while it does not correct for the lower 20 GeV. – 5 – 10 GeV at the EM scale and parameterised as a ∼ > T T p p ]. The JES calibration is obtained by dividing the true jet dependent jet energy scale (JES) calibration factors deriv 46 η . An additional correction factor is applied to the | η and | 8), by propagating the uncertainty in the single-particle r were defined and, in each region, only events that passed a spe . T 0 T p ]; the jet calorimeter response relative to the barrel regio p and < 48 | T η p | which are three-dimensional objects built from calorimete 4 The absolute JES uncertainty has been determined using data The impact of the JES uncertainty on the measurement of dijet The electromagnetic scale is the basic calorimeter signal s 4 jet trigger (at least one jet above a defined threshold) were u correct response for the energyhadron deposited response. in electromagnet intercalibration [ measured by the tracking and calorimeter systems, to the jet Jets are reconstructed at detectorters, level using electromagn 6 Jet reconstruction and energy scale determination distinct regions of 7 Event selection The measurement was performed usingtions data used taken during to 2010. readout the ATLAS detector were the calorimete uncertainty is the largest systematicspace uncertainty in regions the that me are presented. from simulated MC events [ uncertainty (from the barrel) andThe relative final uncertainty JES fro uncertainty isthe approximately forward 2–5% calorimeter in for the jets barrel with additional uncertainty has been obtainedby for balancing the other transverse momenta calorim ofthe dijets results and obtained the with uncert datatainty to in a each variety of calorimeter MC region based was predic taken to be the sum in qu muons and neutrinos), bycorrections the are derived EM for scale jets energy with of the matching d are corrected using energy, defined using stable interacting particles in the MC uncertainty on thesystem mean is number approximately of 5% jets and in only the weakly rapidity dependent interv on ∆ the jet kinematics usingcentre the (0,0,0). primary vertex position, rathe barrel region ( fall in the crack-regionsjets of falling the in detector, to regions remove of the very bias different calorimeter respon function of jet different calorimeter regions toassociated have uncertainty correlated/uncorrel on the gap fraction is typically 3% ( veto was studied by varying the energy scale of jets within th JHEP09(2011)053 1 < T p pythia ≤ s trigger c rays or 210 GeV, > T seline p e with the jet and as a function T p have exactly one recon- lly, the impact of beam high luminosity runs at atio of the hadron-level required to be the highest l impact of these cleaning , is presented in figures ias due to residual pile-up tracks that was consistent y one reconstructed vertex g MC simulations and also y interval between the two from the use of jet triggers on of ts pass the selection criteria ejected if they contained any se momentum of the leading matic cuts if the dijet system etermined to be greater than collected with special-purpose veto T system is defined as the most e gap fraction was observed to in-by-bin unfolding procedure. at least 99% efficient for both as not too large. In particular, p or level distributions, using the ned from events with spuriously 210 GeV. > (a) and (b) for the regions 90 T p 1 – 6 – detector simulation gives a reasonable description of the jets in the event. Of these, 85546 events have T p 210 GeV, respectively. The dijet system is defined as the two < geant4 T 20 GeV that originated from calorimeter noise bursts, cosmi p events and validated using data collected with a minimum bia > (e) and (f), respectively. In all such distributions, the ba ≤ T 1 p pythia event generator. The bin sizes were chosen to be commensurat in figures y To minimise the impact of pile-up, each event was required to In total, 533063 events pass the selection criteria and kine The distribution of dijet events as a function of the rapidit 120 GeV and 180 (c) and (d). Finally the gap fraction is presented as a functi events was determined to be less‘fake’ than jets 0.5%. with Events were also r structed primary vertex, definedwith as the a beamspot. vertex The withwas fraction at 90% of least events in in five thethe each early run end low of with 2010. onl luminosity runs,be With falling single of to vertex the selection 20% data applied, in th taking the period and the systematic b derived from the MBTS. Thethreshold chosen (and trigger for therefore each least regiongap prescaled) was events and trigger inclusive that events.was was estimated The to bias be in less thedata than measurement collected 0.25%. with This the was minimum determined bias usin trigger. fined using leading transverse momentum jets injet the in event. the The rapidity transver interval bounded byof the ∆ dijet system, energy resolution to ensure that the bin-to-bin migration w event generator with cuts was to reducerelated the backgrounds and number cosmic of rays were eventstrigger studied by using selections, less data and than estimated 0.4%. to be Fina less than 0.1%. is defined as the two leading- beam-backgrounds. The criteria for rejectionlarge were missing determi transverse energy.99% The efficiency using for a jets tag-and-probe was method d in dijet events. The overal The corrections for detector effectsIn were calculated this with approach, adistribution b the (including correction muons is and neutrinos)pythia defined to in the detect each bin as the r uncorrected data. 8 Correction for detector effects jets is presented for uncorrected data in figures for which the unprescaledforward jet and triggers most are backward jets used. inand If the kinematic event, the cuts, then dijet with 306364 33997 even events satisfying JHEP09(2011)053 y and y ∆ distri- and ∆ [GeV] 120 GeV ++ veto T T p veto T p < p T ATLAS Data 2010 PYTHIA Data 2010 PYTHIA ATLAS p 3 in (c) and for jets in the event. and ≤ m of the leading ity was between herwig T y selection T p e selection (f) (c) MC (tune AMBT1) y < T < 120 GeV T < 120 GeV , ∆ ∆ T p

p y < 3

≤ T = 20 GeV ∆ ≤ 0

≤ p ≤ Leading p Q 90 ading- etermined in two steps. Leading p 2 90 lso to cover the maximal 0 20 40 60 80 100 120 0 1 2 3 4 5 6 0 20 40 60 80 100 120 0 1 2 3 4 5 6

pythia 1 1 1

tor modelling uncertainty

-2 -3 -4

T 1.4 1.2 0.8 0.6 0.1 1.2 0.8

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 e a few percent for the gap

10 dp 10 10

N

MC/Data MC/Data Gap Fraction Gap

veto ] ] [GeV

1 dN -1 ution of mean number of jets ed uncertainties as determined ting the values within the statistical un- y se space regions 90 ∆ [GeV] T p 120 GeV and 2 he number of events that are reconstructed in < pythia Data 2010 PYTHIA T ATLAS ATLAS p ≤ selection selection T T (e) (b) < 210 GeV T – 7 – p

y < 3 ≤ ∆ events and defined as the number of events that are both

= 20 GeV 0 ≤ Data 2010 PYTHIA 180 Q 2 Leading p Leading p -vertex distribution and varying the jet reconstruc- z 0 1 2 3 4 5 6 0 1 2 3 4 5 6 50 100 150 200 250 300 350 400 450 500 1 1 1 50 100 150 200 250 300 350 400 450 500 -1

-4 -2 -3

0.1 1.2 0.8 1.2 0.8

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

∆ 10 N d y 10 10 10

MC/Data MC/Data Gap Fraction Gap

pythia 1 dN 3 in (d). The gap fraction is shown as a function of is shown for 90 y < y ∆ ∆ veto T p [GeV] ≤ veto T p Data 2010 PYTHIA ATLAS ATLAS 210 GeV in (a) and (b), respectively. The transverse momentu selection T selection (a) (d) T < 210 GeV < 120 GeV < ]. The modelling uncertainties were cross-checked using th T T p p detector simulation. The dijet system is defined as the two le

y < 3 ≤ ≤ T of each bin was required to be at least 50% (the typical bin pur 49 210 GeV and 2 ∆

Data 2010 PYTHIA p ≤ 5 Leading p 90 180 Leading p 2 < . Control distributions comparing uncorrected data and the samples, which agreed with the baseline ≤ 0 20 40 60 80 100 120 0 1 2 3 4 5 6 0 20 40 60 80 100 120 0 1 2 3 4 5 6

1 1

T -1 -3 -2 -2 -3

T 1.4 1.2 0.8 0.6 0.8 1.2

∆ p 10

dp N d y 10 10 10 10

N

MC/Data MC/Data

veto

] ] [GeV

1

dN geant4 1 dN -1 The systematic uncertainty on the detector correction was d ≤ The bin purity is calculated using 5 butions to account for anyvariation deviation in between data shape and allowedwas MC by and determined a the by JES reweighting the uncertainty. The detec from data [ tion efficiency and the jet energy resolution within the allow jet in this rapidity interval, the purity in (e) and (f), respectively. reconstructed and generated inthat a bin. particular bin divided by t The physics modelling uncertainty was estimated by reweigh 60% and 70%). Thefraction typical correction distribution factor and between was 5% observedin to and the b 10% rapidity for interval the between distrib the boundary jets. Figure 1 alpgen 180 The rapidity interval betweenand those jets 180 is shown for the pha with JHEP09(2011)053 T p ars gible [GeV] pythia T p prediction given that also gives quadrature T p , as discussed Data 2010 PYTHIA 6 AMBT1 HERWIG++ ALPGEN + HERWIG/JIMMY pythia pythia are both large, due . T T prediction (tune LHC- p p (b) and y c uncertainty. Both , with the data compared to ing uncertainties and the sta- dijet selection nd the maximum uncertainty T in the detector correction was T n the data in these regions of p y < 3 en ∆ ∆ herwig++

= 20 GeV nts represents the ≤ 0 ATLAS Leading p Q 2 prediction (tune AUET1). and 50 100 150 200 250 300 350 400 450 500 1 , although the gap fraction is slightly 1

y matic uncertainty on the measurement is

0.1 1.4 1.2 0.8 0.6 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 y

MC/Data Gap fraction fraction Gap alpgen – 8 – y ) and the uncertainty due to the correction for ∆ 6 , given that the dijet system is defined as the leading- y event generators. The dijet system is defined as the 120 GeV (a). Gap fraction as a function of 240 GeV. This does not have a detrimental impact on < samples. The systematic uncertainty on the correction T ∼ p T Data 2010 PYTHIA 6 AMBT1 HERWIG++ ALPGEN + HERWIG/JIMMY 3 (b). The (corrected) data are the black points, with error b ≤ p alpgen y < pythia ). All other systematic effects were determined to have negli ∆ and 8 5 and ≤ (a) ++ ∼ y give a good description of the data as a function of dijet selection jets in the event. The data are corrected for detector effects T < 120 GeV T T p herwig

++ p . The total uncertainty due to systematic effects is the sum in ≤ = 20 GeV , 0 8 ATLAS Leading p Q 90 shows the gap fraction as a function of ∆ . Gap fraction as a function of ∆ 0 1 2 3 4 5 6 1 1 2 0.1 1.4 1.2 0.8 0.6 0.2 0.8 0.7 0.6 0.5 0.4 0.3 0.9

herwig

pythia MC/Data Gap fraction Gap procedure is typically 2-3%. This uncertainty increases wh jets in the event and satisfies 90 is about 10% at ∆ to an increased statistical uncertainty in the MC samples, a and certainty of each sample.defined The as total the systematic quadrature uncertainty sumtistical of uncertainty the of physics/detector modell the of the uncertainty duedetector to effects (section JES (section impact and were therefore not included in the final systemati Figure 2 (tune AMBT1), theUE7-1) dot-dashed and (blue) the points solid (cyan) represents points the represents the 9 Results and discussion Figure the measurement, however, asphase the space statistical is uncertainty much larger. o the best description of the data as a function of ∆ the two leading- in section representing the statistical uncertainty.represented by The the total solid syste (yellow) band. The dashed (red) poi the rapidity interval is 2 JHEP09(2011)053 as y hej 4 ∆ ading- is designed Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG (tune AUET1), and figure hej predictions in (a). 3 shows the largest . However, at large T jimmy p riable is studied after / (b) powheg narrow regions. The alpgen o small at large values of dijet selection . T and factorisation scales. The dashed herwig y < 270 GeV < 240 GeV < 210 GeV < 180 GeV < 150 GeV = 20 GeV T T T T T < 120 GeV < 90 GeV 0 T T p p p p p hej ATLAS Leading p Q p p

≤ ≤ ≤ ≤ ≤ ≤ ≤ (b). The (unfolded) data are the black presents the theoretical uncertainty in 90 70 240 210 180 150 120 slices. The dijet system is defined as the predictions in figure at low values of 0 1 2 3 4 5 6 1 1 1 1 1 1 1 predictions after showering, hadronisation 2 2 2 T

y 0.5 1.5 0.5 1.5 0.5 0.5 1.4 1.2 0.8 0.6 1.5 2.5 1.5

p tainty and a solid (yellow) band representing Theory / Data / Theory powheg powheg – 9 – (tune AMBT1) and overestimates the gap fraction at low values of y ∆ for various and y ++ pythia hej dijet selection T Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG herwig = 20 GeV 0 Leading p Q ATLAS 3. ∼ , respectively. The dijet system is again defined as the two le T y p (a) predicts too many gap events. It should be noted that and < 270 GeV (+3) < 240 GeV (+2.5) < 210 GeV (+2) < 180 GeV (+1.5) < 150 GeV (+1) T T T T T < 120 GeV (+0.5) < 90 GeV (+0) p p p p p T T y

p p jets in the event. The data are compared to the ≤ ≤ ≤ ≤ ≤

hej ≤ ≤ , T 240 210 180 150 120 90 70 p T p . . Gap fraction as a function of ∆ T calculation from variation of the PDF and renormalisation/ p 0 1 2 3 4 5 6 1

0 2 3 5 4

The data are compared to the and underestimates the gap fraction at large values of ∆ Gap fraction Gap or hej jets in the event. The dependence of the gap fraction on one va y y T values of (red) and dot-dashed (blue) curves represent the two leading- and underlying event simulation with fixing the phase spaceprediction of describes the the data other well variable as to a function well of defined ∆ and a function of ∆ p Figure 3 deviation from the∆ data, predicting a gap fraction that is to underestimated for ∆ respectively. the total systematic uncertainty.the The darker (blue) band re The ratio of these theory predictionspoints, to with the error data bars are representing the shown in statistical uncer ∆ JHEP09(2011)053 ]. hej 50 and the [GeV] , the gap T . predictions p y Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG powheg d by matching the and have similar transverse . Furthermore, although (b) y becomes much larger than , the shape of the distribu- hej powheg+herwig y large values of ∆ powheg+pythia dijet selection T T n the contributions to a full and collinear emissions [ n p r ∆ = 20 GeV 0 y < 6 y < 5 y < 4 y < 3 y < 2 ∆ ∆ ∆ ∆ ATLAS Leading p Q ∆ slices. The dijet system is defined as

hown in (b). The data and theory are

at low ∆ ≤ ≤ ≤ ≤ ≤ tends to produce too much activity 5 4 3 2 1 y 1 1 50 100 150 200 250 300 350 400 450 500 1 1 1 2 3 2 3 2

1.5 0.5 1.4 1.2 0.8 1.5 Theory / Data / Theory increases. The gap fraction as a function y calculation as – 10 – for various ∆ hej deviates from the data. This is expected because T p [GeV] T powheg+pythia p powheg+herwig provides the best description of the data, when consid- . 3 dijet selection T Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG = 20 GeV 0 Leading p Q , reproducing the effect observed with y powheg+pythia (a) jets in the event. The data are compared to the T powheg+pythia p y < 3, (+1) y < 6, (+4) y < 5, (+3) y < 4, (+2) y < 2, (+0) ∆ ∆ ∆ ∆ ∆

≤ ≤ ≤ ≤ ≤ remain well described. 2 5 4 3 1 T . Gap fraction as a function of p ATLAS is, however, well described by 50 100 150 200 250 300 350 400 450 500

1 0 2 4 3 5 6

In general, Gap fraction Gap T is not unexpected. The description of the data may be improve p 0 calculation to a standard parton shower, to account for soft Q to give a goodmomentum. description Therefore, the of failure QCD of in the the limit that all the jets Figure 4 tions in the absolute value of the gap fraction is not correct at large the two leading- fraction predicted by across the full phase-space. However, the difference betwee ered over all the phase space regions presented. However, at of the NLO-plus-parton-shower approximation doesQCD not calculation contai that become important as ∆ data increases with ∆ in (a). The ratiopresented of in these the theory predictions same to way the as data figure are s JHEP09(2011)053 as for and 5 [GeV] powheg approxi- 0 Q . and 3 hej d by the dijet Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG poor when both hej nglet exchange is y < 3 y < 5 y < 3 y < 5 powheg+herwig ∆ ∆ ∆ ∆

ted in figure y < 3 y < 5 ≤ ≤ ≤ ≤ ∆ ∆

≤ ≤ powheg+pythia description of the data (b) slices. The dijet system is < 150 GeV, 2 < 150 GeV, 4 < 240 GeV, 2 < 240 GeV, 4 T T T T y < 90 GeV, 2 < 90 GeV, 4 dijet selection T T p p p p

T p p hej ≤ ≤ ≤ ≤

≤ ≤ same way as figure 120 120 210 210 70 70 action. The again gives the best description and ∆ ATLAS Leading p T . The p he ratio of the theory predictions to the 0 20 40 60 80 100 120 1 1 1 1 1 1

Q

1.1 1.1 1.1 0.9 0.8 1.2 0.9 1.4 1.2 0.8 1.2 0.9 0.8 1.4 1.2 0.8 0.6 Theory / Data / Theory have been removed because the gap fraction is T p for various – 11 – 0 > ]. The difference between dependence of the cross-section is useful in study- Q 0 powheg+pythia 51 [GeV] 0 0 Q Q Q dijet selection T Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG , a kinematic configuration more suited to the , none of the theoretical predictions describe the data well ATLAS . The Leading p T T y jets in the event. The data are compared to the p p . This is an alternative way of studying the activity between T T p p y < 3 (+0.5) y < 5 (+0) y < 3 (+1.5) y < 5 (+1) ∆ ∆ ∆ ∆

y < 3 (+2.5) y < 5 (+2) and ∆ ≤ ≤ ≤ ≤ ∆ ∆ (a)

≤ ≤ T remains large for all values of p . In particular, the description of the data is particularly approaches 0 < 240 GeV, 2 < 240 GeV, 4 < 150 GeV, 2 < 150 GeV, 4 T T T T 0 < 90 GeV, 2 < 90 GeV, 4 T T p p p p Q shows the mean number of jets in the rapidity interval bounde

p p ≤ ≤ ≤ ≤

Q ≤ ≤ become large, corresponding to the region in which colour si 6 210 210 120 120 70 70 y . Gap fraction as a function of 20 40 60 80 100 120

1 0 2 3 4 5

Figure The dependence of the gap fraction on the veto scale is presen Gap fraction Gap 0.5 1.5 2.5 4.5 3.5 and ∆ T system as a function of expected to play an increasingly important role. p specific regions of Figure 5 ing the colour structure of the event [ defined as the two leading- mations. At large values of data are shown in (b). The data and theory are presented in the always equal to one for this dijet selection, by definition. T powheg+herwig the boundary jets. The prediction of a function of predictions in (a). The data points for of the data, replicating the result obtained using the gap fr improves as JHEP09(2011)053 and hej [GeV] T ost back- p -imbalance y < 5 y < 4 y < 3 y < 2 ∆ ∆ ∆ ∆

T ≤ ≤ ≤ ≤ p 1 4 3 2 Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG slices. The dijet predicts a mean at low values of . y y hej . In this case, both T was observed using the p (b) decreases, which was not ant for this configuration. = selection, the T jet system is defined as the dijet selection T the data are shown in (b). The p 0 for various ∆ er. ll at large ∆ Q = 20 GeV T 0 p ATLAS Leading p Q powheg+herwig , with the dijet system defined as the . y 1 1 1 1 50 100 150 200 250 300 350 400 450 500 3

0.5 1.5 0.5 1.4 1.2 0.8 0.6 1.2 0.8 0.6 Theory / Data / Theory prediction in all regions of phase space, that becomes worse as – 12 – prediction deviates from the data at large values hej T p [GeV] hej T jets in the event. The data are compared to the p T p dijet selection T Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG = 20 GeV 0 Leading p Q (a) jets in the event. The data are not well described by , the dijet system is again defined as the most forward and the m y < 5 (+3) y < 4 (+2) y < 3 (+1) y < 2 (+0) prediction is similar to the ∆ ∆ ∆ 8 ∆

T

shows the gap fraction as a function of ∆ ≤ ≤ ≤ ≤ p 4 3 2 1 7 . Mean number of jets in the gap as a function of predictions in (a). The ratio of these theory predictions to ATLAS 50 100 150 200 250 300 350 400 450 500 1 , producing too little jet activity. This is the same effect as

0 3 2 5 4 7 6 powheg

Figure In figure T Mean number of jets in the gap the in jets of number Mean p , implying that the resummation of soft emissions are import T powheg data and theory are presented in the same way as figure system is defined as the two leading- most forward and the most backward jets in the event. For this gap fraction, although the deviations from the data are larg p The ward jets in the event, but the veto scale is now set to description of the data as a function of Figure 6 is, both calculations result in a gap fraction that is too sma between the two jets istwo typically leading- much larger than when the di observed in the gap fraction distribution. In particular, jet multiplicity that is too large. The of JHEP09(2011)053 and y ∆ hej -ordered T p f the parton Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG (b) se momentum jets in the ckward jets in the event. t do not contain hadronic n radiation for r of jets in the rapidity in- the data are shown in (b). The gap fraction). The dijet sys- ata are compared to the -backward configurations and, < 270 GeV < 240 GeV < 210 GeV < 180 GeV < 150 GeV T T T T T < 120 GeV < 90 GeV = 20 GeV p p p p p T T 0

p p ≤ ≤ ≤ ≤ ≤

ATLAS selection Forward/backward Q ≤ ≤ description of the data, however, slices. The dijet system is defined as 240 210 180 150 120 90 70 T . 0 1 2 3 4 5 6 p 1 1 1 1 1 1 1 3

hej

0.5 0.5 0.5 0.5 0.5 0.5 0.5 Theory / Data / Theory give a good description of the gap fraction as a for various y – 13 – ∆ y Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG = 20 GeV 0 Forward/backward selection Q ATLAS powheg+herwig (a) and < 270 GeV (+3) < 240 GeV (+2.5) < 210 GeV (+2) < 180 GeV (+1.5) < 150 GeV (+1) T T T T T < 120 GeV (+0.5) < 90 GeV (+0) p p p p p T T , implying a smaller dependence on the generator modelling o

p p ≤ ≤ ≤ ≤ ≤

y ≤ ≤ 240 210 180 150 120 90 70 . Gap fraction as a function of ∆ predictions in (a). The ratio of these theory predictions to

0 1 2 3 4 5 6

1 0 2 3 5 4 Gap fraction Gap function of ∆ tem was identified inevent two and, ways: alternatively, using usingThe the the first two approach most leading examines transver forward the and effect most of ba wide-angle soft gluo 10 Summary A central jet vetoactivity was in used the to rapidity study interval the bounded fraction by of a events dijet tha system ( does not improve with the increase in veto scale. shower, hadronisation and underlying event. The jet configurations, whereas thetherefore, second BFKL-like favours very dynamics. forward In addition, the mean numbe powheg+pythia Figure 7 powheg the most forward and the most backward jets in the event. The d data and theory are presented in the same way as figure JHEP09(2011)053 ++ y ∆ . . The 3 T p = and the jet herwig 0 as a function Q T he data show gave the best Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG p and leading-order MC ctions provided by aration between the pythia pythia (b) rease in jet activity, for (tune AUET1). In general, alpgen native variable for studying hat to scale is set to T in the same way as figure p < 270 GeV < 240 GeV < 210 GeV < 180 GeV < 150 GeV T T T T T < 120 GeV < 90 GeV and and that = p p p p p T T 0

p p ≤ ≤ ≤ ≤ ≤

Q ATLAS selection Forward/backward ≤ ≤ T p 240 210 180 150 120 90 70 herwig ++ slices. The dijet system is defined as the 0 1 2 3 4 5 6 did not describe the data well at large 1 1 1 1 1 1 1

T

0.5 0.5 0.5 0.5 0.5 0.5 0.5 p Theory / Data / Theory herwig , alpgen . y – 14 – ∆ y for various predictions in (a). The ratio of these theory predictions y pythia (tune AMBT1) or powheg Data 2010 HEJ (parton level) POWHEG + PYTHIA POWHEG + HERWIG T p ]. The = 0 pythia Forward/backward selection Q ATLAS and 18 [ y hej (a) or ∆ . , the mean transverse momentum of the boundary jets, y y T < 270 GeV (+4.2) < 240 GeV (+3.5) < 210 GeV (+2.8) < 180 GeV (+2.1) < 150 GeV (+1.4) T T T T T p < 120 GeV (+0.7) < 90 GeV (+0) p p p p p T T

p p ≤ ≤ ≤ ≤ ≤

. In all cases, the data were corrected for detector effects. T . The mean number of jets in the rapidity interval was studied ≤ ≤ 0 or ∆ y 240 210 180 150 120 90 70 Q T p when interfaced to . Gap fraction as a function of ∆ 0 1 2 3 4 5 6 and ∆ 1

0 2 5 4 3 7 6

The gap fraction was studied as a function of the rapidity sep The data were compared to the NLO-plus-parton-shower predi T Gap fraction Gap p of gave the best description of the data as a function of veto scale, values of event generators were compared to the data. It was observed t description of the data as a function of ∆ most forward and thedata most are backward compared jets to the in the event and the ve terval bounded by theperturbative dijet QCD system emission. was presented, as an alter boundary jets, ∆ Figure 8 the expected behaviourlarge of values a of reduction of gap events, or an inc to the data are shown in (b). The data and theory are presented powheg JHEP09(2011)053 . 0 hej /Q T p powheg when the predicting nd NSFC, ch Repub- nal parton y rtugal; MERYS menia; ARC, Aus- , European Union; well as the support G, HGF, MPG and tion; JINR; MSTD, dictions. This data Cantons of Bern and co; FOM and NWO, erica. IP and Benoziyo Cen- outh Africa; MICINN, rauss, Simone Marzani, oyal Society and Lever- erated efficiently. , implying that the fixed Pq and FAPESP, Brazil; tal uncertainty is smaller ul for the current Higgs- for very useful discussions y ling of QCD radiation be- that are sensitive to higher undary jets. Both is that the parton-level mental uncertainty is much der QCD effects that become powheg+herwig f ∆ ction at large values of resummation of wide-angle emissions of sim- jets in the event and those jets do not have a T – 15 – p hej does describe the data well as a function of ∆ hej calculation is missing higher order QCD effects that become hej increases, i.e. those effects that are provided by a traditio 0 gave the best description of the data, with increases. /Q y T p that is much larger than the veto scale. T p We thank CERN for the very successful operation ofWe the acknowledge LHC, the as support of ANPCyT, Argentina; YerPhI, Ar In most of the phase-space regions presented, the experimen The data were also compared to the powheg+pythia value of This means that the dijet system is defined as the two leading (MECTS), Romania; MES ofSerbia; Russia MSSR, and Slovakia; ROSATOM, ARRS Russian and Federa Spain; MVZT, SRC Slovenia; DST/NRF, and S WallenbergGeneva, Foundation, Switzerland; Sweden; NSC, SER, Taiwan; SNSF TAEK,hulme Turkey; and Trust, STFC, United the Kingdom; R DOE and NSF, United States of Am China; COLCIENCIAS, Colombia;lic; MSMT CR, DNRF, MPO DNSRC and CRIN2P3-CNRS, CEA-DSM/IRFU, Lundbeck and France; Foundation, VSC GNAS, Denmark; CR, Georgia;AvH ARTEMIS BMBF, Foundation, Cze Germany; DF GSRT, Greece; ISF,ter, MINERVA, GIF, Israel; D INFN, Italy;Netherlands; MEXT RCN, and Norway; JSPS, MNiSW, Japan; CNRST, Poland; Moroc GRICES and FCT, Po staff from our institutions without whom ATLAS could nottralia; be BMWF, op Austria; ANAS,NSERC, Azerbaijan; NRC SSTC, and Belarus; CN CFI, Canada; CERN; CONICYT, Chile; CAS, MOST a Acknowledgments We thank Jeppe Andersen, JeffPaolo Forshaw, Nason, Hendrik Emanuele Hoeth, Re, Frank Mikeregarding K Seymour the and theory Jennifer predictions Smillie used in this analysis. tween widely separated jets.plus-two-jet searches and Such also aorder for QCD constraint emissions. any would future be measurements usef than the theoreticalsmaller uncertainty. than the Furthermore,can the spread therefore experi of be used LO to Monte constrain Carlo the event event generator generator model pre shower approach. However, important as too much jet activity in the rapidity interval between the bo ilar transverse momentum. A particularly striking feature predictions result in too low a gap fraction at large values o order plus parton shower approachimportant does not as contain ∆ higher or prediction has too little jet activity and too large a gap fra JHEP09(2011)053 , , s , , ]. ]. ]. TeV ommons , 8 . ]. 1 SPIRES collisions at SPIRES ]. SPIRES ][ collisions at ¯ pp ][ ¯ p ]. p SPIRES ][ owledged gratefully, ]. SPIRES collisions at collisions at SPIRES (1977) 377] [ ¯ pp IUMF (Canada), NDGF ¯ p , (Germany), INFN-CNAF ][ ]. p ]. 72 mmercial use, distribution, SPIRES RAL (UK) and BNL (USA) r(s) and source are credited. hep-ex/9809016 [ hep-ex/0203011 [ (1976) 840] [ ]. SPIRES SPIRES ]. [ hep-ex/0612008 [ ][ 71 ]. ]. (1998) 189 SPIRES (1978) 1597] [ [ SPIRES (2002) 517 [ arXiv:1007.4449 [ (1975) 50 28 On the Pomeranchuk singularity in Multi-reggeon processes in the Yang-Mills theory (2007) 283 The Pomeranchuk singularity in nonabelian gauge SPIRES [ Zh. Eksp. Teor. Fiz. SPIRES B 440 C 24 Photoproduction of events with rapidity gaps – 16 – ][ ]. B 60 ]. Rapidity gaps between jets in photoproduction at hep-ex/9510012 C 50 [ (1998) 5278 Probing hard color singlet exchange in Yad. Fiz. Rapidity gaps between jets in (2010) 205 (1994) 2332 Observation of rapidity gaps in Events with a rapidity gap between jets in Dijet production by color-singlet exchange at the Energy flow and rapidity gaps between jets in Zh. Eksp. Teor. Fiz. Constructing all-order corrections to multi-jet rates High energy description of processes with multiple hard jet 81 SPIRES 72 SPIRES [ The Pomeranchuk singularity in [ (1977) 199 [ Phys. Lett. (1998) 1156 , Phys. Lett. Eur. Phys. J. 45 (1996) 55 80 , Asymptotic freedom in parton language , 205–206 GeV (1978) 822 [ Eur. Phys. J. arXiv:0908.2786 , [ (1976) 443 [ (1995) 855 28 (1977) 298 B 369 1800 44 74 Phys. Rev. Lett. Phys. Rev. Lett. This article is distributed under the terms of the Creative C , , B 126 (2010) 039 Phys. Rev. Lett. GeV and GeV TeV Sov. Phys. JETP , Phys. Lett. 8 , collaboration, M. Derrick et al., collaboration, S. Chekanov et al., . 01 , collaboration, F. Abe et al., collaboration, F. Abe et al., collaboration, F. Abe et al., collaboration, B. Abbott et al., collaboration, S. Abachi et al., collaboration, C. Adloff et al., = 630 = 630 = 1 s s s Sov. Phys. JETP HERA √ √ ZEUS Sov. J. Nucl. Phys. JHEP Nucl. Phys. Proc. Suppl. theories Nucl. Phys. asymptotically free theories between jets at HERA Phys. Rev. Lett. CDF D0 CDF D0 CDF H1 ZEUS Tevatron photoproduction at HERA √ The crucial computing support from all WLCG partners is ackn [1] [9] G. Altarelli and G. Parisi, [6] [7] [8] [4] [5] [2] [3] [14] J.R. Andersen and J.M. Smillie, [15] J.R. Andersen and J.M. Smillie, [11] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, [12] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, [13] I.I. Balitsky and L.N. Lipatov, [10] V.S. Fadin, E.A. Kuraev and L.N. Lipatov, Attribution Noncommercial License whichand permits reproduction any in any nonco medium, provided the original autho References in particular from CERN(Denmark, and Norway, Sweden), the CC-IN2P3 ATLAS (France), Tier-1 KIT/GridKA (Italy), facilities NL-T1 at (Netherlands), TR PIC (Spain),and ASGC in (Taiwan), the Tier-2 facilities worldwide. Open Access. JHEP09(2011)053 ] . , , , and gger, 9 . (2003) 250 = 0 s , , hep-ph/0206293 √ [ , A 506 (2009) 023 (2008) 639 collisions at ]. 07 ALPGEN, a generator , pp ]. C 58 (2003) 001 LAS detector at the LHC and ]. JHEP SPIRES , Measuring the Higgs sector ]. ]. 07 , ][ ]. interactions at D. Polosa, SPIRES pp ][ physics and manual SPIRES Parton distributions for the LHC 4 . JHEP ][ 6 Nucl. Instrum. Meth. SPIRES SPIRES , SPIRES jet clustering algorithm ]. , Eur. Phys. J. ]. ]. ][ ][ t ][ ]. ]. , k Super-leading logarithms in non-global Gaps between jets in the high energy limit (2010). Next-to-leading order Higgs + 2 jet production ]. Extracting Higgs boson couplings using a jet hep-ph/0604094 [ PYTHIA SPIRES SPIRES SPIRES SPIRES ]. (2010). – 17 – ][ ][ The anti- hep-ph/0608194 ]. ][ ][ Jet vetoing at the LHC [ SPIRES The ATLAS simulation infrastructure The ATLAS experiment at the CERN Large Hadron [ arXiv:1006.0986 [ hep-ph/0406323 SPIRES [ arXiv:1005.4568 arXiv:0901.0002 [ [ [ Different PDF approximations useful for LO Monte Carlo (2006) 059 SPIRES [ An inclusive minijet cross-section and the bare in : a simulation toolkit 4 ]. ]. 08 CERN-OPEN-2008-020 (2006) 028 [ (1987) 727 S08003 (2011) 87 10 Charged particle multiplicities in Expected performance of the ATLAS experiment detector, tri Performance of the ATLAS jet trigger with 3 arXiv:0802.1189 hep-ph/0603175 arXiv:0904.3866 hep-ph/0502086 [ [ [ [ ATLAS-CONF-2010-031 JHEP SPIRES SPIRES GEANT (2010) 823 (2009) 189 , Extracting Higgs boson couplings from LHC data , B 282 ][ ][ (2004) 113009 JHEP B 696 , tune ATLAS-CONF-2010-028 HERWIG++ physics and manual JINST , C 70 C 63 6 arXiv:0807.2132 D 70 (2008) 063 (2006) 026 (2009) 009 (2005) 034 , GeV 2008 collaboration, G. Aad et al., collaboration, collaboration, G. Aad et al., collaboration, collaboration, ]. arXiv:0901.0512 , , 04 05 08 06 Nucl. Phys. Phys. Lett. , , = 900 s TeV in a diffractive limited phase-space measured with the AT arXiv:0803.0883 SPIRES arXiv:0905.1350 √ physics for hard multiparton processes in hadronic collisions Collider [ [ 7 ATLAS Eur. Phys. J. Eur. Phys. J. generators ATLAS JHEP JHEP ATLAS ATLAS ATLAS JHEP via gluon fusion veto observables in QCD Phys. Rev. JHEP QCD [ new PYTHIA [34] M. Bahr et al., [35] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. [32] S. Agostinelli et al., [33] [29] A.D. Martin, W.J. Stirling, R.S. Thorne and G.[30] Watt, A. Sherstnev and R.S. Thorne, [31] [27] M. Cacciari, G.P. Salam and G. Soyez, [28] T. S. Sj¨ostrand, Mrenna and P.Z. Skands, [24] [25] [26] [22] J.M. Campbell, R.K. Ellis and G. Zanderighi, [23] B.E. Cox, J.R. Forshaw and A.D. Pilkington, [19] J.R. Forshaw, A. Kyrieleis and M.H. Seymour, [20] M. et D¨uhrssen al., [21] R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. D¨uhrssen [17] A.H. Mueller and H. Navelet, [18] J. Forshaw, J. Keates and S. Marzani, [16] J.R. Forshaw, A. Kyrieleis and M.H. Seymour, JHEP09(2011)053 ]. , , SPIRES , [ ts produced ]. n-situ orithms (2010) 043 , , (2011). from global QCD t energy scale ]. 06 SPIRES , , ][ JHEP TeV (2001) 010 SPIRES , [ 01 arXiv:1103.4811 = 7 lisions at a Center of Mass , s √ ]. JHEP , s at , Jet pair production in POWHEG hep-ph/9601371 [ Multiparton interactions in ATLAS-CONF-2011-028 ]. ]. ]. SPIRES , ]. ]. ][ arXiv:1102.1672 , (2010). A parton shower for high energy jets (1996) 637 SPIRES SPIRES SPIRES SPIRES A general framework for implementing NLO SPIRES [ – 18 – ][ ][ ][ ][ TeV measured with the ATLAS detector C 72 combined test-beam release note = 7 5 Jet vetoing and HERWIG++ Multiple jets at the LHC with high energy jets . : an event generator for Hadron Emission Reactions With s hep-ph/0201195 2 [ 5 2004 . √ (2010) 400 6 ]. ]. (2010). Z. Phys. , (2011). (2011). ATLAS calorimeter response to single isolated hadrons and In-situ pseudo-rapidity inter-calibration to evaluate je Jet energy resolution and reconstruction efficiencies from i Update on the jet energy scale systematic uncertainty for je First tuning of HERWIG/JIMMY to ATLAS data arXiv:1104.1316 arXiv:1012.3380 arXiv:1101.5394 hep-ph/0409146 Measurement of the response of the ATLAS liquid argon barrel A 614 [ [ [ [ ATLAS-CONF-2010-054 SPIRES , (2002) 012 SPIRES ][ HERWIG New generation of parton distributions with uncertainties ][ HERWIG++ 07 TeV = 7 (2011) 110 (2011) 081 (2011) 010 (2004) 040 A new method for combining NLO QCD with shower Monte Carlo alg s JHEP collaboration, , √ 07 04 06 11 arXiv:1002.2581 hep-ph/0011363 estimation of the calorimeter jet scale uncertainty Energy JHEP uncertainty using dijet eventsATLAS-CONF-2011-014 in proton-proton collision techniques with the ATLAS Detector Using Proton-Proton Col ATLAS-CONF-2011-032 ATLAS [ JHEP calorimeter to electrons at the Nucl. Instrum. Meth. JHEP JHEP calculations in shower Monte Carlo programs: the POWHEG BOX photoproduction at HERA ATL-PHYS-PUB-2010-014 [ Interfering (including supersymmetric processes) in proton-proton collisions at analysis [50] J.R. Andersen, L. and L¨onnblad J.M. Smillie, [51] A. Schofield and M.H. Seymour, [48] ATLAS collaboration, [49] ATLAS collaboration, [46] ATLAS collaboration, [47] [44] S. Alioli, K. Hamilton, P. Nason, C. Oleari and[45] E. M. Re, Aharrouche et al., [42] P. Nason, [43] S. Alioli, P. Nason, C. Oleari and E. Re, [39] J.M. Butterworth, J.R. Forshaw and M.H. Seymour, [40] ATLAS collaboration, [41] J.R. Andersen and J.M. Smillie, [37] J. Pumplin et al., [38] G. Corcella et al., [36] S. Gieseke et al., JHEP09(2011)053 , , , , , , , , , , 81 , 77 96 , , 29 , 48 , , 107 , , , , 153 128 , 87 164b 58a , 171 47 , 155 , , 14 169 , 122b , 115 47 152 , 72b , 18c , , 10 , , 129 , , , 164a 127 , 118 , 22 41 155 29 72a 122a 75 65 , , 44 , 120 , 129 , , S. B¨oser , D. Banfi , F. Ahles , , 55 77 48 , 25a , M. Bendel 20 , G. Bella 35 , R. Alon , 21 20 172 54 83 49 115 , V. Andrei , , K. Belotskiy 83 , A. Annovi , N. Andari , A.M. Bach 102b , S. Asai , G. Akimoto , A. Astbury , , H. Bilokon 107 153 89b , 16 20 79 24 124a , O. Abdinov , V.V. Ammosov , A.J. Beddall , C. Blocker , J. Alison , K. Augsten 134b , M. Bianco , J. Barreiro 102a 89a , , V.B. Bobrovnikov , A.J. Armbruster 134b , C. Ay , B.M. Barnett 22 , , P. Adragna , B.S. Acharya 118 , M. Battistin 29 80 174 , U. Bitenc , P. Bernat 89a 115 , J.T. Baines , S. Behar Harpaz 27 , F. Bertolucci , A.T.H. Arce 144a 98 105 , S. Albrand 18a 16 168 , S. Aoun , A. Barashkou 134a , E. Badescu 83 89b , S.P. Ahlen 24 , M. Barbero 29 , N. Boelaert , D. Bartsch 134a , 66 177 , W.H. Bell , M. Benoit 158 94 , P.H. Beauchemin 20 169 81 ˚ Akesson 71 49 44 132a , Sw. Banerjee 50b 174 89a , C. Benchouk 78 , , N. Anjos , L.S. Ancu 93 29 50a 29 135a , A. Aloisio , D. Arutinov , G. Alexander , E. Auge , E. Bergeaas Kuutmann , M. Arik , D. Axen 82 ∗ , C. Bacci , Y. Arai 29 , T. Blazek 9 , C. Amelung , , K. Assamagan , N. Barlow , T. Bain 25a , F. Barreiro , K.H. Becks 175 , M. Begel , O. Beloborodova , T.P.A. , A. Andreazza 5 132b , G. Alimonti , S. Adomeit , 29 29 , R.M. Bianchi 48 , J. Boek 89a , J. Albert 143 83 , P.J. Bell 57 143 18a 30 , T. Beau , A. Battaglia 158 118 , C. Biscarat 15 , F. Anulli 99 , A. Abdesselam , M. Biglietti 18a , G.J. Bobbink , F. Bertinelli 45 41 , E. Acerbi 76 , K. Bernardet 85 27 132a 14 49 158 , S.P. Baranov 54 , M. Backhaus , A.E. Barton 14 19b 115 144b 132b , , , P. Banerjee 49 171 , M. Aharrouche 143 , D.P. Benjamin , D. Barberis 38 , D. Berge 19a ,a , C. Alexa , F. Anghinolfi , J. Almond 86 132a , E. Arik 153 , C.P. Bee 34 105 53 , L. Asquith 89a , P. Amaral , M. Aliev 14 124b , A.J. Barr , A. Belloni , I. Aracena , B. Auerbach 65 , D. Benchekroun , C. Anastopoulos , G. Blanchot 66 20 4 , T. Barklow – 19 – , R. Avramidou , B. Beare 49 , W. Bhimji , D.C. Bailey 88 , G. Artoni , M. Boehler , M.A. Alam 146b , T. Akdogan , J. Antos 153 , M. Aderholz , ,f , J.R. Batley 153 , H. Abreu , J. Biesiada 99 119a 1 115 95 174 , G. Baccaglioni 163 , K.J. Anderson , L. Barak , J. Beringer 32a 96 , M. Beckingham 118 54 , M. Backes , C. Bini 175 29 , E. Banas 143 153 17 49 133b , A. Bertin 146a 16 144a , 29 58a 77 , A.A. Abdelalim 18c 76 , R. Bartoldus , U. Blumenschein 11 133a 115 81 , E.L. Barberio , J-F. Arguin , Y. Bai , B. Aubert , K. Amako , A. Angerami , G. Barone , S. Bentvelsen 2 ˚ Asman ,d 27 , M. Alhroob , S. Bethke , Y. Benhammou , O. Benary , F. Alessandria 70 9 , G. Avolio , N. Amram , G. Arabidze 175 , M.S. Alam 29 , C. Belanger-Champagne 130 102b , M. Bellomo 65 ,c 134a , 73 136 165 152 67 , A. Antonov , S. Baker 99 , V.A. Bednyakov , H.S. Bawa , G. Bachy , M. Barisonzi 167 , B. , H.P. Beck , M.A. Baak 29 , C.R. Boddy , T. Berry , J. Adelman , G. Anders , H.S. Bansil , L. Batkova , A. Bingul 47 24 118 , A. Artamonov 29 , S.E. Allwood-Spiers , E. Berglund 99 27 41 , K. Bierwagen 44 24 , G. Aielli 56 175 102a 136 20 , J.-B. Blanchard 155 53 73 169 5 77 , W. Blum 115 40 115 169 , H. Abramowicz , J.A. Aguilar-Saavedra , J. Abdallah 49 , P. Barrillon 88 22 , T. Barber 111 57 , G. Atoian 14 , S. Arfaoui , S. Ask , S. Bahinipati , N. Austin 52 , N. Besson 28 , F. Bellina , N. Benekos , X.S. Anduaga , S. Ben Ami , K. Benslama , G. Amor´os , A. Bocci , R. Apolle 172 , F. Bauer , A. Akiyama , K. Bachas , A. Baroncelli 4 89b , P. Bechtle , T. Alexopoulos , S. Binet 132b ,b 145a 55 , 29 22 79 , 19a , C. Bernius , Y. Azuma , M.D. Baker , T. Barillari , T.N. Addy 163 , M. Beimforde 94 , V. Bansal , R.L. Bates 14 , S. Bedikian , R.E. Blair 49 , M. Antonelli , M. Ahsan 89a ,e 136 , C.F. Anders 50a 48 65 8 19b 24 , C. Arnault 63 89a , I.N. Aleksandrov , M.G. Alviggi , P.P. Allport , 21 175 , S.P. Bieniek 124a 137 , S. Aefsky 132a 93 149 , A. Blondel , F. Berghaus 18c 34 148 81 29 79 10 4 , M. Abolins 98 , B. Abbott 19a 38 129 48 112 A.V. Akimov A. Ahmad M. Aleksa T. Adye D.L. Adams M. Aliyev G. Alexandre G. Aad The ATLAS collaboration B. Abi A. Alonso M-L. Andrieux A. Amorim A. Antonaki T. Andeen J.P. Archambault L. Aperio Bella O. Arnaez R. Asfandiyarov M. Aurousseau A. Astvatsatourov G. Azuelos H. Bachacou P. Bagnaia O.K. Baker A. Barbaro Galtieri A. Bangert D.Y. Bardin R.M. Barnett umrasdaGuimar˜aes Costa G. Battistoni R. Beccherle B.H. Benedict J.R. Bensinger N. Berger M.I. Besana V. Bartsch R. Bernhard L. Bellagamba O. Beltramello O. Biebel M. Bindi P.K. Behera A. Beddall K.M. Black S.S. Bocchetta J. Blocki JHEP09(2011)053 , , , , , , 34 , 76 11 , 78 , 78 , , , , ,g , , , 53 14 , 23a , 80 174 , 77 165 163 123 32c 99 102a , 99 , , 117 , , 33 , 57 ,i , , , , 19a , , , , 17 136 , , , , 75 2 , K. Copic 23a 42 19b 5 37 , 12a 102a 29 , 135a , , , , 72a 76 , 128 , 65 , T. Bold 53 48 , E. Chareyre , P. Bussey 19a , P. Cavalleri , M.C. Conidi , G. Boorman , S. Chen 89a , J. Cantero 123 76 122b , 105 33 87 24 , , P. Calafiura , H.M. Braun 118 136 , G. Carlino 83 164c , D. Calvet , 3a , A. Bruni , D. Capriotti , G. Cortiana 159a 29 , J. Coggeshall , A.S. Cerqueira 114 , D. Cameron 122a , K. Ciba , 61 , 7 165 25a , M. Bunse 164a 143 132b , N.J. Collins , , , L. Chevalier , C. Boulahouache , A. Chafaq 134b , A.A. Carter 119b , J.M. Butterworth 96 , , 132b 172 65 , F. Conventi , , S. Chekanov 71 , G. Chiodini , C. Ciocca 115 53 , F. Broggi , D. Britton , I. Borjanovic 158 , H. Chen , N.I. Bozhko 172 132a , A. Catinaccio 85 , N.J. Buchanan , A. Christov 102b 71 , E. Busato 134a , 119a 71 64 , G.W. Brandenburg 65 163 , I.A. Budagov , W. Cleland , R. Coura Torres , V. Boisvert 132a , O. Cakir 29 153 , T. Carli 119b 115 77 , 118 , Y. Coadou 129 45 29 , J.E. Brau 25a , A. Canepa 102a 19b , E. Coniavitis , D. Cauz , S. Brunet 134a , 146a 133a , J.W. Chapman , H. Brown 84 129 119a , N.J. Cooper-Smith , M. Cascella 30 88 48 , M. Boonekamp , H. Boterenbrood , M. Caprini 82 27 19a , J.G. Cogan 11 124a 118 96 11 , R. Caloi , O. Bulekov 25a , C. Collard , C. Chen 118 23a 118 , C.M. Buttar , D. Cˆot´e , S.L. Cheung , E. Brodet , D. Breton 105 , S. Burke , F. Ceradini , I.R. Boyko 104 6 , G. Borissov , F. Cataneo , S. Cheatham , G. Ciapetti 21 30 , P.J. Clark 71 , S.I. Buda , B. Brau 13 29 , V.F. Chepurnov , A. Cortes-Gonzalez , C. Bohm 152 29 , C. Conta , A. Chilingarov , M. Cambiaghi ∗ , J. Buchanan 128 49 , I.A. Christidi 45 72a ,j 125 , 122b 65 , F. Cevenini , F. Canelli , 156 , R.W. Clifft 49 , M.D. Ciobotaru , G. Brown , P. Coe , P. Branchini 85 90 25a 58a , D. Caforio 137 , R. Cardarelli 133b 18b , S. Caughron 74 64 29 , , I. Caprini 102b 122a , E. Castaneda-Miranda , R. Bruneliere 31b , , M. Bosman , M.P. Casado 146b , E.V. Bouhova-Thacker 167 25a , 29 – 20 – , E. Cheu , G.D. Carrillo Montoya , J.D. Chapman 172 133b , J. Boyd 133a 19a , 108 , L.P. Caloba 123 24 144b 48 102a , T. Costin 85 , A.P. Colijn , P. Conde Mui˜no 30 146a 4 , A. Clark , T. Burgess , J.M. Butler , V.G. Bondarenko , S. Bressler 106 84 139 , F. Bucci 133a , D. Buira-Clark , A. Borisov , G. Cataldi 73 75 25a , J. Chudoba 143 13 , A.M. Cooper-Sarkar 16 , U. Bratzler , T.J. Brodbeck 166 117 , A.G. Buckley , A. Braem , V. Cindro , S.A. Cetin , A. Bogouch , A. Cheplakov 77 88 54 124a 151 , M.A. Chelstowska , J. Cochran , F. Corriveau 17 , J.T. Childers 33 47 , S. Chouridou 118 65 107 32a , S. Caron , V. Cavasinni 51 19a 50b , J. Colas , W.K. Brooks 30 , , V. Canale , P. Camarri , D. Casadei 11 , A. Boveia 28 34 , C. Caramarcu , D. Bruncko , S. Constantinescu , G. Colon , C.A. Chavez Barajas 77 33 , J. Boudreau ,h , C. Clement 50a 159a , B. Chapleau 83 , M. Bona , D. Boscherini , R. Calkins 38 48 , S. Burdin 55 2 82 , C. Borer 93 , G. Cattani , V. Chernyatin , B. Butler 148 55 , S. Cabrera Urb´an 98 , L. Bugge , D. Costanzo , T. Buanes 29 136 105 78 29 124a , R. Brock 29 , R. Brenner 77 81 , M.L. Chu , D. Cinca , O. Brandt 135e 20 167 19a 29 , M. Ciubancan , S. Cheng , F. Cerutti 29 , N.F. Castro 3a 15 , J. Bracinik , B.D. Cooper 87 75 14 172 , M. Corradi 167 12b , B. Caron , G.A. Chelkov , L. Chikovani , M.D.M. Capeans Garrido , K. Chan , J. Collot , K. Bos 50b , A. Coccaro , , N. Bousson 53 , V. Chavda 89b , R. Caputo , F. Butin 106 , G. Choudalakis , , A.M. Castaneda Hernandez , V. Consorti , A. Bogdanchikov , A. Cattai 159a 102b , T. Byatt 102b , B. Clement , C.D. Cojocaru , G. Brooijmans , R.M. Buckingham , , I. Brock ∗ , 132b 17 50a , S. Bordoni , J. Bouchami , P. Calfayan , M. Campanelli , 115 65 , 29 71 164c 27 166 , J. Carvalho 36b 83 89a 88 , R. Ciftci , , M. Cavalli-Sforza , V. B¨uscher 27 , N.M. Bolnet 104 , , J. Bremer 78 29 177 , H. Burckhart 141 , M.J. Costa , M. Bruschi 139 129 27 , M. Cirilli , G. Brandt 50b 102a , R. Camacho Toro 102a 3a , X. Chen , 132a 7 , L. Cerrito 89a 108 36a 25a 158 , M. Cooke 14 164a 117 33 89a 19a 32c 29 50a 29 J.A. Bogaerts V. Boldea C.N. Booth S. Borroni D. Chakraborty J.R. Catmore D. Botterill D. Cavalli B. Brelier A. Cerri D.G. Charlton I. Bozovic-Jelisavcic C. Bourdarios R. Cherkaoui El Moursli V. Castillo Gimenez B. Budick A. Brandt C. Bromberg S.V. Chekulaev F.M. Brochu T. Buran P. Buchholz C.P. Buszello T. Chen G. Chiefari J.R. Carter G. Calderini D. Chromek-Burckhart M. Capua P.A. Bruckman de Renstrom W. Buttinger M.V. Chizhov G. Bruni S. Campana S. Calvet L. Carminati C. Caso L. Capasso A.K. Ciftci A. Ciocio J.C. Clemens E. Cogneras M. Cobal C. Collins-Tooth J. Cook M. Consonni T. Cornelissen G. Costa JHEP09(2011)053 , , , , , , , , , , , 5 149 , , 83 , 136 128 , , 98 , 129 , 29 , 50b 50a , , , , , , 132b , 158 133b , , , , 29 , 29 19b 29 , , ,k 55 105 , 81 86 , 85 , , 122b 50a 25a , 126 , , 4 58a 11 169 , , 35 , 19a 132a 109 133a , , 118 17 25a 73 142 93 105 122a , 13 , , , 163 , 81 8 , , 33 , 105 , G. Darbo , D. Fellmann , A. De Santo , P. Delpierre , E. Ertel 17 124a , J. Dopke , G. Duckeck 16 148 , S. Elles 49 83 29 , A.I. Etienvre , S. Dhaliwal , M. Dam 55 , P. de Jong , S. Dita , D. Dzahini 165 164c , Z. Dolezal 171 , 83 166 , D. Emeliyanov 84 , E. Dawe 29 , N. Davidson 148 , H. Drevermann , A. Dell’Acqua 74 104 25a , M-A. Dufour , P. Dervan 14 , G. Eigen , M.J. Fisher , B. Demirkoz , J. Ferland , C.-M. Cuciuc , B. Di Girolamo , A. D’Orazio , J.D. Dowell 74 , M. Dehchar 58a , S. De Castro 164a , T.A. Dietzsch 126 78 29 120 20 65 , A. Di Simone , R.M. Fakhrutdinov 55 115 , F. Crescioli , L. De Nooij 29 73 70 , M. Dobson 41 , V. Dao 120 , P. Ferrari 144b 29 71 29 , M. Fincke-Keeler , J. Farley 102a 108 , K. Edmonds , A. Ferretto Parodi 99 , R. Febbraro 133b , , C.J. Curtis 166 , J. Donini 81 87 , S. Errede , D. Fassouliotis , R. Ely 104 , P. Dita , L. Feligioni , M. Ellert 47 134a , A. Ereditato 36b , 29 29 , I. Dolenc , F. Etienne 120 48 133a , F. Dydak 165 54 , M. Delmastro , E. Duchovni 47 , F. Derue , B. DeWilde , T. Eifert 132b 135c 36a 37 126 , , L. Duflot 14 , N. De Groot 99 , P. Fischer , T. Davidek , C. Fabre 102b 129 , C. Dallapiccola 82 , M.T. Dova 98 , Y. Davygora , , J. Dietrich 135d 41 86 132a , J. Ferencei , U. De Sanctis , A. Do Valle Wemans , E. Dobson 87 , M. Demichev 77 19b 87 , M. D’Onofrio , L. De Mora , N. Dressnandt , , A. Ferrari , M. Deliyergiyev 42 , K. Cranmer 102a 122b 128 53 23a , A. Di Girolamo , C. Ferretti , , J. Degenhardt , A. Farilla 175 41 132a , F. Filthaut 19a 174 4 82 , D. Dannheim 7 , M. Elsing , S. Eckweiler 164c 9 , S. Fazio 49 65 , , D. Errede 122b , M. Donega , M. Curatolo , R. de Asmundis 29 , , S. Dube 98 , S. Cr´ep´e-Renaudin 48 122a , J. Dolejsi 7 , P. Fassnacht , J. Erdmann , R. Di Nardo 115 ∗ 136 , B. Esposito , T. Dai , , T. Ehrich 139 23b 164a 29 137 72b 87 , M. Dwuznik 29 , 122a 11 37 66 41 , M. El Kacimi , W. Davey , C. Dionisi , G. Fischer , J. de Graat 139 , A. Dewhurst 72a – 21 – , E.B. Diehl 29 , D. Dobos 20 39 166 , I.P. Duerdoth 78 , J. Drees ∗ , K. De , J.E. Derkaoui , , B.E. Cox , S. Demers , L. Fabbri , M. Fehling-Kaschek , S. D’Auria 158 , A. Farbin , V. Ferrara 29 , A.R. Davison 18c 39 38 126 29 , A. Dotti , D. Ferrere 27 , A.B. Fenyuk 61 88 , S. Eckert , A. De Salvo 53 , A. Filippas 93 148 117 , D. della Volpe 89b , Y. Doi 11 47 30 , L. Di Ciaccio , , L. Fayard 98 74 ,i , A. Eppig , T. Dubbs , M.A.B. do Vale , J. Ernwein 53 132a , D.V. Dedovich 89a , J. Elmsheuser 89b 62 51 99 24 , B. De Lotto , 133b , R. Crupi , B. Di Micco 77 , 102a , P. Farthouat , M. Donadelli , A. Firan 29 , H.O. Danielsson , T. Del Prete , T. Ekelof 80 88 89a , W. Ehrenfeld , R. Duxfield 36b 80 , W. Dabrowski 118 75 155 167 , , F. Diblen 137 133a , S. De Cecco 53 , Z. Drasal , H. Evans 3b , J. Dingfelder 82 , J. Ebke , R.K. Daya , M. Dosil 36a , C. Deluca 24 , M. Davies , C. Cowden 53 54 , X. Espinal Curull 39 ∗ 31a , E.J. Feng 44 , W. Fedorko , , J. Ferrando , B. Epp , J.P. Dauvergne , M. D¨uhrssen ,c 55 5 76 , Z. Czyczula , A. Filipˇciˇc , D. Derendarz , R. Dobinson 172 , M.L. Ferrer , M. Fanti 167 53 , P.O. Deviveiros 98 , S. Dean 64 , N. Ellis 32d , M. Ernst 121 , T. Doherty 81 85 105 118 1 141 128 , D. De Pedis , J. Dubbert 75 167 172 , T. Djobava 148 115 9 118 29 , T. Cuhadar Donszelmann 83 , L. Fiorini , A. Favareto , J. Del Peso , T. Dohmae 175 ,h , C. Da Via , A. Di Mattia ∗ , M. Della Pietra , H. De la Torre , 158 , M.A. Diaz , A. Engl , D.S. Damiani , G. Crosetti , A.T. Doyle , C. Feng , A. Di Ciaccio 164c 96 23a , G. Cowan 124a , N.C. Edwards , , S. Ferrag ,l 115 89b , J. Ernst , K. Ellis , E. Eisenhandler 134b , S.M. Farrington 20 , H. Czirr 86 , , C. Daum , Y. Fang , 19b 148 , E. Davies , M. Dobbs , F. Fiedler , M. Dris 105 , C. Escobar 50b 76 , P.A. Delsart , , H. Duran Yildiz , O.L. Fedin 24 , A. Ferrer , F. Dudziak , 169 14 81 4 61 109 , J.W. Dawson , A. Dos Anjos 71 , D. Evangelakou 158 164a 30 35 89a 29 25b 29 146a 29 , W.L. Ebenstein , K. Dindar Yagci 115 , F. Djama 19a 134a , E. Devetak 132a 50a , S.P. Denisov 139 , C. Doglioni 144a 119a 52 153 29 20 102a 115 34 163 P. Cwetanski M. Dameri P.V.M. Da Silva G.L. Darlea C. De La Taille C. Cuenca Almenar M. De Oliveira Branco J.B. De Vivie De Regie C. Del Papa L. Courneyea R. Davidson I. Dawson M. Cristinziani P.E. De Castro Faria Salgado L. Dell’Asta N. Delruelle J. Deng R. Dhullipudi K. Desch S. Di Luise F. Dittus R. Di Sipio T.K.O. Doan J. Dodd S. Diglio B.A. Dolgoshein A. Doria C. Driouichi A. Dudarev A.D. Doxiadis C.A. Edwards M. D¨uren M. Dunford K. Einsweiler F. Ellinghaus D. Eriksson R. Engelmann M. Escalier S. Falciano E. Etzion T. Farooque B. Fatholahzadeh P. Federic W. Fernando C.U. Felzmann R. Ferrari M. Fiascaris M.C.N. Fiolhais JHEP09(2011)053 , , , , , , , , , , , , 118 , 136 73 129 117 128 , 54 , 119b 129 174 , , , 82 , 118 132b , 34 , , , , , 141 , , 53 48 , , , , 174 20 , , ,b 54 , 119a 136 88 , , , , 153 14 24 132a 49 118 27 , 174 39 42 122b 65 , , 158 105 , , 124a , 35 , 38 , 65 , J. Haller , , C. Grah 171 122a 115 , 15 , , N. Grau , 32b , C.N.P. Gee 29 9 , B.M. Hawes , L. Gauthier 176 109 , S. Heim , J.M. Foster 129 121 , K. Grybel 20 , J. Hartert , C. Gwenlan , B.K. Gjelsten 138 , , H.S. Hayward 7 32d 141 , A.R. Gillman , L. Gonella , S. Giagu , V.N. Gushchin , A. Gemmell , S. Hassani 17 26 76 , S. Guindon 171 28 136 19a 41 , J.A. Frost 159a 65 , A. Gershon 4 , E.J. Gallas 19a , A. Gibson 140 50a , M. Fraternali , A. Gomes , C. G¨ossling 29 , G.L. Glonti , H.A. Gordon , L. Han 98 , S. Fleischmann 174 24 29 , T. Harenberg 81 , M.P. Goulette , J.B. Hansen , E. Gornicki 95 , P. Ge 128 174 9 32a 173 , H.K. Hadavand , O. Gabizon 35 74 , M.I. Gostkin , M. Fokitis 137 , K.K. Gan , J.-F. Grivaz , F.M. Giorgi , B. Gaur 24 135c , M. Garcia-Sciveres 29 , L. Heelan 40 , P. Francavilla 97 , H. Garitaonandia , P. Grafstr¨om 49 105 58a , J. Griffiths , H. Hakobyan , P. Giusti 79 , V. Gratchev 71 , C. Guyot , D Hayden 175 , D. Fortin 29 102b , M. Havranek , , D. Greenfield 38 176 , K. Harrison 143 , D. Gillberg 67 82 , C. Galea 88 148 , S. Franz , Y. Gusakov 172 , C. Gemme 132b , H. Han 91 121 , , T. Guillemin 138 , B. Giacobbe 61 , P. Gerlach 102a 57 30 , Y. Hasegawa , B. Gibbard 33 76 , J. Groth-Jensen 161 146b , D. Froidevaux , E.N. Gazis 72b 29 , , C. Goeringer , G.A. Hare 132a , , A. Goriˇsek , H. Fox 101 , K.W. Glitza 54 29 29 , J.R. Hansen , S.N. Golovnia 43 , M.L. Gonzalez Silva 41 , E. Galyaev 160 72a 137 72b 146a , O. Gaumer , F. F¨ohlisch , , C. Gabaldon , D. Goujdami , A. Forti , N. Garelli , P.A. Gorbounov , P. Fleischmann 58a 175 , V. Hedberg , Z. Hajduk 167 , M. Gosselink 99 125 , P. Grenier , R. Hackenburg 29 , V. Grassi 30 81 , V. Grabski , R. Hauser 72a 167 136 17 29 , F. Garberson 119a 41 41 135a 14 ,g 15 , A. Gupta 29 , P. Gagnon , T. Hayakawa 14 , Y.V. Grishkevich , V. Gilewsky , S. George 34 , O. Gutzwiller , O.M. Harris , M. Franklin 163 , R. Giordano 11 163 50b 14 54 8 – 22 – , M. Giunta 21 , , S. Hamilton , K. Hara , F. Gianotti 153 171 , N. Ghodbane , A. Guida , A. Glazov , R. Froeschl , T. G¨opfert , O.G. Grebenyuk 49 , J-C. Gayde , S. Hasegawa , K. Fowler 4 89a 50a , P. Hanke 143 33 48 43 41 , P. Gallus 20 56 44 , T. Golling 122b 81 , J. Fuster , , E. Gorini , S. Haider 134a , S.J. Head , J. Guo , C. Haber 39 , J. Fleckner 29 129 , K. Gellerstedt 29 , G. Gaudio , L. Goossens , A. Formica 29 , B. Gosdzik , J. Grosse-Knetter 29 122a , I.M. Gregor 158 32d 20 , J. Goncalves Pinto Firmino Da Costa 47 , M. Gouighri 141 , R.W. Gardner ,l 148 138 128 171 , M.J. Flowerdew 76 , M. Hauschild , T. Frank 49 , M. George , P. Ghez 24 163 , N. Giokaris , S. Grancagnolo , S. Grinstein , D. Hawkins , A. Gaponenko 16 29 172 , D. Giugni , M. Gilchriese 29 , N. Guttman 72a , J. Glatzer 153 137 132b 135b 128 , P. Hansson , M. Goebel , A. Harvey , A. Hamilton , , C. Handel , S. de Gonz´alez la Hoz , M. He , G. Gagliardi 136 , S. Haas 118 80 , A.J. Fowler , G. Gaycken , F. Hahn , B. Guo 111 , D. Goldin 35 66 , F. Friedrich 29 , B. Gorini , R.D. Harrington , C. Guicheney , I. Fleck 21 , I. Grabowska-Bold 49 , E. Graziani 113 , C. Gatti 29 120 172 99 87 4 132a 27 , B.J. Gallop 143 87 168 48 125 , E. Gross 174 17 175 148 16 , S. Haug 99 , R. Gon¸calo 99 , V. Giangiobbe , J.J. Goodson , D. Francis , D.A. Forbush 41 8 49 16 , A.A. Grillo , V.N. Goryachev , C. Goy , Ch. Geich-Gimbel , C. Gay , J. Ginzburg 119b , E. Hazen , H. Ghazlane , A. Haas , , P. Hamal , Z.D. Greenwood 65 , E. Fullana Torregrosa , P.F. Giraud ,e , M. Hance , R.J. Hawkings , C. Glasman 94 128 , S. Gentile 138 2 , P. Gutierrez , M. Flechl , A. Foussat , P. Haefner 105 , L.M. Gilbert 73 , P.H. Hansen , D. Harper , D. Guest , I. Gough Eschrich , V. Gallo 73 129 , V.A. Gapienko , J. Garvey 99 , J. Godlewski 58a , F. Grancagnolo 17 97 174 , S. Goldfarb , S. Gonzalez 5 4 , M. Groh , T. Haruyama , J. Gunther , G. Gorfine , S. Gadomski 156 , S.T. French , J.A. Gray 98 116 119a 93 , J.E. Navarro Garc´ıa 17 29 35 90 29 ,f 29 129 115 41 , D. Hauff 99 29 29 24 29 , L.R. Flores Castillo 142 ,m 105 103 120 167 29 143 85 174 T. Fonseca Martin D. Fournier T. Gadfort Y.S. Gao I.L. Gavrilenko M.V. Gallas T. Flick C. Garc´ıa S. Franchino S. Fratina C. Fukunaga V. Garonne D.A.A. Geerts M.H. Genest S.M. Fisher C. Geweniger D.M. Gingrich S.M. Gibson V. Giakoumopoulou P. Giovannini L.K. Gladilin J. Godfrey S. Gonzalez-Sevilla T. G¨ottfert L.S. Gomez Fajardo A. Gonidec I. Gorelov V.J. Guarino J. Grognuz S.A. Gorokhov D.R. Hadley C.B. Gwilliam K. Hamacher K. Hanagaki A.G. Goussiou N. Grigalashvili J.D. Hansen M. Gouan`ere H. Guler M. Hatch H.M. Gray C.M. Hawkes T. Greenshaw A. Gutierrez K-J. Grahn F. Hartjes S. Harkusha S.J. Haywood JHEP09(2011)053 , , , , , , 41 , , , , , , 111 58a 98 20 172 , , 61 38 29 , , , 107 , 141 118 , , 39 , , 37 125 118 , 71 , , , 120 66 , 139 73 29 , , , , 41 28 27 , , 116 , 7 , 157 65 , 42 , 32b , , J. Katzy , 118 , , , 77 2 143 9 , V. Jain , 82 8 154 96 29 , P. Jenni 24 , , , L. Kashif 29 , , 174 152 , D. Joffe 30 66 , G.S. Huang 37 , E.-E. Kluge 29 , M. Holder 43 , D. Hellmich , 128 35 14 , D.F. Howell 81 105 41 , G. Hughes , V. Juranek , J.C. Hill , H. Iwasaki , T.M. Hong , T.J. Jones , V.A. Kazanin , R.S.B. King ∗ 82 , A. Kaczmarska , P. Hodgson 146b , , S. Johnert 34 , R. Hertenberger , M. Hirose , , Y. Jiang 38 , T. Kanno 67 5 77 130 67 , D. Kisielewska 105 48 , M. Khakzad , K. Horton , E. Jansen 167 139 29 , M.S. Kim 139 , D. Iliadis 120 148 67 , M. Kocian 7 146a , P. Ioannou , D. Kar 48 , M. Idzik 158 39 158 , E. Katsoufis 43 , M. Ibbotson , M. Ishino 29 29 , N. Kerschen , G.D. Kekelidze 9 , A. Khodinov , M.R. Jaekel , C.M. Hernandez 115 , A. Klimentov , S. Klous 67 , S.-C. Hsu , X. Ju 155 54 65 , J. Knobloch , D. Hill 125 143 174 , J. Jia , A. Khoroshilov 171 , E. Kajomovitz 104 175 , M. Hohlfeld , M. King 12b 62 , J. Klaiber-Lodewigs 167 , M. Kaci , J. Howarth 81 20 , I. Jen-La Plante 99 , H. Kim 83 73 , A.M. Henriques Correia , U. Husemann , E. Hines , Y. Homma , G. Herten , W. Iwanski , M.S. Kayl , A.N. Karyukhin 16 , T.W. Jones 37 51 , E.W. Hughes , M.D. Joergensen 54 14 14 88 , M. Kaneda 144b 81 , S. Horner , J. Keung 71 135a 71 152 128 , M. Kobel , S. Hellman , M. Keil , P. Johansson 48 , J. Kaplon 118 157 , Y. Ilchenko 155 143 , T. Kishimoto , W. Ji 155 39 115 30 66 , T. Henß , E. Jankowski , G. Iakovidis , A. Klier , O. Kepka , J. Idarraga 99 , P.J. Hsu , T. Jovin , A. Ishikawa , Y. Kataoka 146a , M.C. Hodgkinson 4 , P.F. Klok 54 , P. Jackson 49 , J. Inigo-Golfin 172 53 4 85 111 14 66 115 , S. Kaiser 29 73 20 , K. Jelen 153 , B.T. King 57 , D. Kharchenko , E. Kneringer , S. Kabana 57 15 , J. Khubua , G. Khoriauli , D. Hoffmann , E. Kladiva , C. Horn , M. Hurwitz 112 , A. Henrichs , I. Hinchliffe 158 65 , H. Ji 27 128 39 67 57 17 , R. Kehoe , M. Heller , M. Ikeno , N. Kanaya , C. Ketterer , A.V. Ivashin , A. Kapliy 127 – 23 – , G. Kawamura 58a , R.W.L. Jones 4 19a , J.L. Holzbauer , K. Ishii , O. Jinnouchi , A. Hoummada 66 39 , T. Ince , C. Hensel 169 82 , T.B. Huffman 155 , N. Hod , E. Hig´on-Rodriguez 18a 175 , J. Joseph , V. Kartvelishvili 155 73 , T. Kobayashi 127 , D.K. Jana , M. Kenyon 167 5 83 32a 20 ,b , T. Hryn’ova , M. Kataoka 155 , M. Klemetti , O. Kind , A.D. Hershenhorn , G. Iacobucci 44 148 , A.E. Kiryunin , M. Kagan , L. Jeanty 146a 13 127 143 81 15 , J.N. Jackson 22 57 125 , K.E. Johansson 79 170 124a 109 , P. Hurst , T.J. Khoo , A. Khanov 120 , J. Hoffman 29 , N.S. Knecht , S. Istin , S. Jin 146b , L. Helary , M. Henke , E. Khramov , S.J. Hillier , M.K. Jha , S. Kama , 58a 4 , T. Klioutchnikova , G. Jones 165 , T. Holy 99 , R. Keeler , H. Kiyamura 95 35 71 , K. Karr 65 20 , Y. Ikegami 103 118 32b 35 , B. Kaplan 82 , B.R. Ko , M. Imori 41 , K. Kessoku 146a , J. Hobbs , L. Iconomidou-Fayard 128 66 146b , J. Huth 146a 105 , 54 , V.V. Kabachenko , T. Horazdovsky 67 174 , F. Huegging , I. Hruska 174 , T. Kawamoto 88 , A. Hidvegi 174 , M.A. Houlden 11 , J. Jakubek , H. Kagan , A. Irles Quiles 83 67 108 , L.E. Kirsch , A. Kastanas , N. Kimura , P.M. Jorge 146a , C.J. Kenney , R. Herrberg 4 115 , G. Jarlskog 35 105 151 , G. Jin 115 29 , B. Jackson 98 20 , S. Kluth 118 109 160 167 , K. Kleinknecht 41 , S. Hillert , S. J´ez´equel , C. Issever , M. Huhtinen 73 , F. Henry-Couannier , A. Khomich 41 105 102a , A. Knue 35 39 82 , J.R. Keates 115 , J. Kanzaki 128 83 , A.M. Kiver , E.B. Klinkby , V. Khovanskiy , J. Huston , M. Johansen , H. Khandanyan , S. Heisterkamp , O. Igonkina , S. Hou 65 , S. Kersten 96 , R. Ichimiya 42 ,n 65 , M. Karnevskiy 13 123 10 , F. Hubaut 14 55 74 , M. Kado , S.O. Holmgren , J. Hrivnac , G. Ionescu , M.R. Hoeferkamp , M. Imhaeuser , C. Joram , L.V. Kalinovskaya 65 , M. Janus , R.C.W. Henderson 141 102b , K. Kawagoe , K. Jon-And , S.H. Kim , S. Jakobsen , 118 , P. Jeˇz , N.P. Hessey 35 127 , R.D. Kass , V. Izzo 15 6 6 , D. Hirschbuehl 29 78 29 , P. Kluit 4 , U. Klein , J. Kennedy 99 , A. Juste Rozas 11 118 174 48 , G.P. Kirsch 29 39 134a 40 143 42 73 73 82 62 102a , K.H. Hiller 129 5 S. Henrot-Versille I. Ibragimov B. Heinemann N. Huseynov Z. Hubacek C. Helsens R.E. Hughes-Jones Y. Jim´enez Hern´andez P. Iengo D. Imbault J-Y. Hostachy L. Hervas I. Hristova R. Ishmukhametov N. Hill F. Hirsch A. Holmes M. Iodice A. Hoecker L. Hooft van Huysduynen J.M. Izen A. Jantsch K. Jakobs A. Jeremie M. Jimenez Belenguer O. Jonsson P. Jussel V.A. Kantserov K.A. Johns P. Kadlecik L.G. Johansen S. Kalinin M. Karagoz A. Kasmi V. Kaushik B.P. Kerˇsevan M. Kelly A.G. Kholodenko F. Khalil-zada M.Y. Kazarinov J. Kirk N. Khovanskiy P.C. Kim T. Kittelmann M. Klein R. Klingenberg T. Kluge E.B.F.G. Knoops JHEP09(2011)053 , , , , , , , , 80 6 , , 171 , 169 , 98 ,p 28 , , 145b , , , 48 , , 48 127 , , 15 108 79 132b 65 126 138 , 65 , , 154 128 , 150 , , , , 4 , , , 29 , , 24 65 74 , , 21 132a 43 65 , , P. Loch , C. Liu 128 , , 120 127 175 , 14 120 120 , 41 , , T. Lagouri , F. Legger , , 137 169 55 ,h , D. Lumb , F. Krejci 20 146b 78 , 97 94 , , 120 , J-R. Lessard , , E. Lytken , M. Leyton , L.J. Levinson 81 105 153 , R. Leitner , , K.J.C. Leney , U. Landgraf 124a 93 , J. Love , K. Kordas 14 20 87 , J.S.H. Lee 172 , F. Lanni , , V.M. Kotov 146a 119b , R. Konoplich , B. Maˇcek , , P. Lichard 158 23b 58a 136 38 , F. Lacava 162 14 99 , J. Kroll 105 48 163 99 , W. Kuykendall , E. Lipeles , V. Kukhtin , V.A. Korotkov 99 , Z. Kohout , J. Kunkle , W.F. Mader 167 119a , A. Loginov 133a 88 , V.P. Lombardo , V. Kolesnikov 62 54 , Z.V. Krumshteyn 14 125 139 , A. Lucotte 82 , A.M. Litke , W. Lavrijsen 118 , J. Lys 15 16 , B. Laforge , A.V. Larionov 118 , L. K¨opke , C. Limbach 49 4 24 , C. Leroy , A. Kreisel 118 , D. Levin , E. Lobodzinska , A.A. Komar 9 , G. Luijckx 81 17 132b , H. Lee , R. Kowalewski 4 89a , B.C. LeGeyt , 88 82 75 61 , S. Kotov 55 , A. La Rosa , K. Korcyl , A.M. Leyko 49 , E. Lancon 105 , J. Lundberg 29 6 15 , V. Kus 132a , H. Kroha , P. Loscutoff , M. Livan , C. Le Maner 128 , V.A. Kramarenko , M.A.L. Leite 79 , D. Kuhn 108 , F. Kohn , B. Liberti 90 6 54 , C. Lacasta , K.F. Loureiro 83 , A. Macchiolo 41 , A.I. Kononov ,q 162 , A.J. Lankford 32b 127 , V. Lendermann , N. Kundu 105 , D. Lynn , J. Loken , A. Lister ,o 47 , T. Kruker , T. Lari 115 , R. Lafaye 41 54 78 135a 118 99 24 41 , R.J. Madaras 20 , J. Kraus , S. Koenig , H. Kolanoski 125 65 136 , J.N. Lilley , J.T. Linnemann 35 , A. Leger , J. Levˆeque , A. Lavorato , F.K. Loebinger , E.V. Korolkova , C. Luci , P.J. Magalhaes Martins , S.L. Lloyd , S. Leontsinis , X. Lei , S.D. Kolya 108 , R. Kwee 104 107 47 , F. Luehring 20 152 11 , W. Lampl 41 80 105 136 172 43 , Y. Liu 29 48 29 138 6 , T. Kuhl 2 48 , V. Kral , G.H. Lewis , A. Koutsman , B. Lundberg 58c , G. Lutz , M. Losada 128 , S.V. Kopikov , Z. Liang , C. Lange , M.J. Kotam¨aki , M. Kuna , T. Kono , A. Lounis 118 154 , S. Lablak 57 – 24 – 37 , F. Ledroit-Guillon 39 4 , K. Kroeninger 82 , E. Koffeman 20 147 98 , B. Lemmer 66 , H. Kr¨uger 40 , E. Le Guirriec 5 , D. Lissauer 122b , Y.A. Kurochkin , , E. Ladygin 29 , S. Liu 34 65 78 158 , F. Linde , G. Maccarrone , J. Kvita , M. Lokajicek , J.F. Laporte , S. M¨attig 165 160 , P. Laurelli ,r 167 , R. Lifshitz , A.C. K¨onig 32b 93 122a 48 , I. Korolkov 20 , J. Ludwig 125 29 29 13 174 , R. Mackeprang , M. Legendre 151 , A. Kugel , H.J. Lubatti 48 107 , K. Leonhardt , G.M. Kolachev , M. Kollefrath , C.L. Lampen , A. Lewis , X. Lou 49 48 , Z. Liang , J. Labbe 169 20 29 29 29 32a 21 , J.L. Lane , A.S. Kozhin , A. Krasznahorkay , T. Kondo 87 , T. Loddenkoetter 80 , S. Koperny 159a , T. Koffas , J. Llorente Merino 78 , M. Liu , C. Kummer 152 , V. Kouskoura 136 155 , P. Krieger 20 , A. Lupi 175 8 55 , T.M. Liss , G. Lehmann Miotto 174 87 , T. LeCompte , O. Le Dortz 54 31b , M. Kurata 81 , M. Leltchouk 13 20 , B. Lund-Jensen , S.C. Lin 93 , F. Lu , C. Lapoire , P. M¨attig , U. Kruchonak , D. Lopez Mateos 65 , A. Leung Fook Cheong , W. Liebig 67 , X. Li , V.V. Kostyukhin , A. Korol , K. K¨oneke 78 , M. Lassnig , I. Ludwig 63 ,b ,f 78 24 ,d 27 117 , S. Kuehn , B. Lenzi 99 , V.R. Lacuesta , K. Lohwasser 14 12a 29 165 , D. Macina , O. Kvasnicka 41 , D. Kollar 126 , T. Kokott 86 143 78 15 32b 91 124a 174 88 , M. Lefebvre , L. Labarga 124a , J.A. Macana Goia , J.B. Liu 143 , M. Lamanna , M.J. Losty , A. Lleres , A. Kootz , Y. Komori 175 87 55 36b , C. Lebel 172 77 , S. Lockwitz , , N. Krieger , M.W. Krasny 118 , K. Lie , H. Landsman 132b , S. Li 142 , M. Lewandowska , , W. Kozanecki , S. Kuleshov , E. Lund , P. Koevesarki 73 74 , A. Korn 136 98 75 137 36a , M. Lungwitz , J. Krstic , T. Maeno , J. Lellouch , A. Lipniacka 37 , M. Limper , S. Laplace 90 , J. Koll 172 128 , P. Kodys , S. Kortner , A.B. Lazarev 104 20 , T. Lohse 35 , C. Lasseur , T. Koi , M. Lehmacher , H. Kurashige , C.G. Lester 132a , D. Ludwig 128 86 , L. Lopes , C. Kourkoumelis 29 132a 58c , A.J. Lowe , D. Lacour 171 , P. Kuzhir 125 , L. Lee , T. Kubota 99 89a 73 , H. Liu 66 , G. Lenzen 14 43 113 71 44 168 71 118 15 125 ,s 20 146a 157 151 , L.L. Ma , E. Laisne 174 , H. Li 151 24 48 83 A. Kocnar F. Koetsveld T. Kohriki I. Koletsou J.R. Komaragiri J. Kretzschmar N. Konstantinidis T.Z. Kowalski A. Kotwal G. Kramberger V. Koreshev J. Kroseberg O. Kortner A. Kruth Y. Kulchitsky D. Liu A. Limosani S.S.A. Livermore L. Lipinsky A. Kupco M. Lichtnecker W.S. Lockman M. Kuze S. Lai K. Lantzsch J. Lundquist B. Li C.W. Loh M.P.J. Landon A. Ludwig L. Luminari L. La Rotonda H. Lacker M.S. Levitski R.E. Long P.A. Love P. Laycock F. Lo Sterzo J. Lesser H. Ma A. Larner E. Le Menedeu S.C. Lee T. Lenz C. Leggett J. Machado Miguens D. Lellouch R. Maenner JHEP09(2011)053 , , , , , , , , 35 , , , , , , 172 29 , 29 , 17 , , 128 9 , 29 29 , 65 , 132b , 54 89a , 107 11 , 84 120 36b , 99 , 54 , , , , 29 , 102b 137 , , , , , 132a 87 , 36a 29 , 143 , , , 143 171 , , 81 , 161 29 132a 41 6 , 149 29 122b 107 102a 129 , , P. Miele 49 , 60 105 , ∗ , , , 129 , A. Mann , S. Mehlhase , , E. Meoni , Z. Marshall 122a , 155 ,t , A. Messina , J. Meyer , M. Mineev , S. Maltezos 89b 65 128 , 67 93 29 82 5 , L. Mandelli 78 , P.R. Newman 29 30 37 , F.F. Martin , P. Mal , H.G. Moser , V. Nikolaenko 173 , S. Nelson 66 89a , H.A. Neal , C. Maiani 24 88 , E.J.W. Moyse 15 , J. Mitrevski 49 , A. Napier 115 , K. M¨onig 101 17 , B. Nicquevert , D. Milstein , E. Musto 94 , D. Moreno , A. Mapelli 162 , A.K. Morley , D.W. Miller 76 , D. Muenstermann 20 27 , F. Marzano , A.L. Maslennikov , B.R. Mellado Garcia 99 66 74 139 105 98 36b 82 82 , 146b 30 , , J. Mechnich , Y. Nagasaka , R.A. McLaren , D.A. Maximov , M. Nessi , C. Menot , D. Malon , E. Mazzoni 84 36a 66 51 , J. Meyer , N.A. McCubbin , S. Martin-Haugh 73 , A. Mastroberardino , B. Mindur 99 146a , C. Mora Herrera 63 , R. Marshall , P. Nevski , K. Miyazaki 23a 28 89a 49 , R. Mehdiyev , F.S. Merritt , R.P. Middleton , B. Martin , H. Matsunaga 136 , G. Marchiori 86 , A. Manabe 82 108 , A.M. Moisseev , L. Morvaj 23a 29 108 132b , G. Mahout , 116 89a , I.D. Manjavidze 25a , A. Manz 155 , A. Nikiforov , S. Montesano , N. Makovec 99 12b 75 , G. Navarro , V. Moeller , G. Nanava , J. Masik , M. Mikuˇz , A. Misiejuk , Y. Morita 133b , M. Marx 48 , L. Nicolas 88 , 34 83 66 , I. Mussche 41 136 57 , S. Nektarijevic 94 11 75 132a 82 110 125 , T.A. M¨uller 136 , S.V. Mouraviev 29 , A. Meade 129 133a 20 , S. Menke , G. Morello , K. Nagano , U. Mallik ,j 136 , C. Melachrinos 54 55 19b 160 , L. Micu 169 , S.J. Maxfield , , J-P. Meyer , G. Mchedlidze 79 , B. Martin , M. Mazzanti , D.A. Milstead 29 , A.I. Mincer , C. Meroni 29 81 , T. Meguro 53 , R.M. Neves 19a 20 , S. Moed 65 175 , J. Morin , J.D. Morris , J. Mamuzic , T.G. McCarthy 171 81 , Y. Makida , P.S. Miyagawa , G.F. Moorhead , F. Marroquim 111 , E. Monnier , I. Nakano , G. Negri 57 102b 2 96 98 138 , , H. Matsumoto , N. Nikiforou , A.A. Nepomuceno 24 66 , K. Mahboubi 148 61 77 , T. Naumann – 25 – , B. Mansoulie 155 29 , P.S. Mangeard , J. Morel , K. Mueller 8 115 20 119b , F. Malek 108 153 , F. Marchese , B. Martin dit Latour , 102a , K. Nagai , R. Mashinistov , R. Nicolaidou , W.J. Murray , P. Mastrandrea , A.C. Martyniuk 136 , M. Mikestikova 123 29 17 4 , S. Mohrdieck-M¨ock 11 124a 121 66 , L. Miralles Verge , S. Michal , B. Meirose , C. Meyer 118 155 57 119a 48 , E. Mountricha 171 , M. Mazur 48 , A. Milov 20 32d , H. McGlone , M. Morii 132a 57 143 , A.J. Martin , J. Monk , S. Mitsui 151 , J.M. Maugain , A. Neusiedl , A. Mengarelli , R.A. McPherson , P. Mockett 139 29 50a ,c ,s , R.W. Moore 167 , I.A. Minashvili 167 , S. Majewski 165 , C.P. Marino 129 , S.V. Morozov , L. Merola ∗ ,b 118 , J. Nadal , R. Mameghani 146b , 151 , P. Matricon , P. Nemethy 19b , , T. Niinikoski 167 49 , N. Massol , J. Mueller , K. Nakamura , , R. Meera-Lebbai , A. Negri , R.L. McCarthy , Y. Mahalalel 118 29 21 , J. Maneira , W. Mohr , J. Miao 20 , N. Morange 125 29 41 , T.A. Martin 94 125 124a 137 54 105 , T. Nattermann , V.P. Maleev , C. Mills 19a 58a ,b , S. Meuser 15 64 146a 165 , T. Mashimo , K. Murakami 148 55 21 , J.F. Marchand 38 , R. Mount 64 81 , R. Mazini 168 , J. Meinhardt , G. Mikenberg , R.B. Nickerson , G. Mirabelli 124a 80 153 109 41 139 11 58a , Z. Meng 136 , P. Morettini , V.A. Mitsou , A. Marin , J.A. Mcfayden 162 , A. Maio , T. Moa , M. Mi˜nano 167 , M. Myska , J. Molina-Perez , A. Manousakis-Katsikakis , P. Mermod , M. Mathes 56 128 , S.J. McMahon , J. Nielsen , M.S. Neubauer , S. Marti-Garcia 79 , C. Mattravers 125 , M-C. Morone 23a , F. Mueller , S. Malyukov 128 , S. Nemecek 57 , S. Monzani 17 , G. Massaro 128 167 , V. Martinez Outschoorn 137 , A. McCarn 67 , M. Medinnis , A.S. Mete 155 121 115 , P. Malecki 29 158 , J. Moss , E. Magradze , Ph. Martin , W.T. Meyer , Y. Nakahama , L. Masetti 70 , W.J. Mills 107 12b 11 87 , L. March , A. Morais 143 , N.R. Nation 38 19b , R. Mandrysch 51 29 93 29 , K. Meier 174 29 , , L.M. Mir , S. Mohapatra 103 , P.Yu. Nechaeva , Y. Munwes 88 , A. Mayne , L. Mijovi´c ,c 53 29 111 5 74 73 20 80 73 77 19a 130 168 C. Maidantchik Pa. Malecki L. Magnoni I. Mandi´c V. Malyshev L. Mapelli P.M. Manning M. Marcisovsky F.K. Martens J.P. Martin M. Martinez A. Marzin I. Massa T. Masubuchi T. Matsushita E.N. May S.P. Mc Kee K.W. McFarlane L. Mendoza Navas M. Mechtel A. Mehta T. Mclaughlan K.M. Mercurio J. Metcalfe T.C. Meyer S. Migas J.U. Mj¨ornmark G.Y. Mitrofanov Y. Ming N. M¨oser R.J. Miller A.A. Minaenko A. Moraes A. Muir M. Mudrinic F. Monticelli R. Moles-Valls G. Mornacchi M. Mosidze M. Moreno Ll´acer A.G. Myagkov A.M. Nairz M. Nash S.Y. Nesterov V. Nguyen Thi Hong E. Nebot T.K. Nelson F. Niedercorn JHEP09(2011)053 , , , , , , , 17 , 39 105 , , , , , 146b , , , 142 117 , , 20 , 114 132a 82 24 , 83 25a 41 , 78 3a 7 , , 151 150 , , , 146a , , 116 5 , ,b , , 38 153 75 , 58b , 98 , 23a , , , , , , 18a , 29 124a 132a , , 81 , 50b 139 29 24 57 149 , Z. Qin , , 172 , E. Petit , , J.D. Palmer 163 83 , A. Reichold 126 , 167 , E. Ptacek ,h 135d , A.L. Read , , M. Petteni ,b 50a , J. Ocariz 35 45 , D. Pantea , N. Patel 40 , Z.L. Ren 20 29 20 , P. Nilsson 41 , 99 31b 24 , M.-A. Pleier , Y. Oren , C.C. Ohm 29 124a , T. Poghosyan 172 , S. Persembe 124a 48 75 82 4 30 , E. Pasqualucci 44 , E. Piccaro , M. Nomachi , B. Pinto , A.D. Pilkington , S. Rieke 115 , A.S. Randle-Conde 5 48 , V. Radescu , P. Reznicek 29 , J. Olszowska , D. Rahm , M.J. Price , A. Paramonov 30 , S. Prasad 78 , Z. Qian , V.E. Ozcan 32c 5 9 , E. Paganis , M. Perantoni 38 104 , C.J. Potter 83 136 146b 87 , H. Okawa 109 , 61 14 139 , L. Pontecorvo 99 , J. Poll , M. Ouchrif 67 , K. Reeves , J. Novakova , B. Osculati 29 146a , B.J. O’Brien , S.H. Oh , H. Nilsen 19a , A. Palma 105 , X. Portell Bueso , S. Psoroulas , S. Panitkin 120 , T.C. Petersen , D. Petschull 129 , H. Oberlack 158 , M. Raymond , S. Pataraia 4 , M. Oliveira , C. Rembser 29 82 24 , F. Prokoshin 33 29 , P. Perrodo 87 ,e , J. Ping 29 , W.G. Plano 99 65 ,w , M. Ridel 2 , L. Poggioli , M.J. Oreglia , J. Qian 28 12a 108 134b , M. Raas 72a ,y , 49 , U. Parzefall 33 , L.E. Price 169 , S. Owen , L. Nodulman , J.E. Pilcher , M.I. Pedraza Morales 38 117 34 61 31a , J. Penwell , B. Resende 159a , S. Okada , G. Piacquadio 82 26 99 134a , A. Olszewski , A.-E. Nuncio-Quiroz , A. Oh 34 , P. Pralavorio 59 , I.N. Potrap , A.M. Rahimi 144a , A. Polini 89a , R. Reece , R.S. Orr 61 129 , M.T. Garc´ıa-Esta˜n P´erez 77 120 , K. Pomm`es , D. Pallin , S. Pagan Griso 127 159a 24 53 177 138 , T. Nyman 11 22 29 , M. Ramstedt , P.R. Norton , E. Rauter 11 , D. Reljic , J. Petersen 77 98 42 , Th.D. Papadopoulou , J.P Ottersbach , A. Poppleton , J.L. Pinfold , R. Perrino 141 29 , D. Price , G. P´asztor 146b , H. Przysiezniak , F. Podlyski , K. Prokofiev 26 29 , , M. Owen , R. Nisius , N. Panikashvili 29 , K. Nikolopoulos , F.G. Oakham 12a 118 , C.J. Oram , A.G. Olchevski 29 , R. Piegaia 146a 43 – 26 – , M. Pecsy 67 49 , F. Quinonez , T. Ohsugi 58a , A. Penson , J.A. Parsons 72a , F. Petrucci 53 32a , H. Ogren 30 31a 41 , M. Plamondon , S. Resconi 146a 29 50a , D. Olivito 66 29 , R. Prabhu , G. Rahal 83 , E. Richter-Was 172 41 50b , S. Pospisil , Y. Pylypchenko , 132a , E. Nurse 99 , P.W. Phillips 167 132a 99 172 , I.M. Nugent 89b , S. Palestini , D. Pomeroy , G. Redlinger , 115 98 50a 27 6 , A. Policicchio 113 , I. Reisinger , L. Pribyl 89a 136 173 , F. Rauscher , M. Rammes , A. Pinder , E. Perez Codina 16 71 119a , B. Panes 114 , B.A. Petersen 48 , Fr. Pastore , S. Poddar 41 9 , T. Pauly , X. Prudent , V. O’Shea , S.M. Piec , J. Odier , H. Pernegger , K. Nikolics , R. Pengo , D.S. Popovic 5 , C. Oropeza Barrera , Q. Ouyang , M. Olcese , C. Padilla Aranda , A. Papadelis 164c 24 , 53 66 105 78 , T. Nishiyama 142 11 89b , T.K. Ohska , P. Puzo 134b , M. Primavera , 172 , E. Petrolo 102b 25a , B. Nordkvist 107 , P.U.E. Onyisi 136 155 , 123 , , R. Richter , J. Poveda ,v , W.B. Quayle , F. Parodi , R. Placakyte ,u 164a 29 , G. Otero y Garzon 140 77 29 89a 123 , L. Nozka 154 132a , M. Rescigno 24 27 14 134a 11 102a , F. Ragusa 41 , C.P. Paleari 89b 39 , G.E. Pospelov , , K. Pretzl 124a , A.W. Phillips 21 , E. Oliver Garcia , T. Nunnemann 64 117 18a , A. Reinsch , A. Redelbach , P.N. Ratoff 86 89a , G. Polesello , S. Odaka 24 86 , O. Peters , I. Orlov , H. Peng 28 , D.M. Pomarede 55 153 65 , A. Pickford , J. Proudfoot 155 119b 24 107 , A. Ouraou , , M. Rammensee , D.C. O’Neil , A. Poblaguev , V. Paolone , L. Perini 134b 24 , A. Nisati ∗ , D. Prieur , , 19b , T. Okuyama 24 , 34 , H. Ohshita 117 , C. Osuna , G. Poulard 73 128 125 , F. Pastore , M. Purohit , A. Richards , I. Nikolic-Audit 119a , C. Petridou 17 , P. Renkel , S. Prell 155 , M. Nordberg , A. Onofre 7 101 , M. Pinamonti , G.A. Popeneciu , M. Noˇziˇcka , S. Patricelli , C. Posch 134a , T. Perez Cavalcanti 19a , E. Panagiotopoulou , C. Pizio , M.A. Parker 101 87 65 , A. Phan 120 114 , T. Rador , D.R. Quarrie , A. Pacheco Pages ,b 158 154 67 115 ,x 88 154 ,v 66 82 , K. Pajchel 29 7 134a , F. Polci , S. Oda 20 163 54 172 31b 34 24 24 49 67 124a K. Nikolaev Y. Ninomiya G. Nunes Hanninger M. Nozaki I. Nomidis T. Ohshima S.W. O’Neale A. Ochi Y. Okumura D. Orestano C. Omachi D. Oliveira Damazio F. Ould-Saada N. Ozturk Y.B. Pan R. Ospanov F. Paige M. Panuskova A. Passeri W. Park J.R. Pater S.V. Peleganchuk K. Perez V.D. Peshekhonov V. Perez Reale A. Petridis R. Pezoa M. Piccinini J. Pina A.V. Pleskach O. Pirotte V. Polychronakos B.G. Pope M. Pohl R. Porter R. Pravahan C.T. Potter P.M. Prichard J. Purdham S. Protopopescu A. Quadt B. Radics S. Rajagopalan K. Randrianarivony R. Rezvani D.M. Rebuzzi E. Reinherz-Aronis A. Renaud JHEP09(2011)053 , , , , , , , , ,l , , , 49 , , 75 , , , , , 11 174 36b 171 24 , 61 53 121 , 88 127 43 29 163 58a , , 115 , , , 36a 146b , 85 , , , 115 , 71 , , , 17 , 11 136 29 , 29 149 , 58b 133b 11 , , , 146a , , 106 , , , , , , 122b 6 4 41 ∗ 138 , , , J. Solc 96 81 24 , , C. Shaw , 121 , P. Ryan 153 114 114 133a 91 , O. Silbert 6 , L. Sawyer , 127 , D.R. Rust , V. Rossetti 26 122a 9 , S. Sandvoss 6 , I. Riu 136 , L. Serin 128 12a , S. Roe 65 49 , R. Schwierz , G. Salamanna 99 39 98 , A. Rose , M. Slater 54 , M. Schram 88 , A. Salzburger , M. Schioppa , A.C. Schaffer , J. Sj¨olin 49 155 , O. Simard 22 , S. Shimizu , E. Segura , S. Schmitt , D.M. Seliverstov 125 98 97 104 , M. Smizanska 58b , I. Sadeh , D.A. Scannicchio 127 81 101 , S. Snyder , G. Sauvage 121 53 , M.A. Shupe , F. Sarri , M. Solar 93 , J. Rothberg , I. Rubinskiy , L. Shaver , F. R¨uhr 102a 7 , , N.B. Sinev 150 90 , P. Savva , H.G. Sander , M. Shamim 105 , G. Romeo 95 62 , A. Roe , H.-C. Schultz-Coulon 118 167 171 115 29 , R. Santonico , A. Robichaud-Veronneau , S.Yu. Smirnov 13 167 54 158 , Ph. Schune 65 , Dj. Sijacki , C. Serfon , R.R. Rios , L. Rosselet ,j 33 162 174 , V. Rumiantsev 14 , V.A. Schegelsky 171 13 137 85 19b 19a , J.G. Rocha de Lima 37 , , V. Ryadovikov , J. Schieck , K. Rosbach 58a , R. Sandstroem , V. Simak 53 , H. Shichi , H. Sakamoto , A. Salvucci 19a , N.A. Rusakovich 121 , C. Schmitt , E. Sedykh 50b , S. Schaetzel , , J. Salt , I. Roth , O. Scallon 162 , N. Skvorodnev , R. Schwienhorst 48 132b 108 , D. Short , K.M. Smith 20 , 146a 149 , X. Ruan , J. Schovancova 20 132b 114 78 , 50a 143 25a 30 111 19b , D.O. Savu , S.Yu. Sivoklokov , P. Sinervo , , G. Rudolph 143 , J. Snuverink 152 142 , C.A. Solans 132a , A.F. Saavedra , G. Sekhniaidze 65 , J. Siegrist 35 , H. Sandaker , C. Santoni , P.B. Shatalov 43 , J. Schultes , E. Shabalina 132a 123 19a , L. Rinaldi 111 10 153 48 85 14 29 , V. Scharf 29 23a , I. Satsounkevitch , D. Rodriguez , V. Smakhtin , V.M. Romanov 102b , A. Robson , 68 , B.A. Schumm 80 29 119b 96 107 , , P.L. Rosendahl , S.H. Robertson 48 114 , J. Searcy , A. Shibata , Y.F. Ryabov 64 102a , Z. Rurikova , S. Schaepe 75 , E. Sarkisyan-Grinbaum , P. Skubic , C. Schiavi , C. Sandoval , D. Smith 77 , M. Rotaru , F. Salvatore , Y. Rozen 119a – 27 – , S. Rosati 129 , A. Salnikov 81 20 125 14 , J. Snow 27 , K. Schmieden 57 83 172 107 , M.J. Shochet , A. Soffer 99 89b 36b , A. Sbrizzi , S.B. Silverstein 82 , D. Schouten , S. Rzaeva 167 48 , , , A. Sfyrla , V. Savinov , F. Siegert , C. Rudolph , N. Semprini-Cesari 94 , Ph. Schwemling , G. Schuler ,e 29 , M. Simonyan , N. Sasao , M. Shapiro 86 127 19b 97 143 , J. Sloper , E. Rulikowska-Zarebska 118 , J.M. Seixas 89a 36a , A.N. Sisakyan , S. Rodier , 174 29 77 66 86 143 71 158 144b 64 24 43 29 , E. Rizvi , F. Safai Tehrani 19a 65 , A. Sanchez 112 , E. Ros , M. Robinson , A.G. Schamov , A. Romaniouk , A. Rimoldi , U. Sch¨afer , P. Ruzicka 78 , W.G. Scott 77 , P. Sherwood , T. Sarangi 117 , M. Schumacher , B.C. Smith 99 148 , T. Sandoval 161 , E.I. Rosenberg 14 , C. Santamarina Rios , K. Skovpen , A. Rozanov 148 20 ,b , S.W. Snow , L. Rossi , M.I. Scherzer , E. Schmidt 20 79 , V.I. Rud , D. Salihagic , O. Runolfsson , M. Schott 175 , S. Schuh 47 14 5 , A. Siebel 94 174 158 136 , T. Sasaki 48 , A. Shmeleva 163 , J. Sodomka 50a , A. Sircar , M.E. Sevior , F. Seifert , P. Savard 105 , Q.T. Shao 111 , N.C. Ryder 124a 58b 58c , M. Seman , T.J. Sloan 66 , D. Salvatore ,j , C. Sbarra 56 , B. Simmons , D. Silverstein 21 132b 5 173 73 , 111 137 115 115 33 161 , L. Roos 169 115 , S. Rolli 153 , R. Sadykov 1 132a 31a , A. Schwartzman , P. Schacht 137 , A. Ruiz-Martinez 82 , F. Rizatdinova , B.H. Samset , C. Ruwiedel , T. Schwindt , A. Sansoni 115 , K. Runge , T. Shin 6 , D. Roda Dos Santos , O. Smirnova , D. Sherman , L.P. Rossi 89b 154 134b , , O. Sasaki , M. Saleem , C.R. Royon 65 , M. Sandhoff , , N. Schroer , L.A. Skinnari 136 129 97 , M. Rijssenbeek , J.E.M. Robinson 100 , J.L. Schlereth , K. Sliwa , M. Schernau , G. Sellers , A. Seiden , R. Sobie , L.P. Says , J.G. Saraiva , A. Sch¨oning 98 , A.A. Snesarev , J.T. Shank 81 , N. Ruckstuhl 89a 164c 174 13 122b , G. Rybkin , Y. Silver 115 27 102b , V. Rojo , H. Severini 29 , , , R.D. Schamberger 87 , G. Siragusa , , S. Simion 133a 105 53 20 , J.W. Schumacher 134a , J.B. Sauvan 127 ,b 98 , A. Sidoti 103 127 99 , G.A. Rosenbaum 4 146a 32a 98 124a 126 124a 117 15 141 12a 164a 122a 76 102a 125 124a B. Ruckert C. Roda D. Rousseau D. Romero Maltrana M. Rose D. Robinson O. Røhne F. Ruggieri E. Rossi J.P. Rutherfoord H.F-W. Sadrozinski G. Rivoltella B.M. Salvachua Ferrando L. Rumyantsev M. Rijpstra M. Rybar A. Salamon D.P.C. Sankey D. Sampsonidis M.P. Sanders H. Santos G. Sartisohn E. Sauvan J. Schaarschmidt D. Schaile D.H. Saxon S. Schlenker D. Scheirich Lj. Simic R. Seuster J. Silva B. Sellden L.Y. Shan P. Sicho K. Shaw V. Sipica M. Schmitz M. Shimojima S.C. Seidel C. Schroeder T.B. Sjursen T. Slavicek H. Schulz C. Schwanenberger J. Schwindling L.N. Smirnova K. Smolek M. Soares JHEP09(2011)053 , , , , , , 4 , , 78 , 70 2 105 , , , 129 , 163 25a 168 48 91 , , 94 , , 132a , , , 75 , , , 7 173 5 , , 103 , , 89a , 24 74 , 155 , , , , 69 , 27 , 92 89b , 155 , , 29 11 29 85 144a 80 29 , H. Torres 153 84 , , , D. Tsionou 89a , J. Strube 142 , 38 , 114 , J. Tobias , , R. Vari 14 90 , A. Taffard 39 , B. Van Eijk , , G. Stoicea , S. Swedish 83 , , 105 83 , V.V. Sulin 29 41 , M.F. Tripiana 29 76 48 111 , K. Toms , I. Ueda , 128 78 128 147 126 , HS. Subramania 14 20 , T. Trefzger , P. Starovoitov , , B. Spurlock 20 , G. Unal , K. Stevenson , S. Tok´ar , R.W. Stanek , G. Spigo , J. Tanaka 75 , P. Steinberg , J. Terron 143 125 52 126 , A. Tykhonov , F.E. Taylor , B. Vachon 158 , S. Sushkov , 66 160 , M. Sorbi 29 24 43 , M. Thomson , G.F. Tartarelli , W. Vandelli 19a , R. Takashima 77 34 155 , M. Turala , E. Urkovsky 24 127 107 139 127 24 120 , V. Tsulaia 105 30 34 , E. Torrence , M. Suk 95 , K. Stoerig , E.N. Thompson 29 , D. Su , M. Strauss , S. Tisserant 67 , N. Tannoury 29 ,q , K. Uchida 17 , T.N. Trinh , R. Stroynowski , J. Tojo 29 , K. Tackmann 8 , P.V. Tsiareshka 67 143 ∗ , S. Valkar 78 , , L. Tompkins 151 , D. van der Ster , J. Therhaag , D. Traynor , H. Stenzel , J. Strandberg 163 , P. Staroba , P. Teixeira-Dias 105 , H. van der Graaf 105 , A.A. Solodkov , R. Spighi 76 , Yu.M. Sviridov , C. Taylor , P.M. Tuts 19b , V. Vacek 43 , T. Spreitzer 101 , F. Ukegawa , H. Takai , E. Stanecka 55 75 , B. Sopko 105 , 174 , K. Terashi 76 139 , M. Trottier-McDonald 14 , K. Suruliz , P. Steinbach 167 , F. Tarrade 159a 83 , F. Varela Rodriguez 125 54 66 132b , M.C. Tamsett 89b 126 101 58a 127 , 48 19a 53 , , K. Suita 89a 78 , E. Thomson 152 , J.M. Tuggle , D. Urbaniec , K. Tani 107 , I. van Vulpen , D. Ta 53 , Y.A. Tikhonov 89a , I. Torchiani 106 66 132a 139 , E. Strauss 94 100 65 , D.A. Soh 105 167 , I.I. Tsukerman , J.P. Thomas , J. Stark , G. Tzanakos 51 , M.C. Stockton 109 48 174 , F. Span`o 29 , J.A. Strong , M. Tsiakiris 128 20 , M. Tomoto , B. Toggerson , M. Svatos , S. Terada , D.R. Tovey , V. Sopko , G. Steele , J. Thadome 72b , 88 – 28 – 2 , A. Straessner 114 , S. Tarem , R. Stamen 118 , L. Vacavant 66 ,j 83 , C. Suhr 14 161 , A. Tua 7 , M. Spousta , R. Turra 151 , C. Troncon , S. Trincaz-Duvoid , Y. Unno , F. Vannucci 72a , E. van der Poel , Y. Takahashi 29 158 120 , M. Uhrmacher 55 158 101 148 , A. Talyshev , M. Tatarkhanov , S. Valentinetti 119b 105 41 , J.A. Valls Ferrer 163 , , Y. Tanaka 20 159a 105 , J. S´anchez 153 , F.J. Tique Aires Viegas 83 , O. Stelzer-Chilton , P. Sturm 66 36b , J.E. Sundermann , N.D. Topilin , S. Thoma 152 , M. Strang 29 , 132a , A.S. Thompson 119a 41 , N. Soni 175 55 16 148 175 117 36a 24 , Z. van Kesteren 158 , H. Tyrvainen , Y. Suzuki , V.O. Tikhomirov 5 , P.K. Teng , K. Tollefson , D.M. Strom , D. Tardif , G. Unel , T. Stockmanns , F. Touchard , E.G. Tskhadadze 129 149 125 , J.C-L. Tseng 29 , E. Turlay 66 , E.A. Starchenko , B. Trocm´e , R. Spiwoks 81 , S. Spagnolo 24 , E. Solfaroli Camillocci , P. Vankov 20 173 , M. Teixeira Dias Castanheira 48 ,w , M. Talby , J. Stahlman 29 5 , A.R. Stradling 3e ,v , X. Sun , T. Sugimoto 117 , G. Stavropoulos , S. Tanaka 83 107 , N. Taiblum , R.J. Teuscher 167 , B. Szeless , D. Tsybychev 24 , I.M. Trigger 134a 29 140 141 , P. Valente , C. Topfel , P. Tipton 126 , E. Tassi , S. Todorova-Nova 159b 116 , J. Stupak 47 66 29 4 131 117 , M. Uhlenbrock ∗ , S. Vallecorsa , H.J. Stelzer 126 13 , M. Thioye , M. Uslenghi 144a , , T. Tic 125 125 104 7 13 78 , A. Strandlie 24 34 167 142 , R. Van Der Leeuw , J. Sondericker , M. Tyndel , J. Toth , A. Undrus 146b , P.D. Thompson 105 , , M.R. Sutton 5 , H. Ten Kate 128 , T. Stahl , E. Spiriti 167 17 , R. Str¨ohmer , S. Stapnes , S. Tapprogge 146b , J.A. Stillings , A. Trivedi , A. Taga 48 , , M. Testa , K. Tokushuku , P. van Gemmeren 53 , S. Tsuno , T. Sumida 36b , W. Taylor , I. Turk Cakir , Y. Sugaya 146a , A. Tricoli , G. Usai , 29 , V. Tsiskaridze , U. Soldevila , A. Vaniachine ,o 29 , C. Tsarouchas , S. Tanaka 67 , T. Sykora 84 20 9 , F. Tian 3d 158 , A. Soukharev , T. Takeshita , P. Strachota 132b 86 , P. Stavina 11 , T. Todorov 29 134a 144b , J. Valenta 96 , 29 41 38 146a 7 159a 127 , A. Tonoyan 36a 31a , I. Stumer 87 115 67 99 , M. Ugland , B. Stelzer 98 37 14 , M. Tasevsky 144a 13 28 32a 132a 127 126 O.V. Solovyanov E. Soldatov M. Sosebee R.D. St. Denis F. Spila C. Stanescu A. Staude I. Stekl G.A. Stewart S. Sultansoy G. Susinno S. Stonjek A. Succurro R. Tafirout B. Stugu W. Trischuk R. Tanaka I. Sykora S. Strandberg P. Strizenec H. Takeda P. Tas G.P. Tappern J.-W. Tsung D. Turecek E. Torr´oPastor A. Trzupek G. Tsipolitis L. Tremblet R. Ueno G.N. Taylor K.K. Temming M. Tylmad G. Tong T. Theveneaux-Pelzer P.D. Thompson D.G. Underwood M. Terwort B. Toczek P. Urrejola R.P. Thun K. Tokunaga S. Vahsen E. Valladolid Gallego C.J.W.P. Timmermans E. van der Kraaij N. van Eldik G. Vandoni JHEP09(2011)053 , , , , , , , 29 , , 17 , . , 49 , 20 , , , 58a , 170 38 ,ae 151 29 42 , , 98 121 165 86 , , , 44 174 151 119a 48 , , 14 14 , , 38 , , 48 , , , , 48 75 , X. Wu 167 , 66 56 29 , 128 , , 155 32d , 17 , 87 , 172 29 , ,q , , N. Vlasov , S. Xie , K. Yorita , 99 29 115 , , I. Vichou , M. Wessels , H.G. Wilkens , Y. Yao 35 , S.M. Wang , J. Virzi , C. Wang ,ad 129 , M.F. Watson 151 127 , J. Zhong , D. Wicke , X. Zhuang 123 ,e 12a ∗ , B.K. Wosiek , L. Zwalinski 14 , , M.J. White , V. Vercesi 73 17 172 163 , A. Zemla 126 103 7 , J. Walbersloh 32a , Yo.K. Zalite 32a 115 172 142 16 118 106 , C. Weiser 136 Division of Physics, 29 175 ) 101 , H. Yang , S.L. Wu 54 d , X. Zhang ( , M. Yamada 5 21 73 , S. Xella , R. Vuillermet , J.A. Wilson , R. Veness , S. Zimmermann , A.P. Vorobiev 9 , Z. Weng , C. Wiglesworth , D. Zerwas 145b , T. Yamamura 81 84 , M. Weber , Y. Zhu 20 , M. Vlasak 20 , L. Yuan 14 , P. Waller 126 123 , N. Vranjes , F. Winklmeier 9 , R. Wang 124a , W-M. Yao , M. Werth , S. Zheng 42 , A. White 87 , F. Wicek 155 , I. Wilhelm ,ac 73 48 , V. Zutshi 65 , M. Villaplana Perez 91 29 21 175 , G. Zobernig , M. Zeller , N. Venturi 138 61 ,o , V.I. Vassilakopoulos , Z. Yan , A.T. Watson ∗ , G. Wooden 15 , 32c 48 Canada , Z. Zajacova , R. Yoosoofmiya 41 67 , J. Zhang 19b 17 , M.C. Vetterli , M. Virchaux 174 40 , H. von der Schmitt , 150 , B. Wrona 3c 88 128 65 43 128 53 , S. Zenz 19a , J. Zhu 89a , J. Weingarten , S. Yacoob , J. Wakabayashi , S. Willocq Department of Physics, Dumlupinar 41 , T. Vu Anh 99 , J. Weber , F. Veloso ) , J. Yu , R. Wall , S. Vlachos b 8 , V. Vorobel 122b 34 , S. Wendler 7 150 174 , , L. Xaplanteris ( 77 105 , S. Yanush , P. Werner 11 20 24 141 45 , J.C. Wang , P. Wienemann 48 , S. Yamamoto , A. Vest 122a , S. Zimmermann , M. Venturi 146b , C. Zeitnitz , H. Zhang 32d , S.P. Whitaker 64 , J.H. Vossebeld , M.A. Wildt , , M. Villa 129 20 , S. Winkelmann , W.C. Wong , M. Yilmaz , H. Zhu 105 , J. Yu , Y. Yamazaki , A. Zhemchugov , C. Wright 4 , K.E. Varvell , D. Whittington 138 , G. Volpini ,aa , M. zur Nedden 107 , P.M. Watkins ,h 163 7 24 174 167 168 24 53 – 29 – 146a 32d , P. Weigell 155 32b , A.M. Zaitsev 86 29 48 163 , W. Willis 32b , C. Vellidis 63 , V.V. Zmouchko 124a , B. Yabsley , H. Wahlen 118 , V.B. Vinogradov 120 34 , T. Wenaus 115 , B.M. Waugh , S. Ye 120 32a , J. Wang 29 , M. Werner , M. Vreeswijk 47 , D. Yu , Z. Zenonos , B.M. Wynne , S. Viel 39 , E. von Toerne 150 20 , W. Walkowiak 151 21 , F. Vives Vaque , M. Wielers 125 42 , Z. Yang , Z. Zhao 48 118 , T.T. Voss 98 144a 48 , M. Volpi , D. Ventura , C.G. Zhu , A. Zaytsev , A. Zsenei , K. Yamamoto 172 32a 29 , K. Wraight 4 , D. Zhang 138 47 ˇ Zivkovi´c , A. Wildauer 39 , G. Xu 66 72b 151 , R. Zaidan , J. Ye , , J.C. Vermeulen 84 , R. Zimmermann , T. Yamazaki , H. Wolters 77 , D. Whiteson , A. Vartapetian 32d ˇ Zeniˇs , M. Warsinsky , M. Wen , E. Vinek 139 61 44 128 38 , I. Wingerter-Seez 72a 130 , L. , J.J. Veillet 105 14 , P. Wagner 118 27 29 4 28 , S.J. Wheeler-Ellis , J. Wang , V. Vrba 87 , A.R. Weidberg , H.H. Williams 89b 28 , S. Youssef 174 , T. , , N. Wermes ,aa 105 , R. Voss 54 , Y. Yang , A.T. Waugh 34 , T. Zhao , R. Walker Department of Physics, Gazi University, Ankara; , G. Volpi 29 , I. Vivarelli , R. Wunstorf ) 143 128 89a , Y. Zhou , D. Xu 61 c 82 32b 71 167 ( 41 , Z. Zhan 108 34 127 ,ac 163 57 , P. Zarzhitsky , A. Yamamoto 32b , R. Zitoun , P.S. Wells , A. Ventura , Y. Zolnierowski , J. Yamaoka , V.G. Zaets , H. von Radziewski , C.P. Ward , W. Wiedenmann , A. Wilson , G.H.A. Viehhauser , M.J. Woudstra , D. Zieminska , W. Verkerke , P.A. Wijeratne 22 , M.W. Wolter 132b 99 155 85 141 , P. Weber , D. Varouchas , ,z 19b , K. Whalen 155 , M. Vos 148 29 99 , S. Wenig , M.G. Vincter 129 , 143 6 132a 48 , W. Wagner , Y. Yang , O. Zenin , M. Viti , G. Vegni 138 , S. Watts , C. Young , E. Wulf , L. Zhao 16 , H. Wang 143 55 11 29 47 5 , E. Williams , J. Walder , S.R. Whitehead 82 20 , P. Vokac 33 19a 132a , N. Zhou , G.V. Ybeles Smit 115 145b 171 ,ab , C. Xu 138 115 98 87 172 24 20 87 66 32b 32a Department of Physics, Ankara University, Ankara; ) a T. Vickey O. Vitells E.W. Varnes A. Vogel M. Verducci E. Vilucchi J. von Loeben I. Vukotic F. Vazeille S. Veneziano S. Walch V. Vorwerk M. Vranjes Milosavljevic H. Wang A. Warburton G. Watts M.S. Weber C. Weydert H. Wellenstein T. Wengler S. White F.J. Wickens L.A.M. Wiik J.Z. Will M. Wittgen M.G. Wilson J. Wotschack L. Zanello Y. Wu Y. Yasu H. Yamaguchi A. Yurkewicz R. Yoshida U.K. Yang C. Zendler Y. Xie T. Yamanaka G. Zevi della Porta Z. Zhang B. Zhou V. Zhuravlov University at Albany, Albany NY,Department United of States Physics, of University America of Alberta, Edmonton AB, M. Ziolkowski University, Kutahya; A. Zoccoli 3 ( 1 2 JHEP09(2011)053 taly Department ) d ( Departamento ) b ( Instituto de Fisica, Department of ) ) b b ( ( Department of Physics, ) c ( University Politehnica ) Gaziantep; b ( aneiro; es, Beijing; ited States of America ited States of America ux, France ada Birmingham, United Kingdom harest; d States of America ory for High Energy Physics, na, Anhui; , Arlington TX, United States of e Chile, Santiago; n NY, United States of America , Argonne IL, United States of os Aires, Argentina ny n, Bergen, Norway Turkish Atomic Energy Authority, , United Kingdom ed States of America , Azerbaijan nd University of California, Berkeley Vinca Institute of Nuclear Sciences, ns, Zografou, Greece ) United States of America Division of Physics, Dogus University, y t´eand Universit´eBlaise Pascal and ) e ) ( b b ( pr´s,Chile lpara´ıso, ( noma de Barcelona and ICREA, ey – 30 – Dipartimento di Fisica, Universit`adi Bologna, Bologna, I High Energy Physics Group, Shandong University, Shandong, ) ) b d ( ( West University in Timisoara, Timisoara, Romania ) c ( Department of Physics Engineering, Gaziantep University, ) c ( Institute of High Energy Physics, Chinese Academy of Scienc Departamento de Fisica, Pontificia Universidad d Cat´olica Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de J Department of Physics, Bogazici University, Istanbul; INFN Sezione di Bologna; Institute of Physics, University of Belgrade, Belgrade; National Institute of Physics and Nuclear Engineering, Buc ) ) ) ) ) ) ) a a a a a a a Modern Physics, University of Science and Technology of Chi de Universidad Federico F´ısica, T´ecnica Santa Va Mar´ıa, CERN, , Switzerland Enrico Fermi Institute, University of Chicago, Chicago IL, Nanjing University, Jiangsu; China Laboratoire de Physique Corpusculaire,CNRS/IN2P3, Clermont Universi Aubiere Cedex, France Nevis Laboratory, Columbia University, Irvington NY, Unit Department of Physics, Brandeis University, Waltham MA, Un Physics Department, Brookhaven National Laboratory, Upto Universidade de Sao Paulo, Sao Paulo, Brazil Department of Physics, Carleton University, Ottawa ON, Can Department of Physics, Boston University, Boston MA, Unite Cavendish Laboratory, University of Cambridge, Cambridge Physikalisches Institut, University of Bonn, Bonn, German Albert Einstein Center forUniversity Fundamental Physics of and Bern, Laborat Bern, Switzerland School of Physics and Astronomy, University of Birmingham, Istanbul; Departamento de Universidad F´ısica, de Buenos Aires, Buen of Physics, Istanbul Technical University, Istanbul, Turk Institut de d’Altes F´ısica Energies andBarcelona, Universitat Spain Aut`o Physics Division, Lawrence Berkeley NationalCA, Laboratory United a States ofDepartment America of Physics, Humboldt University, Berlin, Germa Bucharest, Bucharest; Institute of Physics, Azerbaijan Academy of Sciences, Baku Belgrade, Serbia Department for Physics and Technology, University of Berge America Physics Department, University of Athens,Physics Athens, Department, Greece National Technical University of Athe Department of Physics, The University of Texas at Arlington TOBB University of Economics and Technology, Ankara; High Energy Physics Division, ArgonneAmerica National Laboratory Department of Physics, University of Arizona, Tucson AZ, Un Ankara, Turkey LAPP, CNRS/IN2P3 and Universit´ede Savoie, Annecy-le-Vie 8 9 7 5 6 4 32 ( 31 ( 23 ( 29 30 33 34 22 24 28 21 18 ( 27 19 ( 20 16 17 26 12 ( 11 14 15 10 13 25 ( JHEP09(2011)053 ly aly ZITI Institut f¨ur ) c ( tates of America ted States of America rgh, Edinburgh, United Kingdom w, Glasgow, United Kingdom rsity of Science and Technology, ssia e, Grenoble, France Sciences and Tbilisi State ba, Japan ersit´eJoseph Fourier and , Ames IA, United States of America versity, Cambridge MA, United olish Academy of Sciences, Krakow, , United States of America , Denmark son TX, United States of America ata and CONICET, La Plata, se 3 2700 Wiener Neustadt, Austria s TX, United States of America esta,Freiburgversit¨at, i.Br., Germany ol, United Kingdom n te of Technology, Hiroshima, Japan erland ted Kingdom i¨tDortmund,sit¨at Dortmund, Germany ¨tHeidelberg,t¨at Heidelberg; ity Dresden, Dresden, Germany -nvri¨t Innsbruck,s-Universit¨at, Austria eidelberg, Heidelberg; delberg, Mannheim, Germany ¨tign Germany G¨ottingen, Giessen, Giessen, Germany – 31 – Dipartimento di Fisica, Universit`adella Calabria, ) b ( Dipartimento di Fisica, Universit`adi Genova, Genova, Ita ) b Dipartimento di Fisica, Universit`adel Salento, Lecce, It ( ) b ( INFN Gruppo Collegato di Cosenza; INFN Sezione di Lecce; INFN Sezione di Genova; Kirchhoff-Institut Physik, f¨ur Ruprecht-Karls-Universi Physikalisches Institut, H Ruprecht-Karls-Universit¨at ) ) ) ) ) a a a a b Niels Bohr Institute, University of Copenhagen, Kobenhavn SUPA - School of Physics and Astronomy, University of Edinbu Physics Department, Southern Methodist University, Dalla Arcavata di Rende, Italy Faculty of Physics and AppliedKrakow, Computer Poland Science, AGH-Unive The Henryk Niewodniczanski InstitutePoland of Nuclear Physics, P Department of Physics, Duke University, Durham NC, United S Institut Kern- f¨ur und Teilchenphysik, Technical Univers INFN Laboratori Nazionali Mathematik di f¨ur undFakult¨at Frascati, Physik, Frascati, Italy Albert-Ludwigs-Uni DESY, Hamburg and Zeuthen, Germany Institut Experimentelle f¨ur Physik IV, Technische Univer Fachhochschule Wiener Neustadt, Johannes Gutenbergstras Physics Department, University of Texas at Dallas, Richard Oliver Lodge Laboratory, University of Liverpool, Liverpo SUPA - School of Physics and Astronomy, University of Glasgo Instituto de La F´ısica Plata, UniversidadArgentina Nacional de La Pl Physics Department, Lancaster University, Lancaster, Uni Graduate School of Science,Faculty Kobe of University, Science, Kobe, Kyoto Japan University,Kyoto Kyoto, University Japan of Education, Kyoto, Japan Laboratory for andStates Cosmology, of Harvard America Uni Institute of Physics and HEPUniversity, Tbilisi, Institute, Georgia Georgian Academy of II Physikalisches Institut, Justus-Liebig-Universit¨at KEK, High Energy Accelerator Research Organization, Tsuku Section de Physique, Geneva, Universit´ede Gen`eve, Switz Department of Physics, Hampton University, Hampton VA, Uni ( Joint Institute for Nuclear Research, JINR Dubna, Dubna, Ru CNRS/IN2P3 and Institut National Polytechnique de Grenobl Laboratoire de Physique Subatomique et de Cosmologie, Univ Department of Physics and Astronomy, Iowa State University technische Informatik, Hei Ruprecht-Karls-Universit¨at University of Iowa, Iowa City IA, United States of America II Physikalisches Institut, Georg-August-Universit¨at, Institut Astro- f¨ur und Teilchenphysik, Leopold-Franzen Department of Physics, Indiana University, Bloomington IN Faculty of Applied Information Science, Hiroshima Institu Faculty of Science, Hiroshima University, Hiroshima, Japa 36 ( 35 45 37 38 39 44 43 47 48 41 42 46 40 72 ( 73 53 70 71 67 68 69 50 ( 57 58 ( 51 52 66 49 56 65 55 64 63 54 62 61 60 59 JHEP09(2011)053 poli, Italy ly ted States of America ity of Oklahoma, Norman OK, co, Albuquerque NM, United don, United Kingdom r MI, United States of America Russia a sity, East Lansing MI, United de Madrid, Madrid, Spain ada ndon, London, United Kingdom , Surrey, United Kingdom State University, Moscow, Russia cow, Russia Manchester, United Kingdom e, France an PMC and Universit´eParis-Diderot st MA, United States of America sity of Amsterdam, Amsterdam, ussia ences of Belarus, Minsk, Republic of High Energy Physics, Minsk, Republic l QC, Canada ter OK, United States of America , Moscow, Russia ogy, Cambridge MA, United States of lb IL, United States of America ralia ics, Radboud University ity of Ljubljana, Ljubljana, Slovenia titut), Germany M¨unchen, ¨nhn ¨nhn Germany M¨unchen, M¨unchen, – 32 – Dipartimento di Fisica, Universit`adi Milano, Milano, Ita Dipartimento di Scienze Fisiche, Universit`adi Napoli, Na ) ) b b ( ( INFN Sezione di Napoli; INFN Sezione di Milano; ) ) a a Department of Physics, New York University, New York NY, Uni Ohio State University, Columbus OH, United States of Americ Faculty of Science, Okayama University, Okayama,Homer Japan L. Dodge DepartmentUnited of States Physics and of Astronomy, America Univers Department of Physics, Oklahoma State University, Stillwa Nijmegen/Nikhef, Nijmegen, Netherlands Nikhef National Institute forNetherlands Subatomic Physics and Univer Department of Physics, Northern Illinois University, DeKa Department of Physics and Astronomy,States University of of America New Mexi Institute for Mathematics, Astrophysics and Particle Phys Budker Institute of Nuclear Physics (BINP), Novosibirsk, R P.N. Lebedev Institute of Physics, Academy of Sciences, Mos Max--Institut Physik f¨ur (Werner-Heisenberg-Ins Nagasaki Institute of AppliedGraduate Science, School Nagasaki, of Japan Science, Nagoya University, Nagoya, Jap Department of Physics and Astronomy,States Michigan of State America Univer auta ¨rPhysik, f¨ur Ludwig-Maximilians-Universit¨at Fakult¨at Belarus National Scientific and Educational Centreof for Belarus Particle and Department of Physics, Massachusetts InstituteAmerica of Technol Group of Particle Physics, University of Montreal, Montrea B.I. Stepanov Institute of Physics, National Academy of Sci Department of Physics, The University of Michigan, Ann Arbo Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow School of Physics, University of Melbourne, Victoria, Aust Moscow Engineering and Physics Institute (MEPhI), Moscow, Department of Physics, McGill University, Montreal QC, Can Institute for Theoretical and Experimental Physics (ITEP) Department of Physics, University of Massachusetts, Amher CPPM, Aix-Marseille Universit´eand CNRS/IN2P3, Marseill Institut Physik, Mainz, f¨ur Universit¨at Mainz, Germany School of Physics and Astronomy, , Department of Physics, Stefan Joˇzef Institute and Univers Departamento de Fisica Teorica C-15, Universidad Autonoma Laboratoire de Physique et Nucl´eaire deand Hautes CNRS/IN2P3, Energies, Paris, U France Fysiska institutionen, Lunds universitet, Lund, Sweden Department of Physics and Astronomy, University College Lo Department of Physics, Royal Holloway University of London Department of Physics, Queen Mary University of London, Lon 94 99 88 89 ( 98 91 92 93 90 87 97 86 96 85 95 84 83 81 82 74 78 79 80 77 76 75 108 109 110 111 112 102 ( 105 106 103 104 107 100 101 JHEP09(2011)053 ly avia, Italy cco partement de School of Physics, ) b ( rsidad de Granada, Granada, iversity, Bratislava; ticulas - LIP, Lisboa, Portugal; esburg; s de l’Univers), CEA Saclay States of America , Sheffield, United Kingdom , Canada a lic, Praha, Czech Republic al Physics of the Slovak Academy of e OR, United States of America hysique des Hautes Energies - rgh, Pittsburgh PA, United States of rague, Praha, Czech Republic ingdom c A, United States of America otvino, Russia ory, , United Kingdom ca elphia PA, United States of America lifornia Santa Cruz, Santa Cruz CA, nce The Oskar Klein Centre, Stockholm, Sweden ) b ( – 33 – Dipartimento di Fisica, Universit`adi Roma Tor Facult´edes Sciences, Universit´eMohamed Premier and ) ) b ( d ( Centre National de l’Energie des Sciences Techniques ) b ( Dipartimento di Fisica, Universit`aRoma Tre, Roma, Italy ) b ( Dipartimento di Fisica, Universit`aLa Sapienza, Roma, Ita ) b Dipartimento di Fisica Nucleare e Teorica, Universit`adi P ( ) Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Pisa, b ) ( b ( Universit´eCadi Ayyad, Facult´edes sciences Semlalia D´e ) c Facult´edes Sciences, Universit´eMohammed V, Rabat, Moro ( ) e ( INFN Sezione di Pavia; INFN Sezione di Pisa; INFN Sezione di Roma I; Laboratorio de Instrumentacao e Fisica Experimental de Par INFN Sezione di Roma Tor Vergata; INFN Sezione di Roma Tre; Facult´edes Sciences Ain Chock, Universitaire R´eseau de P Department of Physics, University of Johannesburg, Johann Department of Physics, Stockholm University; Faculty of Mathematics, Physics & Informatics, Comenius Un Departamento de Fisica Teorica y del Cosmos and CAFPE, Unive Department of Subnuclear Physics, Institute of Experiment ) ) ) ) ) ) ) ) ) ) ) ) a a a a b a a b a a a a Czech Technical University in Prague, Praha, Czech Republi Center for High Energy Physics, University of Oregon, Eugen aakynvriy RCPTM,Palack´yUniversity, Olomouc, Czech Republic State Research Center Institute for High Energy Physics, Pr LAL, Univ. Paris-Sud andGraduate CNRS/IN2P3, School Orsay, France of Science,Department Osaka University, of Osaka, Physics, Japan University ofDepartment Oslo, of Oslo, Physics, Norway Oxford University, Oxford, United K Particle Physics Department, Rutherford Appleton Laborat Pavia, Italy Department of Physics, University of Pennsylvania, Philad Physics Department, University of Regina, Regina SK, Canad Petersburg Nuclear Physics Institute, Gatchina, Russia Ritsumeikan University, Kusatsu, Shiga, Japan Department of Physics and Astronomy,America University of Pittsbu ( Spain Institute of Physics, Academy of Sciences of the Czech Repub Faculty of Mathematics and Physics, Charles University in P Vergata, Roma, Italy ( Sciences, Kosice, Slovak Republic LPTPM, Oujda; DSM/IRFU (Institut de Recherches sur(Commissariat les a Lois l’Energie Fondamentale Atomique), Gif-sur-Yvette, Fra Universit´eHassan II, Casablanca; Nucleaires, Rabat; Santa Cruz Institute for ParticleUnited Physics, States University of of America Ca Department of Physics, University of Washington, Seattle W University of the Witwatersrand, Johannesburg, South Afri Department of Physics and Astronomy, University of Sheffield Physique, B.P. 2390 Marrakech 40000; Department of Physics, Shinshu University,Fachbereich Nagano, Physik, Siegen, Japan Universit¨at Siegen, Germany Department of Physics, Simon Fraser University, Burnaby BC SLAC National Accelerator Laboratory, Stanford CA, United 127 113 114 128 115 116 117 118 129 120 119 ( 130 121 122 ( 131 132 ( 124 ( 123 133 ( 125 126 134 ( 135 ( 145 ( 136 137 138 139 146 ( 140 141 142 143 144 ( JHEP09(2011)053 nto , Villeurbanne Cedex, France -University of Science and boa, Lisboa, Portugal , Tel Aviv University, Tel Aviv, rseille, France d States of America y, Stony Brook NY, United States anada ra, Portugal n , Uppsala, Sweden cience, Rehovot, Israel Brighton, United Kingdom , United States of America tan University, Tokyo, Japan aboratory, Didcot, United Kingdom A, United States of America a, Victoria BC, Canada nia Irvine, Irvine CA, United States l de Particulas - LIP, Lisboa, Portugal o, Japan couver BC, Canada ´sc toia Moleculare At´omica, y F´ısica Nuclear ba, Ibaraki, Japan epartment of Physics, The University nited States of America gota, Colombia uppertal, Germany y, Haifa, Israel olm, Sweden , Fresno CA, United States of America de de Microelectr´onica Barcelona ki, Thessaloniki, Greece Dipartimento di Fisica, Universit`adi Uiesta,Wuzug Germany W¨urzburg, -Universit¨at, ) c ( – 34 – ICTP, Trieste; ) b ( Department of Physics and Astronomy, York University, Toro ) b ( INFN Gruppo Collegato di Udine; TRIUMF, Vancouver BC; ) ) a a Department of Physics, University of British Columbia, Van Department of Physics and Astronomy, University of Victori Waseda University, Tokyo, Japan Department of Particle Physics, The Weizmann Institute of S ON, Canada Institute of Pure and Applied Sciences, University of Tsuku Department of Physics, University of Wisconsin, Madison WI Science and Technology Center, Tufts University, Medford M auta ¨rPhysik f¨ur undFakult¨at Astronomie, Julius-Maximilians Department of Physics and Astronomy,of Stony America Brook Universit Department of Physics and Astronomy, University of Sussex, Centro de Investigaciones, Universidad Antonio Narino, Bo Also at Laboratorio de Instrumentacao e Fisica Experimenta Fachbereich C Physik, Bergische Wuppertal, Universit¨at W School of Physics, University ofInstitute Sydney, of Sydney, Physics, Australia Academia Sinica,Department of Taipei, Taiwan Physics, Technion: Israel Inst. of Technolog Also at Faculdade de Ciencias and CFNUL, Universidade de Lis Department of Physics and Astronomy,of University America of Califor Department of Physics, Yale University, New Haven CT, Unite Raymond and Beverly Sackler SchoolIsrael of Physics and Astronomy Department of Physics, Aristotle University of Thessaloni Also at Particle Physics Department, Rutherford Appleton L Yerevan Physics Institute, Yerevan, Armenia Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3 Udine, Udine, Italy Department of Physics, University of Illinois, Urbana IL, U International Center for Elementary Particleof Physics Tokyo, Tokyo, and Japan D Graduate School of Science and Technology, Tokyo Metropoli Also at CPPM, Aix-Marseille Universit´eand CNRS/IN2P3, Ma Department of Physics and Astronomy, University of Uppsala Department of Physics, Tokyo Institute of Technology, Toky Instituto de Corpuscular F´ısica (IFIC) andand Departamento Departamento d and de Ingenier´aElectr´onica Instituto (IMB-CNM), University of Valencia and CSIC, Valencia, Spai Department of Physics, University of Toronto, Toronto ON, C Physics Department, Royal Institute of Technology, Stockh Also at TRIUMF, Vancouver BC,Also Canada at Department of Physics, California State University Also at Faculty of PhysicsTechnology, Krakow, and Poland Applied Computer Science,Also AGH at Department of Physics, University of Coimbra, Coimb b c e d g a f h 168 169 170 171 160 172 161 173 149 148 162 174 150 151 152 163 164 ( 175 154 153 176 177 165 155 156 166 157 167 158 159 ( 147 JHEP09(2011)053 ica entales de l’Univers), CEA Saclay outh Carolina, Columbia SC, ndong, China nn Arbor MI, United States of a, Portugal sics, Budapest, Hungary rsity, Guanzhou, China of America sity, Ankara, Turkey s, Academia Sinica, Taipei, Taiwan gies, UPMC and Universit´e nited Kingdom ontreal QC, Canada ited States of America s, Baku, Azerbaijan , China an , Switzerland nce kow, Poland mburg, Hamburg, Germany – 35 – Also at Institute of Physics, Academia Sinica, Taipei, Taiw Also at Institute ofAlso Physics, Jagiellonian at University, Department Kra of Physics, Oxford University, Oxford, U Also at California Institute of Technology, Pasadena CA, Un Also at Department of PhysicsUnited and States Astronomy, of University America ofAlso S at KFKI Research Institute for Particle and Nuclear Phy Also at High Energy Physics Group, Shandong University, Sha Paris-Diderot and CNRS/IN2P3, Paris, France Also at Department of Physics,Deceased Nanjing University, Jiangsu Also at Laboratoire de Physique et Nucl´eaire de Hautes Ener Also at section de Physique, Geneva Universit´ede Gen`eve, Also at Academia Sinica Grid Computing, Institute of Physic Also at Departamento de Fisica, Universidade de Minho, Brag Also at Department of Physics,America The University of Michigan,Also A at DSM/IRFU (Institut de(Commissariat Recherches a sur l’Energie les Atomique), Lois Gif-sur-Yvette, Fondam Fra Also at School of Physics and Engineering, Sun Yat-sen Unive Also at Manhattan College, New York NY, United States of Amer Also at Institut Experimentalphysik, Ha f¨ur Universit¨at Also at Institute of Physics, Azerbaijan Academy of Science Also at Louisiana Tech University,Also Ruston at LA, Group United of States Particle Physics, University of Montreal, M Also at Institute ofAlso Particle Physics at (IPP), Department Canada of Physics, Middle East Technical Univer Also at Universit`adi Napoli Parthenope, Napoli, Italy l i t j s r q o z ∗ p y v k x u n w m ab ac ae ad aa