The Evolution, Metabolism and Functions of the Apicoplast

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution, Metabolism and Functions of the Apicoplast Downloaded from rstb.royalsocietypublishing.org on March 31, 2010 The evolution, metabolism and functions of the apicoplast Liting Lim and Geoffrey Ian McFadden Phil. Trans. R. Soc. B 2010 365, 749-763 doi: 10.1098/rstb.2009.0273 References This article cites 122 articles, 50 of which can be accessed free http://rstb.royalsocietypublishing.org/content/365/1541/749.full.html#ref-list-1 This article is free to access Rapid response Respond to this article http://rstb.royalsocietypublishing.org/letters/submit/royptb;365/1541/749 Subject collections Articles on similar topics can be found in the following collections biogeochemistry (10 articles) bioinformatics (83 articles) cellular biology (59 articles) evolution (1569 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Phil. Trans. R. Soc. B go to: http://rstb.royalsocietypublishing.org/subscriptions This journal is © 2010 The Royal Society Downloaded from rstb.royalsocietypublishing.org on March 31, 2010 Phil. Trans. R. Soc. B (2010) 365, 749–763 doi:10.1098/rstb.2009.0273 Review The evolution, metabolism and functions of the apicoplast Liting Lim and Geoffrey Ian McFadden* School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia The malaria parasite, Plasmodium falciparum, harbours a relict plastid known as the ‘apicoplast’. The discovery of the apicoplast ushered in an exciting new prospect for drug development against the para- site. The eubacterial ancestry of the organelle offers a wealth of opportunities for the development of therapeutic interventions. Morphological, biochemical and bioinformatic studies of the apicoplast have further reinforced its ‘plant-like’ characteristics and potential as a drug target. However, we are still not sure why the apicoplast is essential for the parasite’s survival. This review explores the ori- gins and metabolic functions of the apicoplast. In an attempt to decipher the role of the organelle within the parasite we also take a closer look at the transporters decorating the plastid to better understand the metabolic exchanges between the apicoplast and the rest of the parasite cell. Keywords: plastid; apicoplast; parasite; apicomplexan; evolution; metabolism 1. INTRODUCTION effective in fighting malaria, and resistance will hope- The apicoplast is a vestigial plastid present in most fully take longer to erode their utility, it is imperative parasites of the Phylum Apicomplexa. The group to discover more drug targets to manage the disease derives its name from the apical complex, a collection before any more drugs lose clinical relevance. of anterior structures that allow the parasite to invade Indeed, we need to identify as many new drug leads host cells and establish themselves therein. Apicom- as possible to expand our repertoire of drugs to use plexans are responsible for a wide range of serious in combination therapies and also to allow rotation diseases of humans, livestock, wild animals and invert- to minimize resistance. ebrates and there are an estimated 5000 species of The discovery of the apicoplast ushered in an exciting parasites in the group. Human apicomplexan diseases new prospect for drug development against Plasmo- include malaria and toxoplasmosis; babesiosis, theiler- dium falciparum. The eubacterial ancestry of the iosis and coccidiosis are common problems in organelle offers a wealth of opportunities for the devel- livestock. Malaria is a major global health problem opment of therapeutic interventions (McFadden et al. with 3.3 billion at risk of infection and an estimated 1996; McFadden & Roos 1999). Morphological, bio- 250 million cases per year that resulted in nearly a chemical and bioinformatic studies of the apicoplast million deaths in 2006 (WHO world malaria report have further reinforced its ‘plant-like’ characteristics 2008). Malaria is endemic in tropical areas owing to and potential as a drug target. However, we are still warm temperatures and high humidity, which are con- totally ignorant about why the apicoplast is essential ducive to transmission by the mosquito vectors. Most to the parasite’s survival (Fichera & Roos 1997; He of the disease burden lies in Africa, where treatment et al. 2001). This review explores the origins and meta- accessibility is the greatest limiting factor. Conse- bolic functions of the apicoplast. In an attempt to quently, malaria is often considered a ‘poor man’s decipher the role of the organelle within the parasite disease’ and, unlike most diseases, the malaria we also take a closer look at the transporters decorating problem is becoming worse rather than better. the plastid to better understand the metabolic The current greatest challenge in malaria manage- exchanges between the apicoplast and the rest of the ment is the resistance of parasites to conventional parasite cell. monochemotherapies like chloroquine and sulphadox- ine-pyrimethamine. These therapies were cheap and effective but they are losing efficacy worldwide owing 2. ORIGIN AND EVOLUTION to resistance. Artemisinin-based combination thera- (a) Where did the apicoplast come from? pies are currently the most effective treatment and The apicoplast is clearly of secondary endosymbiotic patients’ drug compliance is also reasonable. Although origin, which refers to one eukaryote having engulfed combinatorial therapies are proving to be more and retained another eukaryote with a plastid obtained by primary endosymbiosis of a cyanobacterium-like prokaryote. Secondary endosymbiotic plastids * Author for correspondence ([email protected]). typically have three or four membranes, whereas One contribution of 12 to a Theme Issue ‘Evolution of organellar primary plastids invariably have only two membranes, metabolism in unicellular eukaryotes’. which are homologous to the two membranes of the 749 This journal is # 2010 The Royal Society Downloaded from rstb.royalsocietypublishing.org on March 31, 2010 750 L. Lim & G. I. McFadden Review. Apicoplast Gram-negative ancestral cyanobacterium like endo- symbiont to parasite and provides a glimpse into the symbiont. Some observers describe three membranes earliest form of the apicomplexan–animal interaction around the apicoplast but the majority see four, and (Moore et al. 2008). Ultrastructural examinations no one claims to see two, so a secondary endosymbio- and molecular phylogenetic analyses demonstrated tic origin is agreed upon. The outermost membrane of this new organism to be the closest known photosyn- the apicoplast is analogous to the phagosomal mem- thetic relative to apicomplexan parasites and the brane of the host cell, hence it is also of endosomal common origin of its plastid to the apicoplasts origin. The second outermost membrane of the apico- (Moore et al. 2008). The autotrophic nature of plast originates from the plasma membrane of the C. velia allows it to be cultivated independently of its engulfed alga cell. The inner pair of membranes is coral host, which provides a model to study apicom- equivalent to the outer and inner envelopes of the plexan evolution and what makes the apicoplast chloroplast, which evolved from the cell surface envel- essential (Moore et al. 2008). ope of the engulfed cyanobacterium by the primary host. (b) The apicoplast and the mitochondrion What is not agreed however is the nature of the sec- constitute the sticky duo ondary endosymbiont. One school contends that the One striking feature of the apicoplast is its close proxi- endosymbiont was a green alga (Kohler et al. 1997; mity to the single mitochondrion (van Dooren et al. Funes et al. 2002), whereas another school favours a 2006). Early electron micrographs of various species red algal endosymbiont. In our view, a red algal endo- of Plasmodium revealed a ‘spherical body’ in intimate symbiont is now proven beyond much doubt by the association with the single mitochondrion within the discovery of the photosynthetic apicomplexan Chro- parasites (Aikawa 1966; Hepler et al. 1966). Initially mera, which clearly has a plastid derived from a red the ‘spherical body’ was speculated to be a metabolic alga that has the same origins as the apicoplast. A store for the mitochondrion (Aikawa 1966; Hepler red algal origin for the apicoplast is also part of a et al. 1966), but we now know this body as the apico- much broader hypothesis for secondary endosymbiotic plast (McFadden et al. 1996; Kohler et al. 1997). origin of plastids in a large group of protists known as Indeed the closeness of the two organelles seems the chromalveolates. The chromalveolate theory pro- attributable to their metabolic dependences (Ralph poses that all algae belonging to Chromalveolata et al. 2004; van Dooren et al. 2006) discussed below. possess secondary red plastids acquired by a single During its life cycle the Plasmodium parasite under- common endosymbiotic event, whereby a rhodophyte goes three rounds of asexual reproduction: alga is engulfed by a heterotrophic eukaryotic host erythrocytic schizogony, sporogony within the oocyst (Cavalier-Smith 1999). This supergroup includes Api- in the mosquito’s midgut wall, and exo-erythrocytic complexa, Dinophyta, Ciliophora, Heterokonts, schizogony within the liver cell. What happens to the Haptophyta and Cryptophyta. In support of the chro- apicoplast during these cell proliferation stages? Gen- malveolate hypothesis, structural characteristics of etic manipulation and reporter constructs have the plastid
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Norrisiella Sphaerica Gen
    Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja California, Mexico 著者 Ota Shuhei, Ueda Kunihiko, Ishida Ken-ichiro journal or Journal of Plant Research publication title volume 120 number 6 page range 661-670 year 2007-11-01 URL http://hdl.handle.net/2297/7674 doi: 10.1007/s10265-007-0115-y Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja California, Mexico Shuhei Ota1, 2, Kunihiko Ueda1 and Ken-ichiro Ishida2 1Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan 2Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan Running title: Norrisiella sphaerica gen. et sp. nov. Correspondence: Shuhei Ota Laboratory of Plant Systematics and Phylogeny (D508) Institute of Biological Sciences Graduate School of Life and Environmental Sciences University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Japan Tel/Fax: +81 (29) 853-7267 Fax: +81 (29) 853-4533 e-mail: [email protected] 1/29 Abstract A new chlorarachniophyte, Norrisiella sphaerica S. Ota et K. Ishida gen. et sp. nov., is described from the coast of Baja California, Mexico. We examined its morphology, ultrastructure and life cycle in detail, using light microscopy, transmission electron microscopy and time-lapse videomicroscopy. We found that this chlorarachniophyte possessed the following characteristics: (i) vegetative cells were coccoid and possessed a cell wall, (ii) a pyrenoid was slightly invaded by plate-like periplastidial compartment from the tip of the pyrenoid, (iii) a nucleomorph was located near the pyrenoid base in the periplastidial compartment, (iv) cells reproduced vegetatively via autospores, and (v) a flagellate stage was present in the life cycle.
    [Show full text]
  • Contrasts in the Prevalence of Avian Malaria in Shorebird Species
    University of Groningen Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats Mendes, L; Piersma, T; Lecoq, M; Spaans, B; Ricklefs, RE; Ricklefs, Robert E. Published in: Oikos DOI: 10.1111/j.0030-1299.2005.13509.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2005 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Mendes, L., Piersma, T., Lecoq, M., Spaans, B., Ricklefs, RE., & Ricklefs, R. E. (2005). Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos, 109(2), 396-404. https://doi.org/10.1111/j.0030-1299.2005.13509.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 OIKOS 109: 396Á/404, 2005 Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats Luisa Mendes, Theunis Piersma, Miguel Lecoq, Bernard Spaans and Robert E.
    [Show full text]
  • 23.3 Groups of Protists
    Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes.
    [Show full text]
  • Gymnochlora Dimorpha Sp. Nov., a Chlorarachniophyte with Unique Daughter Cell Behaviour
    Phycologia (2011) Volume 50 (3), 317–326 Published 3 May 2011 Gymnochlora dimorpha sp. nov., a chlorarachniophyte with unique daughter cell behaviour 1,2 3 1 SHUHEI OTA *{,ASTUKO KUDO AND KEN-ICHIRO ISHIDA 1Institute of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Japan 2Station Biologique de Roscoff, Universite´ Pierre et Marie Curie (Paris 06), CNRS and UMR 7144, Place Georges Tessier, 29682 Roscoff, France 3The College of Biological Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Japan OTA S., KUDO A. AND ISHIDA K.-I. 2011. Gymnochlora dimorpha sp. nov., a chlorarachniophyte with unique daughter cell behaviour. Phycologia 50: 317–326. DOI: 10.2216/09-102.1 A new chlorarachniophyte species, Gymnochlora dimorpha sp. nov., was described. This new species was isolated from an enrichment preculture of Padina sp. collected from a subtidal coral reef zone in Republic of Palau. The new strain, P314, was characterized by light and electron microscopy in the present study. Under the culture conditions used here, the amoeboid stage was dominant. Two types of amoeboid cells were found in the cultures: motile and flattened nonmotile (sessile) cells. The motile cells typically multiplied via binary cell division. The sessile cells were always present in the cultures, but they never became dominant under the culture conditions. Time-lapse video microscopic observations revealed that after cell division of a sessile cell, one daughter cell became motile, while the other remained sessile. According to ultrastructural characteristics of the pyrenoids and nucleomorphs, the new chlorarachniophyte strain belongs to the genus Gymnochlora.
    [Show full text]
  • VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano
    [Show full text]
  • Toxoplasma Gondii Sequesters Centromeres to a Specific Nuclear
    Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle Carrie F. Brooksa, Maria E. Franciab, Mathieu Gissotc,d,1, Matthew M. Crokenc,d, Kami Kimc,d,2, and Boris Striepena,b,2 aCenter for Tropical and Emerging Global Diseases and bDepartment of Cellular Biology, University of Georgia, Athens, GA 30602; and Departments of cMedicine and dMicrobiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 Edited by Thomas E. Wellems, National Institutes of Health, Bethesda, MD, and approved January 20, 2011 (received for review May 24, 2010) Members of the eukaryotic phylum Apicomplexa are the cause of testine (6). The molecular mechanisms that regulate apicomplexan important human diseases including malaria, toxoplasmosis, and cell division and allow this remarkable flexibility of the cell and cryptosporidiosis. These obligate intracellular parasites produce nuclear division cycle remain poorly understood (7). An important new invasive stages through a complex budding process. The bud- unsolved question is how apicomplexan daughter cells emerge ding cycle is remarkably flexible and can produce varied numbers of with the complete set of chromosomes (∼10 depending on species) progeny to adapt to different host-cell niches. How this complex after passing through multinucleated and polyploid stages. In process is coordinated remains poorly understood. Using Toxo- Sarcocystis neurona the mitotic spindle persists throughout the plasma gondii as a genetic model, we show that a key element to cell cycle, and small monopolar spindles housed in a specialized this coordination is the centrocone, a unique elaboration of the nu- elaboration of the nuclear envelope, the centrocone, are evident clear envelope that houses the mitotic spindle.
    [Show full text]
  • The Fine Structure of the Exoerythrocytic Stages of Plasmodium
    THE FINE STRUCTURE OF THE EXOERYTHROCYTIC STAGES OF PLASMODIUM FALLAX PETER K. HEPLER, CLAY G. HUFF, and HELMUTH SPRINZ From the Department of Experimental Pathology, Walter Reed Army Institute of Research, Washington, D. C., and the Department of Parasitology, Naval Medical Research Institute, Bethesda, Maryland. Dr. Hepler's present address is the Biological Laboratories, Harvard University, Cambridge. ABSTRACT The fine structure of the exoerythrocytic cycle of an avian malarial parasite, Plasmodium fallax, has been analyzed using preparations grown in a tissue culture system derived from embryonic turkey brain cells which were fixed in glutaraldehyde-OsO4. The mature mero- zoite, an elongated cell 3- to 4-/~ long and l- to 2-# wide, is ensheathed in a complex double- layered pellicle. The anterior end consists of a conoid, from which emanate two lobed paired organelles and several closely associated dense bodies. A nucleus is situated in the mid portion of the cell, while a single mitochondrion wrapped around a spherical body is found in the posterior end. On the pellicle of the merozoite near the nucleus a cytostomal cavity, 80 to 100 m/~ in diameter, is located. Based on changes in fine structure, the subse- quent sequence of development is divided into three phases: first, the dedifferentiation phase, in which the merozoite loses many complex structures, i.e. the conoid, paired organelles, dense bodies, spherical body, and the thick inner layers of the pellicle, and transforms into a trophozoite; second, the growth phase, which consists of many nuclear divisions as well as parallel increases in mitochondria, endoplasmic reticulum, and ribosomes; and third, the redifferentiation and cytoplasmic schizogony phase, in which the specialized organelles reappear as the new merozoites bud off from the mother schizont.
    [Show full text]
  • The Sub-Genera of Avian Plasmodium Landau I.*, Chavatte J.M.*, Peters W.** & Chabaud A.*
    Landau (MEP) 28/01/10 10:07 Page 3 Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2010171003 THE SUB-GENERA OF AVIAN PLASMODIUM LANDAU I.*, CHAVATTE J.M.*, PETERS W.** & CHABAUD A.* Summary: Résumé : LES SOUS-GENRES DE PLASMODIUM AVIAIRE The study of the morphology of a species of Plasmodium is difficult La morphologie d’un Plasmodium est difficile à étudier car on because these organisms have relatively few characters. The size dispose de peu de caractères. La taille d’un schizonte, facile à of the schizont, for example, which is easy to assess is important apprécier, est significative au niveau spécifique mais n’a pas at the specific level but is not always of great phylogenetic toujours une grande valeur phylogénique. Le métabolisme du significance. Factors reflecting the parasite’s metabolism provide parasite fournit des éléments plus importants. Ainsi, la situation du more important evidence. Thus the position of the parasite within parasite à l’intérieur de l’hématie (accolé au noyau, ou à la the host red cell (attachment to the host nucleus or its membrane, membrane, au sommet ou le long du noyau) se révèle très at one end or aligned with it) has been shown to be constant for constant chez chaque espèce. Un autre caractère, de valeur a given species. Another structure of essential significance that is essentielle, trop souvent négligé, est le globule le plus souvent often ignored is a globule, usually refringent in nature, that was réfringent, décrit pour la première fois chez Plasmodium vaughani first decribed in Plasmodium vaughani Novy & MacNeal, 1904 Novy & MacNeal, 1904 et que nous considérons comme and that we consider to be characteristic of the sub-genus caractéristique du sous-genre Novyella.
    [Show full text]
  • Single Cell Transcriptomics, Mega-Phylogeny and the Genetic Basis Of
    bioRxiv preprint doi: https://doi.org/10.1101/064030; this version posted July 15, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Single cell transcriptomics, mega-phylogeny and the genetic basis of 2 morphological innovations in Rhizaria 3 4 Anders K. Krabberød1, Russell J. S. Orr1, Jon Bråte1, Tom Kristensen1, Kjell R. Bjørklund2 & Kamran 5 ShalChian-Tabrizi1* 6 7 1Department of BiosCienCes, Centre for Integrative MiCrobial Evolution and Centre for EpigenetiCs, 8 Development and Evolution, University of Oslo, Norway 9 2Natural History Museum, Department of ResearCh and ColleCtions University of Oslo, Norway 10 11 *Corresponding author: 12 Kamran ShalChian-Tabrizi 13 [email protected] 14 Mobile: + 47 41045328 15 16 17 Keywords: Cytoskeleton, phylogeny, protists, Radiolaria, Rhizaria, SAR, single-cell, transCriptomiCs 1 bioRxiv preprint doi: https://doi.org/10.1101/064030; this version posted July 15, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 18 Abstract 19 The innovation of the eukaryote Cytoskeleton enabled phagoCytosis, intracellular transport and 20 Cytokinesis, and is responsible for diverse eukaryotiC morphologies. Still, the relationship between 21 phenotypiC innovations in the Cytoskeleton and their underlying genotype is poorly understood. 22 To explore the genetiC meChanism of morphologiCal evolution of the eukaryotiC Cytoskeleton we 23 provide the first single Cell transCriptomes from unCultivable, free-living uniCellular eukaryotes: the 24 radiolarian speCies Lithomelissa setosa and Sticholonche zanclea.
    [Show full text]
  • Exploring the Roles of Phosphoinositides in the Biology of the Malaria Parasite Plasmodium Falciparum
    Exploring the roles of phosphoinositides in the biology of the malaria parasite Plasmodium falciparum Thèse Zeinab Ebrahimzadeh Doctorat en microbiologie-immunologie Philosophiæ doctor (Ph. D.) Québec, Canada © Zeinab Ebrahimzadeh, 2019 Exploring the roles of phosphoinositides in the biology of the malaria parasite Plasmodium falciparum Thèse Zeinab Ebrahimzadeh M. Sc. Dave Richard, directeur de recherche Résumé Plasmodium falciparum est un parasite appartenant au phylum Apicomplexa et est à l’origine de la forme la plus sévère de la malaria. Dans les zones endémiques d'Afrique subsaharienne, la plupart des victimes sont des enfants de moins de cinq ans. L’entrée de P. falciparum dans sa cellule cible, le globule rouge, repose sur la sécrétion de protéines par des organites spécialisés : les micronèmes, les rhoptries et les granules denses. Les mécanismes de biogenèse de ces organites et la coordination de la libération de leur contenu lors de l'invasion sont cependant pour la plupart inconnus. Il a été toutefois été démontré que les protéines destinées à ces organites apicaux se concentrent dans des microdomaines de l’appareil de Golgi, dont la composition en lipides et en protéines détermine leur destination finale. À ce jour, les mécanismes de sélection et de transport des protéines apicales vers les organites d'invasion ainsi que leurs mécanismes de sécrétion durant l’invasion sont pour la plupart inconnus. Nous avons donc posé l’hypothèse que les phosphoinositides (PI) et leurs protéines effectrices sont impliqués dans ces processus chez P. falciparum. Les PI sont sept lipides phosphorylés retrouvés de façon minoritaire dans les différentes membranes cellulaires. Chaque membrane subcellulaire contient une espèce caractéristique de PI qui peut être reconnue et liée spécifiquement par des protéines effectrices.
    [Show full text]
  • The Origin of Plastids By: Cheong Xin Chan, Ph.D
    A Collaborative Learning Space for Science ABOUT FACULTY STUDENTS INTERMEDIATE CELL ORIGINS AND METABOLISM | Lead Editor: Gary Cote, Mario De Tullio The Origin of Plastids By: Cheong Xin Chan, Ph.D. & Debashish Bhattacharya, Ph.D. (Rutgers, The State University of New Jersey) © 2010 Nature Education Citation: Chan, C. X. & Bhattacharya, D. (2010) The Origin of Plastids. Nature Education 3(9):84 Plastids are core components of photosynthesis in plants and algae. Scientists are currently debating the events leading to the appearance of plastids in eukaryotic cells. Organelles, called plastids, are the main sites of photosynthesis in eukaryotic cells. Chloroplasts, as well as any other pigment containing cytoplasmic organelles that enables the harvesting and conversion of light and carbon dioxide into food and energy, are plastids. Found mainly in eukaryotic cells, plastids can be grouped into two distinctive types depending on their membrane structure: primary plastids and secondary plastids. Primary plastids are found in most algae and plants, and secondary, more-complex plastids are typically found in plankton, such as diatoms and dinoflagellates. Exploring the origin of plastids is an exciting field of research because it enhances our understanding of the basis of photosynthesis in green plants, our primary food source on planet Earth. Primary Plastids and Endosymbiosis Where did plastids originate? Their origin is explained by endosymbiosis, the act of a unicellular heterotrophic protist engulfing a free-living photosynthetic cyanobacterium and retaining it, instead of digesting it in the food vacuole (Margulis 1970; McFadden 2001; Kutschera & Niklas 2005). The captured cell (the endosymbiont) was then reduced to a functional organelle bound by two membranes, and was transmitted vertically to subsequent generations.
    [Show full text]