Total of 10 Pages Only May Be Xeroxed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Apicoplast: a Review of the Derived Plastid of Apicomplexan Parasites
Curr. Issues Mol. Biol. 7: 57-80. Online journalThe Apicoplastat www.cimb.org 57 The Apicoplast: A Review of the Derived Plastid of Apicomplexan Parasites Ross F. Waller1 and Geoffrey I. McFadden2,* way to apicoplast discovery with studies of extra- chromosomal DNAs recovered from isopycnic density 1Botany, University of British Columbia, 3529-6270 gradient fractionation of total Plasmodium DNA. This University Boulevard, Vancouver, BC, V6T 1Z4, Canada group recovered two DNA forms; one a 6kb tandemly 2Plant Cell Biology Research Centre, Botany, University repeated element that was later identifed as the of Melbourne, 3010, Australia mitochondrial genome, and a second, 35kb circle that was supposed to represent the DNA circles previously observed by microscopists (Wilson et al., 1996b; Wilson Abstract and Williamson, 1997). This molecule was also thought The apicoplast is a plastid organelle, homologous to to be mitochondrial DNA, and early sequence data of chloroplasts of plants, that is found in apicomplexan eubacterial-like rRNA genes supported this organellar parasites such as the causative agents of Malaria conclusion. However, as the sequencing effort continued Plasmodium spp. It occurs throughout the Apicomplexa a new conclusion, that was originally embraced with and is an ancient feature of this group acquired by the some awkwardness (“Have malaria parasites three process of endosymbiosis. Like plant chloroplasts, genomes?”, Wilson et al., 1991), began to emerge. apicoplasts are semi-autonomous with their own genome Gradually, evermore convincing character traits of a and expression machinery. In addition, apicoplasts import plastid genome were uncovered, and strong parallels numerous proteins encoded by nuclear genes. These with plastid genomes from non-photosynthetic plants nuclear genes largely derive from the endosymbiont (Epifagus virginiana) and algae (Astasia longa) became through a process of intracellular gene relocation. -
Contrasts in the Prevalence of Avian Malaria in Shorebird Species
University of Groningen Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats Mendes, L; Piersma, T; Lecoq, M; Spaans, B; Ricklefs, RE; Ricklefs, Robert E. Published in: Oikos DOI: 10.1111/j.0030-1299.2005.13509.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2005 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Mendes, L., Piersma, T., Lecoq, M., Spaans, B., Ricklefs, RE., & Ricklefs, R. E. (2005). Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos, 109(2), 396-404. https://doi.org/10.1111/j.0030-1299.2005.13509.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 OIKOS 109: 396Á/404, 2005 Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats Luisa Mendes, Theunis Piersma, Miguel Lecoq, Bernard Spaans and Robert E. -
Toxoplasma Gondii Sequesters Centromeres to a Specific Nuclear
Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle Carrie F. Brooksa, Maria E. Franciab, Mathieu Gissotc,d,1, Matthew M. Crokenc,d, Kami Kimc,d,2, and Boris Striepena,b,2 aCenter for Tropical and Emerging Global Diseases and bDepartment of Cellular Biology, University of Georgia, Athens, GA 30602; and Departments of cMedicine and dMicrobiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 Edited by Thomas E. Wellems, National Institutes of Health, Bethesda, MD, and approved January 20, 2011 (received for review May 24, 2010) Members of the eukaryotic phylum Apicomplexa are the cause of testine (6). The molecular mechanisms that regulate apicomplexan important human diseases including malaria, toxoplasmosis, and cell division and allow this remarkable flexibility of the cell and cryptosporidiosis. These obligate intracellular parasites produce nuclear division cycle remain poorly understood (7). An important new invasive stages through a complex budding process. The bud- unsolved question is how apicomplexan daughter cells emerge ding cycle is remarkably flexible and can produce varied numbers of with the complete set of chromosomes (∼10 depending on species) progeny to adapt to different host-cell niches. How this complex after passing through multinucleated and polyploid stages. In process is coordinated remains poorly understood. Using Toxo- Sarcocystis neurona the mitotic spindle persists throughout the plasma gondii as a genetic model, we show that a key element to cell cycle, and small monopolar spindles housed in a specialized this coordination is the centrocone, a unique elaboration of the nu- elaboration of the nuclear envelope, the centrocone, are evident clear envelope that houses the mitotic spindle. -
The Fine Structure of the Exoerythrocytic Stages of Plasmodium
THE FINE STRUCTURE OF THE EXOERYTHROCYTIC STAGES OF PLASMODIUM FALLAX PETER K. HEPLER, CLAY G. HUFF, and HELMUTH SPRINZ From the Department of Experimental Pathology, Walter Reed Army Institute of Research, Washington, D. C., and the Department of Parasitology, Naval Medical Research Institute, Bethesda, Maryland. Dr. Hepler's present address is the Biological Laboratories, Harvard University, Cambridge. ABSTRACT The fine structure of the exoerythrocytic cycle of an avian malarial parasite, Plasmodium fallax, has been analyzed using preparations grown in a tissue culture system derived from embryonic turkey brain cells which were fixed in glutaraldehyde-OsO4. The mature mero- zoite, an elongated cell 3- to 4-/~ long and l- to 2-# wide, is ensheathed in a complex double- layered pellicle. The anterior end consists of a conoid, from which emanate two lobed paired organelles and several closely associated dense bodies. A nucleus is situated in the mid portion of the cell, while a single mitochondrion wrapped around a spherical body is found in the posterior end. On the pellicle of the merozoite near the nucleus a cytostomal cavity, 80 to 100 m/~ in diameter, is located. Based on changes in fine structure, the subse- quent sequence of development is divided into three phases: first, the dedifferentiation phase, in which the merozoite loses many complex structures, i.e. the conoid, paired organelles, dense bodies, spherical body, and the thick inner layers of the pellicle, and transforms into a trophozoite; second, the growth phase, which consists of many nuclear divisions as well as parallel increases in mitochondria, endoplasmic reticulum, and ribosomes; and third, the redifferentiation and cytoplasmic schizogony phase, in which the specialized organelles reappear as the new merozoites bud off from the mother schizont. -
The Sub-Genera of Avian Plasmodium Landau I.*, Chavatte J.M.*, Peters W.** & Chabaud A.*
Landau (MEP) 28/01/10 10:07 Page 3 Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2010171003 THE SUB-GENERA OF AVIAN PLASMODIUM LANDAU I.*, CHAVATTE J.M.*, PETERS W.** & CHABAUD A.* Summary: Résumé : LES SOUS-GENRES DE PLASMODIUM AVIAIRE The study of the morphology of a species of Plasmodium is difficult La morphologie d’un Plasmodium est difficile à étudier car on because these organisms have relatively few characters. The size dispose de peu de caractères. La taille d’un schizonte, facile à of the schizont, for example, which is easy to assess is important apprécier, est significative au niveau spécifique mais n’a pas at the specific level but is not always of great phylogenetic toujours une grande valeur phylogénique. Le métabolisme du significance. Factors reflecting the parasite’s metabolism provide parasite fournit des éléments plus importants. Ainsi, la situation du more important evidence. Thus the position of the parasite within parasite à l’intérieur de l’hématie (accolé au noyau, ou à la the host red cell (attachment to the host nucleus or its membrane, membrane, au sommet ou le long du noyau) se révèle très at one end or aligned with it) has been shown to be constant for constant chez chaque espèce. Un autre caractère, de valeur a given species. Another structure of essential significance that is essentielle, trop souvent négligé, est le globule le plus souvent often ignored is a globule, usually refringent in nature, that was réfringent, décrit pour la première fois chez Plasmodium vaughani first decribed in Plasmodium vaughani Novy & MacNeal, 1904 Novy & MacNeal, 1904 et que nous considérons comme and that we consider to be characteristic of the sub-genus caractéristique du sous-genre Novyella. -
Exploring the Roles of Phosphoinositides in the Biology of the Malaria Parasite Plasmodium Falciparum
Exploring the roles of phosphoinositides in the biology of the malaria parasite Plasmodium falciparum Thèse Zeinab Ebrahimzadeh Doctorat en microbiologie-immunologie Philosophiæ doctor (Ph. D.) Québec, Canada © Zeinab Ebrahimzadeh, 2019 Exploring the roles of phosphoinositides in the biology of the malaria parasite Plasmodium falciparum Thèse Zeinab Ebrahimzadeh M. Sc. Dave Richard, directeur de recherche Résumé Plasmodium falciparum est un parasite appartenant au phylum Apicomplexa et est à l’origine de la forme la plus sévère de la malaria. Dans les zones endémiques d'Afrique subsaharienne, la plupart des victimes sont des enfants de moins de cinq ans. L’entrée de P. falciparum dans sa cellule cible, le globule rouge, repose sur la sécrétion de protéines par des organites spécialisés : les micronèmes, les rhoptries et les granules denses. Les mécanismes de biogenèse de ces organites et la coordination de la libération de leur contenu lors de l'invasion sont cependant pour la plupart inconnus. Il a été toutefois été démontré que les protéines destinées à ces organites apicaux se concentrent dans des microdomaines de l’appareil de Golgi, dont la composition en lipides et en protéines détermine leur destination finale. À ce jour, les mécanismes de sélection et de transport des protéines apicales vers les organites d'invasion ainsi que leurs mécanismes de sécrétion durant l’invasion sont pour la plupart inconnus. Nous avons donc posé l’hypothèse que les phosphoinositides (PI) et leurs protéines effectrices sont impliqués dans ces processus chez P. falciparum. Les PI sont sept lipides phosphorylés retrouvés de façon minoritaire dans les différentes membranes cellulaires. Chaque membrane subcellulaire contient une espèce caractéristique de PI qui peut être reconnue et liée spécifiquement par des protéines effectrices. -
Ultrastructural Observations on the Merocyst and Gametocytes of Hepatocystis Spp
ANNALES DE PARASITOLOGIE HUMAINE ET COMPARÉE Tome 51 1976 N° 6 Annales de Parasitologie (Paris), 1976, t. 51, n° 6, pp. 607 à 623 MEMOIRES ORIGINAUX Ultrastructural observations on the merocyst and gametocytes of Hepatocystis spp. from Malaysian squirrels by Elizabeth U. CANNING, R. E. SINDEN, Irène LANDAU and F. MILTGEN Department of Zoology, Imperial College, London SW7, England, Laboratoire de Zoologie (Vers), Museum national d'Histoire naturelle, F 75231 Paris Cedex 05 Summary. An immature merocyst of Hepatocystis malayensis and gametocytes of H. brayi were studied with the electron microscope. The merocyst consisted of a highly complex cyto plasmic reticulum ramifying through an amorphous matrix: the entire complex was enclosed by a simple unit membrane. The host cell was apparently destroyed completely during growth of the cyst. Immature gametocytes were highly amoeboid and showed extensive vacuolisation or attenuation of the cytoplasm. The nucleus contained one or two prominent nucleoli. Mature gametocytes had compact cytoplasm and contained pyriform osmiophilic bodies which were believed to function in the release of the parasites from the host cells. Macrogametocytes were distinguished from microgametocytes by cytoplasmic differences in numbers of ribosomes, and cristate mitochondria and in the extent of development of the smooth endoplasmic reticulum. The compact nuclei of the macrogametocytes had inconspicuous DNA but prominent nucleoli whereas those of the microgametocytes were irregular and showed a central aggregate of DNA. Annales de Parasitologie humaine et comparée (Paris), t. 51, n° 6 39 Article available at http://www.parasite-journal.org or https://doi.org/10.1051/parasite/1976516607 608 ELIZABETH U. CANNING, R. -
Falkard Thesis
INVESTIGATIONS INTO THE METABOLIC REQUIREMENTS FOR LIPOIC ACID AND LIPID SPECIES DURING THE LIFE CYCLE OF THE MALARIAL PARASITE PLASMODIUM BERGHEI Brie Falkard Submitted in partial fulfillment Of the Requirements for the degree Of Doctor of Philosophy In the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 ©2012 Brie Falkard All Rights Reserved ABSTRACT Investigations into the metabolic requirements for lipoic acid and lipid species during the life cycle of the malarial parasite Plasmodium berghei. Brie Falkard Plasmodium, like many other pathogenic organisms, relies on a balance of synthesis and scavenging of lipid species for replication. How the parasite creates this balance is particularly important to successfully intervene in transmission of the disease and to generate new chemotherapies to cure infections. This study focuses on two specific aspects in the field of lipid biology of Plasmodium parasites and their hosts. Lipoic acid is a short eight-carbon chain that serves a number of different functions with the cell. By disrupting a key enzyme in the lipoic acid synthesis pathway in the rodent species of malaria, Plasmodium berghei, we sought to investigate its role during the parasite life-cycle. Deletion of the lipoyl-octanoyl transferase enzyme, LipB in P. berghei parasites demonstrate a liver-stage specific need for this metabolic pathway. In order to explore the impact of the fatty acid and triglyceride content on the pathogenesis of Plasmodium parasites, this study tests two methods to reduce lipid content in vivo and test the propagation of P. berghei parasite in these environments. Results from this study set forth new avenues of research with implications for the development of novel antimalarials and vaccine candidates. -
A Fragment of Malaria History W Lobato Paraense
Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 99(4): 439-442, June 2004 439 HISTORICAL REVIEW A Fragment of Malaria History W Lobato Paraense Departamento de Malacologia, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brasil My nomination for the Henrique Aragão Medal takes In 1900 Battista Grassi, having observed morphologi- me back to the distant past. About fifty years ago I was cal differences between the nuclei of the sporozoite and interested in the current polemic in the field of malariol- of the youngest red cell trophozoite, hypothesized that ogy – the exoerythrocytic cycle of the malaria parasite. an intermediate stage would occur between the two forms. I joined the Instituto Oswaldo Cruz in early 1939 as a Three years later, in a memorable paper on Plasmodium research assistant at the Sege (Serviço de Estudo das vivax, Fritz Schaudinn (1903) described in detail the pen- Grandes Endemias), directed by Evandro Chagas and in- etration of the red cell by the sporozoite. In that paper, volved in investigations on endemic diseases – chiefly which for three decades stood as a classic work in malari- malaria, Chagas disease, and visceral leishmaniasis (kala ology, he considered Grassi’s hypothesis to be improb- azar). My first task was to examine the organs of wild able. animals from endemic areas of kala azar – recently discov- It was not until 1940 that the controversy caused ered in Brazil – to verify the hypothesis that they could be by Schaudinn’s statement on the immediate fate of the primitive reservoirs of Leishmania chagasi. -
Antoine, Alexandre LECLERC
ÉCOLE NATIONALE VÉTÉRINAIRE D’ALFORT Année 2008 INFECTIONS À PLASMODIUM CHEZ LES OISEAUX SPHÉNISCIFORMES (MANCHOTS) Synthèse bibliographique, analyse rétrospective de cas et étude épidémiologique au zoo de La Palmyre THÈSE Pour le DOCTORAT VÉTÉRINAIRE Présentée et soutenue publiquement devant LA FACULTÉ DE MÉDECINE DE CRÉTEIL le…………… par Antoine, Alexandre LECLERC Né (e) le 26 avril 1982 à PARIS (XVIème arrondissement) JURY Président : M. Professeur à la Faculté de Médecine de CRETEIL Membres Directeur : Pascal ARNÉ Maître de conférences à l’École Nationale Vétérinaire d’Alfort Assesseur : René CHERMETTE Professeur à l’École Nationale Vétérinaire d’Alfort Invité : Thierry PETIT Dr Vétérinaire au zoo de La Palmyre Invité : Irène LANDAU Professeur emeritus au Muséum National d’Histoire Naturelle 03 novembre 2007 LISTE DES MEMBRES DU CORPS ENSEIGNANT Directeur : M. le Professeur MIALOT Jean-Paul Directeurs honoraires : MM. les Professeurs MORAILLON Robert, PARODI André-Laurent, PILET Charles, TOMA Bernard Professeurs honoraires: MM. BUSSIERAS Jean, CERF Olivier, LE BARS Henri, MILHAUD Guy, ROZIER Jacques, CLERC Bernard DEPARTEMENT DES SCIENCES BIOLOGIQUES ET PHARMACEUTIQUES (DSBP) Chef du département : Mme COMBRISSON Hélène, Professeur - Adjoint : Mme LE PODER Sophie, Maître de conférences -UNITE D’ANATOMIE DES ANIMAUX DOMESTIQUES - UNITE D’HISTOLOGIE , ANATOMIE PATHOLOGIQUE Mme CREVIER-DENOIX Nathalie, Professeur M. CRESPEAU François, Professeur M. DEGUEURCE Christophe, Professeur* M. FONTAINE Jean-Jacques, Professeur * Mme ROBERT Céline, Maître de conférences Mme BERNEX Florence, Maître de conférences M. CHATEAU Henri, Maître de conférences Mme CORDONNIER-LEFORT Nathalie, Maître de conférences -UNITE DE PATHOLOGIE GENERALE , MICROBIOLOGIE, - UNITE DE VIROLOGIE IMMUNOLOGIE M. ELOIT Marc, Professeur * Mme QUINTIN-COLONNA Françoise, Professeur* Mme LE PODER Sophie, Maître de conférences M. -
Ribonucleotide Reductase As a Target to Control Apicomplexan Diseases
Curr. Issues Mol. Biol. 14: 9-26. Ribonucleotide Reductase as a Target to ControlOnline Apicomplexan journal at http://www.cimb.org Diseases 9 Ribonucleotide Reductase as a Target to Control Apicomplexan Diseases James B. Munro and Joana C. Silva* hosts/vectors and transition between life cycle stages is dependent upon a diverse array of environmental cues. Department of Microbiology and Immunology and Institute The biological characteristics that differentiate for Genome Sciences, University of Maryland School of apicomplexans from their vertebrate hosts have often been Medicine, Baltimore, MD 21201, USA considered optimal targets of new therapeutics to control these eukaryotic pathogens. Alternatively, essential and strongly conserved proteins can be targeted, provided that Abstract they differ from their vertebrate homologs in such a way that Malaria is caused by species in the apicomplexan genus minimizes potential cross-reaction and toxicity. Plasmodium, which infect hundreds of millions of people The enzyme ribonucleotide reductase (RNR) is one each year and kill close to one million. While malaria is such example. RNR utilizes free radical chemistry to catalyze the most notorious of the apicomplexan-caused diseases, the reduction of ribonucleotides to deoxyribonucleotides other members of the eukaryotic phylum Apicomplexa (Thelander and Reichard, 1979; Reichard, 1988). It provides are responsible for additional, albeit less well-known, the only de novo means of generating the essential building diseases in humans, economically important livestock, and blocks for DNA replication and repair across all domains a variety of other vertebrates. Diseases such as babesiosis of life and, as such, it is the rate-limiting step in DNA (hemolytic anemia), theileriosis and East Coast Fever, synthesis (Jordan and Reichard, 1998; Lundin et al., 2009). -
The Development of the Sporozoite of Plasmodium Gallinaceum (Apicomplexa : Haemosporina)
THE DEVELOPMENT OF THE SPOROZOITE OF PLASMODIUM GALLINACEUM (APICOMPLEXA : HAEMOSPORINA) by David Peter Turner, B.Sc. (Lond.), A.R.C.S. A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of the University of London Department of Zoology and Applied Entomology, Imperial College Field Station, Silwood Park, Ascot, Berkshire, SL5 7PY. May 1980 TO MY MOTHER AND FATHER WITH AFFECTION AND GRATITUDE This day relenting God Hath placed within my hand A wondrous thing; and God Be praised. At his command, Seeking His secret deeds With tears and toiling breath, I find thy cunning seeds, 0 million-murdering Death. Sir Ronald, Ross Inspired by his discovery of the wonderful "pigmented cells" (oocysts) protruding from the stomach wall of a dapple-wing mosquito. -4 ABSTRACT This thesis describes an investigation into the development of the P. gallinaceum sporozoite. Observations by light microscopy failed to distinguish between sporozoites from mature oocysts and those from salivary glands. The only significant morphological change at the ultrastructural level occurred in the organisation of the rhoptry-microneme complex and resulted in a proliferation of the micronemes and a disappearance of the rhoptries in the salivary gland forms. The cell surface properties of sporozoites were investigated by the techniques of free-flow electrophoresis and lectin-binding studies. The electrophoretic mobility of sporozoites was measured as a function of pH and data from these observations demonstrated that there was a significant reduction in cell surface charge of salivary gland sporo- zoites, compared to sporozoites from mature oocysts and qualitative differences between the two populations were shown to exist.