Com Comerurántos Sobre As Relaçoes Frloceruéttcas DA Famíun Semtonorldae

Total Page:16

File Type:pdf, Size:1020Kb

Com Comerurántos Sobre As Relaçoes Frloceruéttcas DA Famíun Semtonorldae UNIVERSIDADE DE SÃO PAULO INSTITUTO DE GEOCIÊNCIAS REVrsÂo DAS ESPÉcles Do cÊruERo Lepidotes AGASSIZ, 18,32 (ACTINOPTERYGII, sEMroNoflpoRMEs) Do MESOZOTCO DO BRASIL, coM coMErurÁntos soBRE As RELAçoes FrLoceruÉTtcAS DA FAMíun sEMtoNorlDAE Valéria Gallo-da-Silva Orientador: Prof. Dr. Oscar Rösler Co-orientador: Prof. Dr. Rubens da Silva Santos (1" momotbm) TESE DE DOUTORAMENTO Programa de Pós-graduação em Geologia Sedimentar VOLUME l: Texto SAO PAULO 1998 REVTSÃO DAS ESPÉC|ES DO CÊ¡¡enO Lepidotes AGASS|Z, 1832 (ACT!NOpTERycil, SEMTONOTTFORMES) DO MESOZÓ|CO DO BRASIL, coM coMENTÁnlos soBRE AS RELAçÖES F¡LOGENÉr¡CnS DA FAMíun seutoNonDAE TESE DE DOUTORAMENTO Universidade de São Paulo Volume 1 - Texto DEDALUS-Acervo-lGC ffiil ilil llill ill lil[ llil lilil |ilil ffi rilfl ffil ilil ffi 30900004993 Valéria Gallo-da-Silva 1 998 UNIVERSIDADE DE SA O PAULO t NsTtruro DE GlocrÉrucms REVISAO DAS ESPÉCIES DO CÊtrlERO Lepidotes AGASS|Z, 1832 (ACT|NOPTERYGil, SEMIoNoTIFORMES) DO MESOZÓ|CO DO BRASIL, COM COMENTÁR|OS SOBRE AS RELAçÕES FILOGENÉTICNS DA FAMíIN SEMIONOTIDAE vntÉnn GALL>-DA-SILVA Orientador: Prof. Dr. Oscar Rösler TESE DE DOUTORAMENTO coMtssÃo .lul_cADoRA I Nome Assinatura Presidente: prof. Dr. Oscar Rösler Examinadores: prof. Dr. Heralclo Antonio Britski prof. paulo Dr. Marques Machado Brito prof. Dr. Setembrino petri prof. Dr. Thomas Rich Fairchild SAO PAULO 1 998 "É destino do cientista enfrentar constantes solicitaçôes para mostrar que seu saber tem alguma 'valia'. Contudo, pode não ser de nenhum interesse, para ele, que essa 'valia' exista; ele pode achar que o deleite de saber, de compreender, de sondar o Universo constitua a sua inteira recompensa. Nesse cäso o cientista pode até dar-se ao prazer de desacatar quem quer que seja que peça mais do que isso." ISAACASIMOV SUMARIO AGRADECIMENTOS RESUMO ABSTRACT RÉSUMÉ FICHA CATALOGRÁFICA 3. $istemática Paleontológica 4. Lepidotes piauhyensis Roxo & Löfgren, 1936................ 4. 1 Dìagnose Revista........... 4.2 Generalidades ................. .....17 5.5 Contexto Geológico e Paleoambiental .......54 åepidofesmawsoniWoodward, 1888... ... .... ..69 8.1 Ðiagnose Revista........... ...............69 8.2 Generalidades ............. H istologia 1 0.5 Contexto Geológico e Paleoambiental .. "............. 11.I-epidofes iguatuensis(nomen nudum) Vogel, 1976.... .................8s 1 1.1 Diagnose Revista............ .........85 1 1.2 Generalidades ........... ........86 ConsideraçÕes Taxonômicas ... ... " 12.4 Lepidotes cf - oliveirai Silva Santos, 1969...... ......... ... 107 Morfologia...... ......113 Histologia....... ....,.114 13.4 Características Taxonômicas................. ............115 13.5 Contexto Geológico e Paleoambiental .................. ................... 116 14. Distribuiçåo do Gênero Lepidotes e ConsideraçÕes Paleob¡ogegráficas .............112 15. Considerações sobre as Escamas dos Semionotidae........._...... ..................123 16. Estudo Morfométrico Comparativo das Escamas lsoladas das Espécies de Lepidotes do Mesozóico do 8rasi1......... .. ....,................128 17. Estudo Histológico Comparativo das Escamas de Semionotidae do Mesozóico do Brasil .............. ... .... .. ....130 18. Análise Comparativa da Superfície da Ganoína das Escamas dos Semionotidae Brasileiros Tabela 2: Medidas das Escamas de Leprdofes mawsonl (em mm) ..... 1S3 APENDTCE 4..................... ..................... 195 ïabela 3: Medidas das Escamas de Leprdofes oliveirai (em mm) ..... .. .. .. ........... 195 Tabela 4: Medidas das Escamas de Leprdofes rfxsepfiensls (em mm)...................195 ïabela 5: Medidas das Escamas de "leprdofes iguatuensis" (em mm)...................'l95 È ¡¡q¡-È-¡lLrl\rË,^DÊltrìrnE p.............,.,..... ........,,..,.,.....19ö ,,2,, Tabela 6: Medidas dos Dentes de Lepidotes sp. (em mm) ................................196 APÊNDICE 6..................... ........ ........ ..1s7 Tabela 1: Tabela de Análise de Variância para o comprimento e a largura das escamas da regiäo mediana em quatro espécies de Leprdofes.............................. 1gZ Tabela ?. comparaçäo a posferlorl entre as médias das espécies de Lepldofes pelo teste HSD de Tukey........ ......."...........1g: APÊNDICE 7 ............... ... .. .... ............1e8 Tabela 1: Análise dos tubérculos na superfície externa da ganoína....................... 19g Tabela 2: Dados apresentados por Meunier & Gayet (1992) e Gayet & Meunier (1993) para microtubérculos de alguns Semionotidae ....................198 ApÊNDrcE 8..................... .. .. ...... .... 1s9 Artigo publicado nos Anais da Academia Brasileira de Ciências. ...........................199 ApÊNDtcE 9 ..................... ....................2r,7 Matriz de Caracteres .........................2l7 APÊNDTCE 10.......,........... ....... .........208 Descricåo das Arvores ........................20g APÊND|CE 11............. ... ....................250 Quadro 1. Posicionamento Esiratigráfico do Gênero Lepidotes no Jurássico superior das Bacias Sedimentares Brasileiras .......... ....................................2S0 Quadro 2. Posicionamento Estratigráfico do Gênero Lepidotes no cretáceo lnferior das Bacias Sedimentares Brâsileiras .......................251 Quadro 3. Posicionamento Estraiigráfieo do Gênero Lepidotes no cretáceo superior das Bacias Sedimentares Brasileiras ................. .......................252 AGRADECIMENTOS Os resultados do estudo aqui apresentado como Tese de Doutoramento no Curso de Pós-graduação em Geologia Sedimentar, do Departamento de Paleontologia e Estratigrafia do lnstituto de Geociências da Universidade de Såo Paulo foram frutos de um longo trabalho, cuja realização só foi possível através da colaboração de vårias instituições, pesquisadores, técnicos e amigos. O trabalho em apreço teve a orientaçâo do Prof. Dr. Oscar Rösler, Professor Titular do lnstituto de Geociências da Universidade de São Paulo, a quem dedico meus mais sinceros agradecimentos; e a co-orientação do Prof. Dr. Rubens da Silva Santos (r'7r memoriam), paleoictiólogo da Universidade do Estado do Rio de Janeiro, meu grande mestre e amigo, para quem as palavrâs existentes em todas as línguas, que traduzissem gratidão e reconhecimento, seriam insuficientes. Ao CNPq devo a concessâo de uma bolsa, no período de março de 'lgg4 a agosto de 1995. Da mesma forma, agradeço à CAPES, através do convênio PICDT/CAPESiUERJ, o apoio através de uma bolsa parcial de doutorado, no período de setembro de 1995 a abril de 1997, e uma bolsa integral, no período de maio de 1997 a fevereiro de 1998. Fico muito grata às instituiçÕes que permitiram acesso às eoleçoes paleoictiológicas, bem como aos pesquisadores a elas vinculados, que de várias maneiras auxiliaram na elaboração desta Tese: " Departamento Nlacional da Produçáo Mineral: Déa Regina Bouret Campos, Diógenes de Almeida Campos, Marise Sardenberg Salgado de Carvalho e Rita de Cássia Tardin Cassab. * Departamento de Geologia e Paleontologia do Museu Nacionali U FRJ: Albe¡to Barbosa de Carvalho, Alexander W.A. Kellner, Benedicto Humberto Rodrigues Francisco, Diana Mussa, Loiva Lízia Antonello, Luciana Barbosa de Carvalho, Sergio Alex Kugland de Azevedo e Victor de Carvalho Klein, e aos demais colegas deste Depa rtamento. " Departamento de Biologia Animal e Vegetal da Universidade do Estado do Rio de Janeiro: Andreia Francisco Afonso, Bartira C. M. da Costa-Carvalho, Francisco José ele Figueiredo e Paulo Marques Machado Brito, e a todos os colegas do Laboratório de Elasmobrânquios. * Departamento de Biologia Geral da Universidade Santa úrsula: José V. Andreata e Mauro José Cavalcanti. " Laboratório de Microscopia Ëletrônica do lnstituto de Geociências da Universidade de Säo Paulo (Proc. FAPESP 1995/56354). " Laboratório de Paleontologia do Museu de Ciências e Tecnologia da Pontifícia universidade católica do Rio Grande do sul: Ângelo Maffissoni e Martha Richter. * Universidade de Nova lguaçu: Hélcio Magalhães Barros. " American Museum of Natural History: lvy Rutzky e John Maisey. * Carnegie Museum of Natural History: Mary R. Dawson. n Muséum national d'Histoire naturelle: Philippe Taquet, Sylvie Wenz e François Meunier. * Natural History Museum: Alison Longbottom. " Aos coordenadores do Projeto Dinossauros do Brasil, Antônio Jorge vaseoneellos Garcia e sergio ,{lex Kugland de Azeveds, agradeço a possibilidade de ter realizado vários kabalhos de campo nas bacias sedimentares do nordeste. * Ao colega Alberto Correa de Vasconcellos, doutorando do Museu Nacional/uFRJ, sou grata pelas suas prec¡osas sugestões especialmente no que dia respeito ao texto sobre a filogenia do grupo em estudo. Cabem, ainda, agradecimentos a algumas pessoas que realizaram trabalhos técnicos da mais alta qualidade: Denis serrette (fotógrafo do Muséum national d'Histoire naturelle); Luiz Antônio Alves costa (desenhista e pesquisador do Museu Nacional do Rio de Janeiro/UFRJ); Tarcísio Raymundo de Abreu (laminador da seção de Laminação do lnstituto de Geociôncias/u FRJ); Alan Alves dos santos (laminador da seção de Laminaçåo da Faculdade de Geologia da universidade do Estado do Rio de Janeiro); e lsaac Jamil sayeg (responsável pela utilizaçäo do MEV do lnstituto de Geociências/USP). Por fim, agradeço o apoio incansável, näo apenas do pesquisador e professor, mas do grande companheiro Sergio Alex. RESUMO Neste trabalho, efetuamos uma revisão morfológica e s¡stemática das espécies do gênero Lepidotes Agassiz, 1832 do Mesozóico brasileiro, comparando-as com outras espécies de Leprdofes e outros Semionotidae de diversas localidades estrangeiras.
Recommended publications
  • The Scales of Mesozoic Actinopterygians
    Mesozoic Fishes – Systematics and Paleoecology, G. Arratia & G. Viohl (eds.): pp. 83-93, 6 figs. © 1996 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 3-923871–90-2 The scales of Mesozoic actinopterygians Hans-Peter SCHULTZE Abstract Cycloid scales (elasmoid scales with circuli) are a unique character of teleosts above the level of Pholidophorus and Pholidophoroides. Cycloid scales have two layers. A bony layer, usually acellular, is superimposed on a basal plate composed of partially mineralized layers of plywoodlike laminated collagen fibres. The tissue of the basal layer is refered to here as elasmodin. Basal teleosts (sensu PATTERSON 1973) possess rhombic scales with a bony base overlain by ganoin (lepidosteoid ganoid scale). Amioid scales (elasmoid scales with longitudinally to radially arranged ridges or rods on the overlapped field) are found within halecomorphs. This scale type evolved more than once within primitive actinopterygians and other osteichthyan fishes. It may have even developed twice within halecomorphs, in Caturidae and Amiidae, from rhombic scales of lepidosteoid type. Some basal genera of halecomorphs show remains of a dentine layer between ganoin and bone that is characteristic of actinopterygians below the halecostome level. The Semionotidae placed at the base of the Halecostomi, exhibit scale histology transitional between the palaeoniscoid and lepidosteoid scale type. Introduction Actinopterygians, from primitive Coccolepididae to advanced teleosts, are represented in the Solnhofen lithographic limestone. These are fishes with rhombic and round scales. Ganoid scales of the lepidosteoid type are found in the following fishes: semionotid Lepidotes and Heterostrophus, macrosemiids Histionotus, Macrosemius, Notagogus and Propterus, ophiopsid Ophiopsis, caturids Furo and Brachyichthys, aspido- rhynchid Belonostomus, pleuropholid Pleuropholis, and pholidophorid Pholidophorus.
    [Show full text]
  • Article (PDF, 1844
    Fossil Record 10(1) (2007), 17–37 / DOI 10.1002/mmng.200600016 Eurycormus –– Eurypoma, two Jurassic actinopterygian genera with mixed identity Gloria Arratia* & Hans-Peter Schultze** The University of Kansas, Biodiversity Research Center and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Blvd., Lawrence, KS 66045-7561. U.S.A. Received 1 August 2006, accepted 31 August 2006 Published online 30 January 2007 With 14 figures Key words: actinopterygian fishes, Upper Jurassic, southern Germany, morphology, systematics. Abstract Three Late Jurassic actinopterygian species are commonly placed in the genus Eurycormus: E. egertoni, E. grandis and E. spe- ciosus. A detailed comparison supports an earlier assignment to two different genera, Eurycormus Wagner, 1863 (speciosus) and Eurypoma Huxley, 1866 (E. egertoni and E. grande). Systematically, the two genera are only distantly related; Eurycormus belongs to the Teleosteomorpha, whereas Eurypoma is a halecomorph closely related to or a member of the Caturoidea with- in the Amiiformes. Schlu¨ sselwo¨ rter: Actinopterygii, Oberer Jura, Su¨ ddeutschland, Morphologie, Systematik. Zusammenfassung Drei oberjurassische Actinopterygier-Arten, egertoni, grandis und speciosus, werden gewo¨ hnlich zur Gattung Eurycormus ge- stellt. Ein detaillierter Vergleich der drei Arten besta¨tigt eine fru¨ here Zuordnung zu zwei verschiedenen Gattungen, Eurycor- mus Wagner, 1863 (speciosus) und Eurypoma Huxley, 1866 (E. egertoni und E. grande), die zwei ho¨ heren Taxa innerhalb der Neopterygii zugeordnet werden: Eurycormus zu den Teleosteomorpha und Eurypoma zu den Amiiformes innerhalb der Hale- comorphi, mo¨ glicherweise nahe oder innerhalb der Caturoidea. # 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Introduction cies, E. grandis (see Fig. 2A), from the Upper Jur- assic of Cambridgeshire, England, within this Agassiz (1843) named a Late Jurassic fish from genus.
    [Show full text]
  • The Genus Furo (Pisces, Halecomorphi) from the Upper Jurassic Plattenkalke of Germany
    ORYCTOS,Vol. 1 :23-35,Octobre 1998 THEGENUS FURO (PISCES, HALECOMORPHI) FROMTHE UPPERJURASSIC PLATTENKALKE OF GERMANY Paul H. LAMBERS PaleontologischeWerkkamer, Biologisch Centrum RUG, Postbus 14,9750 AA Haren, the Netherlands. e-mail: phlambers@ biol.rug.nl Abstract : An overview of the speciesassigned to the genus Furo fowd in the German lithographic limestones of the Solnhofen-area(Bavaria) and Nusplingen (Baden-Wiirttemberg) is presentedand the monophyly of the Upper JurassicFuro is discussed.Six speciescan be recognized: 'F.' latim.anus,'F.' longiserratus, 'F.' microlepidotes, 'E' aldingeri, 'F.' angustus and'F.' miinsteri. Among these 'E' angustus and'F.' miinsteri form a monophyletic group, to which 'F.' aldingeri might be related as well. 'F.' longiserrarus might be closely related to the Ophiopsidae,whereas 'E' microlepidotes shows similarities with the Caturidae. The position of 'F.' latimanus remains to be determined. There are no indications of a monophyletic genusof Furo and the relationshipsof the Upper Jurassicfurids with the Lower Jurassicspecies of Furo remain to be examined. Key words: Eugnathus, Furo, Halecomorphi, phylogeny, Plattenknlke, Tithonian Le genreFuro (Pisces,Halecomorphi) du Jurassiquesupérieur d'Allemagne. Résumé : Les différentes espècesdu genre Furo enprovenancedes gisementsallemands à calcaireslithographiques des régions de Solnhofen (Bavière) et de Nusplingen (Bade-Wiirttemberg)sont présentéeset la monophylie du genre Furo du Jurassiquesupérieur est discutée.Six espècespeuvent être reconnues: '.8' Iatimanus,
    [Show full text]
  • Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
    Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare.
    [Show full text]
  • Introduction and Bibliography
    Downloaded from http://sp.lyellcollection.org/ by guest on October 3, 2021 Introduction and bibliography MIKE SMITH*, ZERINA JOHANSON, PAUL M. BARRETT & M. RICHTER Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author (e-mail: [email protected]) Arthur Smith Woodward (1864–1944) was ac- Wegener was proposing his theory of continental knowledged as the world’s foremost authority on drift. It would be almost half a century before fossil fishes during his lifetime and made impor- his theory gained widespread acceptance. Hallam tant contributions to the entire field of vertebrate (1983, p. 135) wrote in Great Geological Contro- palaeontology. He was a dedicated public servant, versies that ‘The American palaeontologist G. G. spending his whole career at the British Museum Simpson noted in 1943 the near unanimity of (Natural History) (now the Natural History Museum, palaeontologists against Wegener’s ideas’. Smith NHM) in London. He served on the council and as Woodward certainly fell into this camp but was president of many of the important scientific socie- more inclined to note that no certainty could yet be ties and was elected a Fellow of the Royal Society attached to the palaeontological evidence (Wood- in 1901. He was knighted on retirement from the ward 1935). Scientific theories that we accept today Museum in 1924. were still controversial and intensely debated while Smith Woodward was born on 23 May 1864 in Smith Woodward was alive. Macclesfield, an industrial town in the north Mid- A book that celebrates the life and scientific lands of England.
    [Show full text]
  • From the Middle Triassic of Guizhou, China
    第53卷 第1期 古 脊 椎 动 物 学 报 pp. 1-15 2015年1月 VERTEBRATA PALASIATICA figs. 1-6 Panxianichthys imparilis gen. et sp. nov., a new ionoscopiform (Halecomorphi) from the Middle Triassic of Guizhou, China XU Guang-Hui1,2 SHEN Chen-Chen1 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) Nanjing 210008) Abstract The Ionoscopiformes are a fossil lineage of halecomorphs known only from the Mesozoic marine deposits. Because of their close relationships with the Amiiformes, the Ionoscopiformes are phylogenetically important in investigating the early evolution and biogeography of the Halecomorphi. However, fossil evidence of early ionoscopiforms was scarce; until recently, Robustichthys from the Middle Triassic Luoping Biota, eastern Yunnan, China, represents the oldest and only known ionoscopiform in the Triassic. Here we report the discovery of a new ionoscopiform, Panxianichthys imparilis gen. et sp. nov., on the basis of two well preserved specimens from the Middle Triassic Panxian Biota, western Guizhou, China. The discovery documents the second ionoscopiform in the Middle Triassic; although Panxianichthys is slightly younger than Robustichthys, it is significantly older than other members of this group from the Late Jurassic of Europe, and Early Cretaceous of North and South America. Panxianichthys possesses an important synapomorphy of the Ionoscopiformes: a sensory canal in the maxilla, but retains some primitive characters unknown in other ionoscopiforms. Results of our phylogenetic analysis recover Panxianichthys as the most primitive ionoscopiform, and provide new insight on the early evolution of this clade.
    [Show full text]
  • Family-Group Names of Fossil Fishes
    European Journal of Taxonomy 466: 1–167 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.466 www.europeanjournaloftaxonomy.eu 2018 · Van der Laan R. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:1F74D019-D13C-426F-835A-24A9A1126C55 Family-group names of fossil fishes Richard VAN DER LAAN Grasmeent 80, 1357JJ Almere, The Netherlands. Email: [email protected] urn:lsid:zoobank.org:author:55EA63EE-63FD-49E6-A216-A6D2BEB91B82 Abstract. The family-group names of animals (superfamily, family, subfamily, supertribe, tribe and subtribe) are regulated by the International Code of Zoological Nomenclature. Particularly, the family names are very important, because they are among the most widely used of all technical animal names. A uniform name and spelling are essential for the location of information. To facilitate this, a list of family- group names for fossil fishes has been compiled. I use the concept ‘Fishes’ in the usual sense, i.e., starting with the Agnatha up to the †Osteolepidiformes. All the family-group names proposed for fossil fishes found to date are listed, together with their author(s) and year of publication. The main goal of the list is to contribute to the usage of the correct family-group names for fossil fishes with a uniform spelling and to list the author(s) and date of those names. No valid family-group name description could be located for the following family-group names currently in usage: †Brindabellaspidae, †Diabolepididae, †Dorsetichthyidae, †Erichalcidae, †Holodipteridae, †Kentuckiidae, †Lepidaspididae, †Loganelliidae and †Pituriaspididae. Keywords. Nomenclature, ICZN, Vertebrata, Agnatha, Gnathostomata.
    [Show full text]
  • Post-Paleozoic Patterns in Marine Predation: Was T~Rea ~Sqzoic and Cenozoic Marine Predatory Revolution? Sally E
    POST-PALEOZOIC PATTERNS IN MARINE PREDATION: WAS T~REA ~SQZOIC AND CENOZOIC MARINE PREDATORY REVOLUTION? SALLY E. WALKER" CCARTON E. BRETTZZ 'Department of Geology, University of Georgia, Athens, Georga 30602 USA Qepartmex1.t of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0013 USA AB~~CT-Mesozoicand Cenozoic evoltttion ofpredators involved u series of episodes. Predaaors rebounded rather rapidly csfier the Permo-Tsa'ussic extiacsion and by the Middle Triassic a variety of new predator guilds had appeared, including decapod crustaceans with crushing claws, shell-crushing sharks and boay>fish as well as marine reptiles adapted for crushing, smashing, and piercing shells. While several groups (e.g., placodoats, nothosaurs) becam extinct in the Late Triassic crises, others (e.g., ichthyosaurs) survived; and the Jurassic to Early Cretaceous saw the rise ofmalacostmcaa cmtaceam with cmhing chelae and prerkadoiy vertebrates-in particuhl; the marine cr-ocodiliuns, ichthyosaurs, dpless'osau~s.fie iate Crercrceor~~suw unprecedented levels of diversiiy of marimp redaceom vertebrates including pliusautids, plesiosaurs, admosasauw. The great Cretaceous- Tertiaiy extinction decimted marine ~ptiles.Howeves most invertebrate and$shpredaroly groups survived; and during the Paleoge~le,predatoly benthic invertebrates showed a spurt of evol~stionwith neogastropods and new groups of decapods, while the teleosts and neoseluchian shark7 both underweadparallel rapid evolutioaa~yradiations; these were joined by newpredcltoy guilds of sea birds and marine rnamls. Thus, although escalution ix so??wtimes casr as un ongoing "rrms race,'' in achtalih. the predatoly record shows long interludes of relative stability puncturuted by episodes of abrupt biotic reorganization during and afer mass extinctions. This patbem suggests episodic, but generally increasing, predation pressure on marine organisms through the Mesozoic-Cenozoic interval.
    [Show full text]
  • Late Jurassic Jaw Bones of Halecomorph Fish (Actinopterygii: Halecomorphi) Studied with X-Ray Microcomputed Tomography
    Palaeontologia Electronica palaeo-electronica.org Late Jurassic jaw bones of Halecomorph fish (Actinopterygii: Halecomorphi) studied with X-ray microcomputed tomography Błażej Błażejowski, Paul Lambers, Piotr Gieszcz, Daniel Tyborowski, and Marcin Binkowski ABSTRACT New finds of Halecomorphi fish remains from Late Jurassic limestones of Owadów-Brzezinki (Poland) are investigated using X-ray microcomputed tomography (XMT) revealing details of jaw bones for actinopterygian fish histology. Three-dimen- sional (3-D) reconstruction allows for correct taxonomical verification. The possibility of 3-D printing gives the opportunity for work with a model in any desired scale without risk of damaging the specimen. Błażej Błażejowski. Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland. [email protected] Paul Lambers. Universiteitsmuseum Utrecht, Lange Nieuwstraat 106, 3512 PN Utrecht, The Netherlands, [email protected] Piotr Gieszcz. Independent Center for Advanced Research machinic.it, Stawki 4c/10, 00-193 Warszawa, Poland, [email protected] Daniel Tyborowski. Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland, [email protected] Marcin Binkowski. Department of Computer Science and Materials Science, University of Silesia, Katowice, Poland, [email protected] Keywords: Halecomorph fish; Late Jurassic; X-ray microcomputed tomography (XMT) Submission: 14 October 2014. Acceptance: 21 October 2015 INTRODUCTION sils of latest Jurassic (Late Tithonian) terrestrial and marine organisms (including also remains of This paper presents the recently discovered pterosaurs, ammonites, horseshoe crabs, decapod jaw bones of halecomorph fish studied with X-ray crustaceans and insects) were discovered (Błaże- microcomputed tomography. The bones came from jowski, 2015; Kin and Błażejowski, 2012, 2014; new paleontological site of the Sławno limestones Błażejowski et al., 2015).
    [Show full text]
  • Was There a Mesozoic and Cenozoic Marine Predatory Revolution?
    POST-PALEOZOIC PATTERNS IN MARINE PREDATION: WAS THERE A MESOZOIC AND CENOZOIC MARINE PREDATORY REVOLUTION? SALLY E. WALKERI AND CARLTON E. BRETT2 'Department of Geology, University of Georgia, Athens, Georgia 30602 USA 2Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0013 USA ABSTRACT-Mesozoic and Cenozoic evolution ofpredators involved a series ofepisodes. Predators rebounded rather rapidly after the Permo-Triassic extinction and by the Middle Triassic a variety ofnew predator guilds had appeared, including decapod crustaceans with crushing claws, shell-crushing sharks and bonyfish, as well as marine reptiles adaptedfor crushing, smashing, and piercing shells. While several groups (e.g., placodonts, nothosaurs) became extinct in the Late Triassic crises, others (e.g., ichthyosaurs) survived; and the Jurassic to Early Cretaceous saw the rise ofmalacostracan crustaceans with crushing chelae and predatory vertebrates-in particular, the marine crocodilians, ichthyosaurs, and plesiosaurs. The late Cretaceous saw unprecedented levels of diversity ofmarine predaceous vertebrates including pliosaurids, plesiosaurs, and mosasaurs. The great Cretaceous­ Tertiary extinction decimated marine reptiles. However, most invertebrate andfish predatory groups survived; and during the Paleogene, predatory benthic invertebrates showed a spurt ofevolution with neogastropods and new groupsofdecapods, while the teleostsand neoselachian sharks both undenventparallel rapid evolutionary radiations; these werejoinedby new predatory guilds
    [Show full text]
  • Re-Study on Gymnoichthys Inopinatus from Middle Triassic of Luoping Yunnan China.Pdf 1.02 MB
    じ51ࢣȞじ1᱋ ऐ㘶Ḻߔ➕႒៑ pp. 1-16 2013Ꭰ1ᰴ VERTEBRATA PALASIATICA figs. 1-8 Re-study on Gymnoichthys inopinatus from Middle Triassic of Luoping, Yunnan, China TAN Kai1,2,3ȞJIN Fan1 (1 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 University of Chinese Academy of Sciences Beijing 100049) (3 The Geological Museum of China Beijing 100034) Abstract Gymnoichthys inopinatus was initially described by Tintori et al. in 2010, and regarded as a basal neopterygian. According to the new material of the Middle Triassic Guanling Formation discovered in Dawazi Village, Luoping County, Yunnan Province, China, we redescribed G. inopinatus, and re-identified its systematic position. G. inopinatus has only one supramaxilla and its symplectic is likely jointed with the articular, which are the identifying characters of Halecomorphi. Morever, G. inopinatus has no scales, its vertebral centra are not ossified, and the structure and relationship of the neural arches and neural spines, as well as the shape of teeth and ural haemal spines in G. inopinatus are quite like that of the caturoids. Hence, it is suggested to consider G. inopinatus as a basal form of the superfamily Caturoidea. Previously, caturoids were only discovered in the Jurassic of Europe and North America, and its recognized forms included Liodesmus, the only genera of the family Liodesmidae, and Caturus and Amblysemius of the family Caturidae. Gymnoichthys inopinatus is not only the first caturoid found in China, but also the earliest caturoid in the world, which is 40 million years earlier than the European and North American caturoids.
    [Show full text]
  • Arthur Smith Woodward's Fossil Fish Type
    ARTHUR SMITH WOODWARD’S 1 Bernard & Smith 2015 FOSSIL FISH TYPE SPECIMENS (http://www.geolsoc.org.uk/SUP18874) Arthur Smith Woodward’s fossil fish type specimens EMMA LOUISE BERNARD* & MIKE SMITH Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK *Corresponding author (e-mail: [email protected]) CONTENTS Page INTRODUCTION 3 TYPES 4 Class Subclass: Order: Pteraspidomorphi 4 Pteraspidiformes 4 Cephalaspidomorphi 5 Anaspidiformes 5 Placodermi 6 Condrichthyes Elasmobranchii 7 Xenacanthiformes 7 Ctenacanthiformes 9 Hybodontiformes 9 Heterodontiformes 21 Hexanchiformes 22 Carcharhiniformes 23 Orectolobiformes 25 Lamniformes 27 Pristiophoriformes 30 Rajiformes 31 Squatiniformes 37 Myliobatiformes 37 Condrichthyes Holocephali 42 Edestiformes 42 Petalodontiformes 42 Chimaeriformes 44 Psammodontiformes 62 Acanthodii 62 Actinopterygii 65 Palaeonisciformes 65 Saurichthyiformes 74 Scorpaeniformes 75 Acipenseriformes 75 Peltopleuriformes 77 ARTHUR SMITH WOODWARD’S 2 Bernard & Smith 2015 FOSSIL FISH TYPE SPECIMENS (http://www.geolsoc.org.uk/SUP18874) Redfieldiiforme 78 Perleidiformes 78 Gonoryhnchiformes 80 Lepisosteiformes 81 Pycnodontiformes 82 Semionotiformes 93 Macrosemiiformes 105 Amiiformes 106 Pachycormiformes 116 Aspidorhynchiformes 121 Pholidophoriformes 123 Ichthyodectiformes 127 Gonorynchiformes 131 Osteoglossiformes 132 Albuliformes 133 Anguilliformes 136 Notacanthiformes 139 Ellimmichthyiformes 140 Clupeiformes 141 Characiformes 144 Cypriniformes 145 Siluriformes 145 Elopiformes 146 Aulopiformes 154
    [Show full text]