Re-Study on Gymnoichthys Inopinatus from Middle Triassic of Luoping Yunnan China.Pdf 1.02 MB

Total Page:16

File Type:pdf, Size:1020Kb

Re-Study on Gymnoichthys Inopinatus from Middle Triassic of Luoping Yunnan China.Pdf 1.02 MB じ51ࢣȞじ1᱋ ऐ㘶Ḻߔ➕႒៑ pp. 1-16 2013Ꭰ1ᰴ VERTEBRATA PALASIATICA figs. 1-8 Re-study on Gymnoichthys inopinatus from Middle Triassic of Luoping, Yunnan, China TAN Kai1,2,3ȞJIN Fan1 (1 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 University of Chinese Academy of Sciences Beijing 100049) (3 The Geological Museum of China Beijing 100034) Abstract Gymnoichthys inopinatus was initially described by Tintori et al. in 2010, and regarded as a basal neopterygian. According to the new material of the Middle Triassic Guanling Formation discovered in Dawazi Village, Luoping County, Yunnan Province, China, we redescribed G. inopinatus, and re-identified its systematic position. G. inopinatus has only one supramaxilla and its symplectic is likely jointed with the articular, which are the identifying characters of Halecomorphi. Morever, G. inopinatus has no scales, its vertebral centra are not ossified, and the structure and relationship of the neural arches and neural spines, as well as the shape of teeth and ural haemal spines in G. inopinatus are quite like that of the caturoids. Hence, it is suggested to consider G. inopinatus as a basal form of the superfamily Caturoidea. Previously, caturoids were only discovered in the Jurassic of Europe and North America, and its recognized forms included Liodesmus, the only genera of the family Liodesmidae, and Caturus and Amblysemius of the family Caturidae. Gymnoichthys inopinatus is not only the first caturoid found in China, but also the earliest caturoid in the world, which is 40 million years earlier than the European and North American caturoids. Key wordsǂLuoping, Yunnan; Anisian, Middle Triassic; Guanling Formation; Gymnoichthys inopinatus, Caturoidea; phylogeny ѥफ㔫ᑇЁϝ঴Ϫᛣ໪㻌剐ⱘݡⷨお ൪bᩏ1,2,3bࠡb֨1 ȞȞȞ(1 ͙఩⻽႒䮎ऐ㘶Ḻߔ➕̺ऐϦㆧⵀ⾢ᝬ喏͙఩⻽႒䮎㘶Ḻߔ➕⑀ࡂ̺Ϧㆧ䊣⎼䛹◥჊侸აȞࡃϘȞ100044) ȞȞȞ(2 ͙఩⻽႒䮎๓႒ȞࡃϘȞ100049) ȞȞȞ(3 ͙఩౜䉔ࢆ➕亲ȞࡃϘȞ100034) ദ᎞᫜凹冨ڑᨬ㽕喝ᘻโ㸤冨(Gymnoichthys inopinatus)κ2010Ꭰ⩝Tintoriふ仂⁍䃜䔜Ꭲᑾ ᇙ㏰θ⃡ࣽ⣜⮰᫜ᱼ᫅喏ᄥᘻโ㸤ڟၼᱽ̵͙ऌ͂ܥㆧȠӉᢚ౔νࢃⰭᰞ䲂౜ࡦ㒃᎟࣫๓ ఩ტ㜖♢⻽႒ദ䛽(ឥ۲ण喝40472017)䉰ߕȠ ᩢ⽫ᬑ᱋喝2012-02-20 2 ऐȞ㘶ȞḺȞߔȞ➕Ȟ႒Ȟ៑ 51ࢣ 㐙俔ڢ㈧Ƞ౔ᘻโ㸤冨⮰᫜ᴳ᱘̶喏छ㻭ڟ㈧㐋ࣽ㗞ڢ᣻䔜喏Ꭲ䛹᫜䃔䃦βٱ冨䔇㵸β㶑 㞮喏Ꭲᰵ⶚ܳᬌ⪽⮰ࢁ̬䒱̶䶸俔喏㶔ᬺᘻโ㸤冨Ꮐͦ凝φ䘔ڟ㞮俔Ⱔڟݹ〛ᒴछ㘩̺ (Halecomorphi)冨ㆧȠₐโ喏ᘻโ㸤冨⮰ѿ㶔ᬌ刊ȟḺѿ᱖俔ࡂȟ俿Ḅস俿ᐿ⮰㏿Ჰসᢾ ݃᫥ᐻБࣶ➅咫সᅪ㘵Ḅ⮰ᒎ⟢䘩̺䛽ᅪ冨䊱⻽冨ㆧ(caturoids)̬㜠Ƞ㈧㐋ࣽ㗞ܲ᲼㏿᳈㶔 ⣜ᬺᘻโ㸤冨ᆊκ䛽ᅪ冨䊱⻽⮰ദ᎞ㆧ㓐Ƞͷݹ䛽ᅪ冨ㆧͧ㺭㻭κ⁓≞সࡃ㒺⮰һ㒃㈧喏 䃐⮰䛽ᅪ冨䊱⻽冨ㆧͧ㺭࠱᠘Liodesmidae͙⮰Liodesmusᆊস䛽ᅪ冨⻽(Caturidae)͙⮰ژ౔ ᣼ݹβ40 Ma, 㔸̀඗⣜ܦCaturusসAmblysemius͐ᆊȠᘻโ㸤冨⮰ࣽ⣜̹ϱҫ䛽ᅪ冨ㆧ⮰ ᱼ᫅⮰⾦㑦Ƞڟ㶑β᜽఩Ⱔ ᇙ㏰喏䛽ᅪ冨䊱⻽喏ᘻโ㸤冨喏㈧㐋ࣽ㗞ڟ䬂䆡喝νࢃ㒃᎟喏̵͙ऌ͂Ⴕᅨ᱋喏݇ Ё೒⊩ߚ㉏ো喝Q915.862Ȟ᭛⤂ᷛ䆚ⷕ喝AȞ᭛ゴ㓪ো喝1000-3118(2013)01-0001-16 喏䯢ᆊκ䒼凹冨φ㏞喏᫜凹冨ܦᰬᬕ⩝Owenκ1860Ꭰ᣼ٯ䛽ᅪ冨҈̬͖ͦ⻽㏓ㆧ ᐿ凹冨Ⱊ(Nelson, 2006)Ƞ䛽ᅪ冨ㆧڑφ㏞喏凝ए䘔喏凝φ䘔喏⣜౔፤҈̬ͦ䊱⻽㷗ᑾ⁍ ࣽ⣜⮰ᅮѹ̶̵ͦऌ㐋㜟̶⮩ೕ㐋喏ͷݹϱ౔⁓≞সࡃ㒺ᰵ៑䕿Ƞ⁓≞⮰ϓ౜ͧ㺭䯲͙ 䛽ᅪ冨ㆧ⮰ڑऺ㷗ᑾٴসऐጠȠڜ౔ᓣ఩ȟ∁఩স㠝఩喞ࡃ㒺⮰ϓ౜ͧ㺭䯲͙౔͈ᵨ䮡 ᆊ࠱᠘Caturus, Allolepidotes, Heterolepidotes, Lophiostomus, Macrepistius, Neorhombolepis, Osteorachis, Otomitla, Sinoeugnathus, Callopterus, Paraliodesmus, Plesiofuro, Amblysemius ͙̹ᄽᆊ⻹⮰㈧㐋ѹ㒚Ϲႄ⪽(㶔1)ȠڢসLiodesmusふ喏Ѳ ᇙ㏰θ⃡⮰䛽ᅪ冨ㆧࡂⴟ(ᑌज़䋯ふ喏ڟ᱘᪳៑䕿β᫜䓽ࣽ⣜κνࢃ㒃᎟̵ऌ㈧ 2008)Ƞ䄑ㆧࡂⴟᰬ䓽㷗Tintoriふ(2010)঩हͦᘻโ㸤冨(Gymnoichthys inopinatus), Ꭲ䃐 ͦᆊκ᫜凹冨̷㏞⮰ദ᎞ㆧ㓐Ƞ᱘ⵀ⾢ͧ㺭䕆䓳ᄥ᫜ᴳ᱘̺₏ಷᴳ᱘䔇㵸℀䒯ࣶ㈧㐋ܲ ⾢౔䛽ᅪ冨䊱⻽͙⮰ദ᎞ѹ㒚喏Ⱊ⮰౔κ䕆䓳ᄥᘻโ㸤冨⮰ᒎᔭ᣻䔜喏ⵀڢ᲼喏⶚჆β 䘔ڱㆧ㓐Ⱔ℀喏Ԛ䃎䛽ᅪ冨䊱⻽㜖䓽㸀ᕓ⟢喏ͦ凝φ䘔یڢᬕ᱋䛽ᅪ冨⮰ᒎᔭߋ㘩喏স ᫜⮰ⰷ∁喏Ꭲ̺̀⁓≞সࡃ㒺ᴳ᱘℀䒯喏ᄥ̵͙ऌ͂ߔ➕౜⤲ܲጯБܦ㈧᣼ڟ㈧㐋ࣽ㗞 ࣶ䛽ᅪ冨ㆧ⩋≧Όᕓ⮰⑀ऄⵀ⾢᣼ӇӉᢚȠ 㸼 1ǂ䞥ሒ剐㉏䚼ߚሲⱘ㋏㒳ԡ㕂ব᳈ Table 1ȞTaxonomic alteration of some genera of caturoids Genus Referred to Caturoidea by Current taxonomic position Caturus Owen, 1860 Still in Caturoidea Furo (=Eugnathus) Owen, 1860 Considered to be the stem group of the ionosopids by Gardiner et al.(1996) Allolepidotes Patterson, 1973 Moved out of Caturoidea by Bartram (1975) Heterolepidotes Patterson, 1973 Considered to be close to Ionoscopus by Gardiner et al.(1996) Lophiostomus Patterson, 1973 Moved out of Caturoidea by Bartram (1975) Macrepistius Patterson, 1973 Considered to be the sister-group of Ophiopsis by Gardiner et al.(1996) Neorhombolepis Patterson, 1973 Put into Ophiopsidae by Grande and Bemis (1998) Osteorachis Patterson, 1973 Considered to be the stem group of the halecomorphs by Gardiner et al.(1996) Otomitla Patterson, 1973 Still in Amiiformes, but the family uncertain Sinoeugnathus Patterson, 1973 Moved out of Caturoidea by Bartram (1975) Plesiofuro Su, 1993 Considered to be one of the perleids by Xu and Gao (2008) Amblysemius Lambers, 1994 Still in Caturoidea Liodesmus Grande & Bemis, 1998 Still in Caturoidea Callopterus Lambers, 1995 Moved out of Caturoidea by Bartram (1975) Paraliodesmus Lambers, 1995 Still in Amiiformes, but the family uncertain ⵀ⾢ 3ڹ1᱋ 䅙Ȟ䩠ふ: νࢃ㒃᎟̵͙ऌ͂ᘻโ㸤冨⮰ 1Ȟᴳ᱘᣻䔜 ⹀偼剐㒆Class Osteichthyes Huxley, 1880 Ȟ䕤务剐Ѯ㒆Subclass Actinopterygii Cope, 1887 (sensu Rosen et al., 1981) ȞȞᮄ务剐⃵Ѯ㒆Infraclass Neopterygii Regan, 1923 (sensu Rosen et al., 1981) ȞȞȞ劅ষ䚼Division Halecostomi Regan, 1923 (sensu Patterson, 1973) ȞȞȞȞ劅Ѯ䚼Subdivision Halecomorphi Cope, 1872 (sensu Patterson, 1973) ȞȞȞȞȞᓧ务剐ⳂOrder Amiiformes Hay, 1929 (sensu Grande & Bemis, 1998) ȞȞȞȞȞȞ䞥ሒ剐䍙⾥Superfamily Caturoidea Owen, 1860 ȞȞȞȞȞȞȞ⾥᳾ᅮFamily indeterminate ȞȞȞȞȞȞȞȞ㻌剐ሲGenus Gymnoichthys Tintori et al., 2010 ῵ᓣ⾡Ȟᘻโ㸤冨Gymnoichthys inopinatus Tintori et al., 2010Ƞ 䅶ሲᕕȞ͙ふ๓ᄻ喞ᴳ۲䪫Ꮢ190 mm; ๠䪫ࢌᴳ۲䪫Ꮢ⮰1/4; ͖ѿᰬ倄ะѹκ㗸ׂ 俔ࡂ⮰Ḻѿ喏Ѳ᭛ݹ䘔䏛᎞ḺᰵḺѿ⣛₷ڔᰵႸڣ凹ᐬ໷⮰ѹ㒚喏๓㏒50 mmጒट喞̹ ͐ڢ喞ѿ㶔̹㺲刊❳喞Ɫ̷俔2~3ಃ喏䊶䲌ऺ䊶๓喞呧俔౔䷉俔⮰̷ݹ᫥喏㔸̹᭛౔҅ ӓ喞䪫䷉俔সⰤᄥⴙ⮰䶢俔̶౳ᰵᩪᄰ⟢⮰㏥亜喞䶢俔䪫Ꮢⴙκ㛈䉔㔨㕟俔喞䒱̶䶸俔 〚㞮喏㐙俔ӓ䲎̺᫥俔ᣑ㼒喏̷ᅂڟಃ喞㐙俔স᫥俔Ჰ᜼β̬ࣸڣᷙ⟢喏䒯ᄻ喏⃻ӓख ̷℀㞮喞䩑ᒎ咫喞䬠凯Ⰲ俔䒯ᄻ喏ॴ̵㻾ᒎ喞ݹ凯Ⰲ俔ॴ᫜ᰴᒎ喞凯Ⰲ俔ᬺ᭪ڟ䮱俔̺ 凯Ⰲ俔๓喞ᙋ㻵⺊㏻ネӉ⁍⾫䓳β咫俔ȟ䮱俔ȟݹ凯Ⰲ俔ȟ㛈䉔㔨㕟俔ȟ䷉俔ȟ㛈䉔㲢 㕟俔ȟⱢ̷俔স䷉โ㗕㘇俔喞⃻ӓ凯᲍俔᪜Ⱊ10᲍ጒट喞⃻ӓरᰵ2ऺࡅ俔喞ᅪ䘔⺊㏻ ڣ䓽ॴⅠ᎟᫥ऽ喞ᅪ̷俔ὖܳ䲎ॴ〥ढ⟢喞खᰵ̬ಃ㚥凹ᩛ凹俔喞ख܌Ḅ᱗〛ऽ̷ժ喏 ̬㗸凹喞㛬凹ᄻκ㗸凹喏ᒎ⟢̺㗸凹ⰤѨ喏౳ॴ̵㻾ᒎ喞ᅪ凹ࣵ㷮≱喏ࡶₖಷᅪ喏̶ढ ⼹䪫κ̷ढ喞凹ᐻͦ喝P. 15?; V. 8; D. iv15; A. ii11; C. i20iiȠ ǂǂǂǂǂᛣ໪㻌剐Gymnoichthys inopinatus Tintori et al., 2010 (ప1~4; 㶔2) ℷൟᷛᴀȞGMPKU-P-1483, ̬ಃ䓽ͺႸ᪠⮰ᴳ᱘喏ϱ呧俔䶢〛㑦๝喞ᴳ᱘ԉႄκ ࡃϘ๓႒౜䉔ࢆ➕亲Ƞ ⷨおᷛᴀȞIVPP V 16354(ప1)সV 17672(ప2), ͖͐ԉႄദ᱘Ⴘ᪠⮰᜼Ꭰ͖ѿ喞 V 17911সV 17912, ͐ಃ䒯ͦႸ᪠⮰ᎨᎠ͖ѿȠ౳ԉႄκ͙఩⻽႒䮎ऐ㘶Ḻߔ➕̺ऐϦ ㆧⵀ⾢ᝬȠ ᇙ㏰θ⃡㪰ᅮڟᱽ喞̵͙ऌ㐋ٵၼᱽসΉܥѻഄ੠ሖԡȞνࢃⰭ㒃᎟࣫㒃䯰䩳๓ ∑ᮢ▜ᇕȠ 䅶⡍ᕕȞ㻭Ԛ䃎ᆊᒭȠׂ 䪫ܲݗͦ177স145 mmȠڔ⏽ᬌ刊ȠIVPP V 16354সV 17672ٵᦣ䗄Ȟѿॴᷙᒎ喏ѿ㶔 ๠䪫๓κ๠倄喏Ѳ⪑ᄻκѿ倄Ƞѿ䪫㏒ͦ๠䪫⮰3Թȟѿ倄⮰2.7ԹȠᅪᳰ䪫㏒ふκᅪᳰ 䪫ܲݗͦ59ڔ䪫⮰1/4ȠᎨѿᴳ᱘ڔ䪫⮰℀ҷ๓Ắ᭛1:4, ๠সᅪ凹๓Ắरࢌڔ倄Ƞѿ倄স (V 17911)স56 mm (V 17912, 䄑ᴳ᱘⮰ᅪ凹ऺ㑄⇍ԉႄ喏჊䭱䪫ᏒᏀ䄑ๆ2~3 mm), Ⱔᄥ Ђर䘔℀ҷദ᱘Ⱔᑿ(㶔2)Ƞڢ᜼Ꭰ͖ѿ喏๠⪑᭪๓喏 4 ऐȞ㘶ȞḺȞߔȞ➕Ȟ႒Ȟ៑ 51ࢣ ప 1Ȟᘻโ㸤冨᫜ᴳ᱘IVPP V 16354 Fig. 1ȞGymnoichthys inopinatus Tintori et al., 2010, a new specimen (IVPP V 16354) and its line drawing ప 2Ȟᘻโ㸤冨᫜ᴳ᱘IVPP V 17672 Fig. 2ȞGymnoichthys inopinatus Tintori et al., 2010, a new specimen (IVPP V 17672) ⵀ⾢ 5ڹ1᱋ 䅙Ȟ䩠ふ: νࢃ㒃᎟̵͙ऌ͂ᘻโ㸤冨⮰ 㸼 2ǂᛣ໪㻌剐ᮄᷛᴀⱘ⌟䞣 Table 2ȞMeasurements of Gymnoichthys inopinatus (mm) IVPP V 16354 V 17672 V 17911 V 17912 ܼ䭓(total length) 177 145 59 56 ԧ䭓(body length) 137 115 43 42 ༈䭓(head length) 44 43 19 19 䒃ᑆ䭓(trunk length) 49 48 15 13 ሒᶘ䭓(tail peduncle length) 20 18 5 5 ਏ䭓(rostrum length) 10 7 4 4 ⴐᕘ(orbit length) 12 9 5 4 ⴐৢ༈䭓(head length after orbit) 22 27 10 11 ԧ催(body depth) 50 ? 11 10 ሒᶘ催(tail peduncle depth) 21 18 5 6 㝍务ࠡ㾦(pre-pelvic angle) ? 30º 30º ? 㚠务ࠡ㾦(pre-dorsal angle) 50º 60º 60º 58º 㞔务ࠡ㾦(pre-anal angle) 45º 40º 42º 35º 㝍务ࠡ䭓(pre-pelvic length) 24 ? 8 ? 㚠务ࠡ䭓(pre-dorsal length) 41 ? ? 8 㞔务ࠡ䭓(pre-anal length) 38 23 8 8 㚠务෎䭓 GRUVDO¿QEDVHOHQJWK 32 30 11 10 㞔务෎䭓 DQDO¿QEDVHOHQJWK 20 21 7 9 ሒ务䭓 FDXGDO¿QOHQJWK 57?19? ᒎ⟢ॴ䪫᲍ڢਏ䚼偼傐Ȟᑿݹⵀ⾢ᴳ᱘͙喏१䘔俔俨ϱV 16354⮰१俔ԉႄ䒯ຩȠ ᒎ喏ὖ㒚κ๠俔ݹ̶〛喏䪫㏒4mm,ᬺ᭪℀䒛俔⶘刊冨ㆧ⮰१俔ⴙȠ१俔㶔䲎ᰵ3͖ᬺ ᭪⮰ᄻႀ喏じ̬͖ႀᐬएऽݹ喏じθ͖ᐬएऽጒݹ᫥喏じ̵͖ऽऺ̷᫥ᐬए喏̵͖ႀ⮰ 䬠䌉Ⱔᑿ喏܌ͺ౔̬᲍Ⱐ㏫̶喏Ꮐͦ१䘔ᙋ㻵ネ⮰ᐬႀ(ప3)Ƞ 乙乊偼傐Ȟ࠱᠘᜼ᄥ⮰呧俔ȟ䷉俔ȟ䶢俔ȟ㛈䉔㔨㕟俔ȟ䷉โ㗕㘇俔সऺ䷊俔(ప 3)Ƞ᜼Ꭰ͖ѿ䶱䶢俔俨โӓ䲎⮰ᩪᄰ⟢㏥亜স∎⊖⟢䓥㑄Ⱔᑿᬺ᭪喏㔸౔ᎨᎠ͖ѿ͙݅ Ⱔᑿ䒧ᓚ喏ϱछ㻭̬χᄻ⮰㹢⯝Ƞ౔V 16354͙喏呧俔⪑ᰵⵠᢋ喏ॴ45º⮰᎟㵸ఇ䓥ᒎ喏 ጒट呧俔ᄥ⼜ȠV 17672⮰呧俔ⶺ㷮䒯ͦ͑䛹喏̺१俔ⶺ❳⌣౔̬䊣䯪Б䓔䃲ȠV17911 ⮰呧俔ԉႄ̹ຩȠV 17912⮰呧俔ॴ䅲⟢喏ѹκ१ݹ〛Ƞ䷉俔᭛䶱䶢俔俨͙ᰬͦ䪫๓⮰ ᩪᄰ㏥喏ᩪᄰ㏥ڣᒎ⟢ݹ⾰ऺჩ喏䓥㑄ॴ∎⊖⟢喏䪫Ꮢ๓κⱨᒰȠ䷉俔㶔䲎ڢ俔❳喏 ܯȠV 16354䷉俔ݹ〛ॴݽܤ䌛⮰͙ᓯ౔䌉ݹ〛2/3ะ喏ᩪᄰ㏥䮲䊣ะᄥᏀ⮰䓥㑄ऽโ ए喞౔䌉ݹ〛๓㏒1/3ะᐬ໷ߌჩ喏ݜ2/3ะֈ₎ߌჩȠܥጒट呧俔Ჰ᜼⮰ڑ喏₏ຩ᣾⟣ V 17672䷉俔ݹ〛স呧俔䔊ᣑะ䒯ⵠⶺ喏᪠ѿऽऺϒ䔼⌼ऄჩȠV 17911⮰䷉俔㉓㉓⣛㐁 ⱨⱢ喏㶔䲎ϱᰵ䒧ᓚ⮰᎟㵸䶱䶢⮰㏥⤲ȠV 17912⮰䷉俔̺V 17911ㆧѨ喏ख᭛ⰤᄥႸ᪠ Ⱐ㏫䪫Ꮢ̺ऺ䓥㑄๓㜠ⰤᑿȠ䶢ڢჩ⮰ᷛᒎ喏ݹ䓥㑄ॴ∎⊖⟢喏ڱ⾰χȠ䶢俔๓㜠ॴโ 6 ऐȞ㘶ȞḺȞߔȞ➕Ȟ႒Ȟ៑ 51ࢣ ప 3Ȟᘻโ㸤冨᫜ᴳ᱘(IVPP V 16354)⮰๠俔 Fig. 3ȞGymnoichthys inopinatus Tintori et al., 2010, close-up of the head region of the specimen shown in Fig. 1 A. head in left side view; B. line drawing of A; C. head in right side view; D. line drawing of C Abbreviations: ang. angular䮱俔喞ant. antorbitalⱢݹ俔喞br. branchiostegals凯᲍俔喞cl. cleithrumۅ㑕 俔喞d. dorsal side bones㗸ӓ俔俨喞den. dentary咫俔喞dpt. dermopterotic㛈䉔⟣یࡅ俔喞cor. coracoid 㔨俔喞exc. extrascapular䷉โ㗕㘇俔喞ڱ㔨㕟俔喞dsp. dermosphenotic㛈䉔㲢㕟俔喞enp. endopterygoid fr. frontal䷉俔喞gu. gularવᲫ俔喞hy. hyomandibular㜸䶸俔喞io. infraorbitalⱢ̷俔喞iop. interopercle䬠 凯Ⰲ俔喞l. left side bonesጒӓ俔俨喞mpt. metapterygoidऺ㔨俔喞mx. maxilla̶䶸俔喞na. nasal呧俔喞 op. opercle凯Ⰲ俔喞pa. parietal䶢俔喞pal. palatine㚙俔喞pas. parasphenoidޛ㲢俔喞pcl. postcleithrumऺ ࡅ俔喞pmx. premaxillaݹ̶䶸俔喞pop. preopercleݹ凯Ⰲ俔喞pt. posttemporalऺ䷊俔喞qu. quadrate᫥ 俔喞r. right side boneटӓ俔俨喞ro. rostral१俔喞sca. scapula㗕㘇俔喞scl. supracleithrum̶ࡅ俔喞smx. supramaxilla䒱̶䶸俔喞sop. subopercle̷凯Ⰲ俔喞sym. symplectic㐙俔喞v. ventral side bones㚥ӓ俔俨 俔㶔䲎ᩪᄰ㏥⮰⟢ۡস䷉俔ㆧѨ喏㏥⤲ㆧѨ㣶㟝ⴟ喏ᩪᄰ͙ᓯջऽऺ̷䘔Ƞᕧ⮰Ბ䄠喏 Ƞ㛈䉔㔨㕟俔⮰䪫ڟV 16354㛈䉔俔⮰㶔䲎ᩪᄰ㏥℀V 17672ᰠͦࣽ㗞喏Ꮐ̺͖ѿࣽ㗞ᰵ Ꮢ๓㏒᭛䶢俔⮰1.5Թ喏ჩᏒࢠखᰵ䶢俔⮰̬ࡶȠ⩝κᙋ㻵⺊㏻ネႀჲ䯲ࣶԉႄ࣋ఌ喏 ጞ㏻ⶺ㷮᜼ᒴๆᄻಃ喏䔅౔V 16354̶ᰠͦᬺ᭪ȠV 17672⮰㛈䉔㔨㕟俔Ⱔᄥ䒯Ⴘ᪠喏ॴ 侘䲹⟢喏ܥะऽ̷ȠV 17911⮰㛈䉔㔨㕟俔ϒॴ侘䲹⟢喏⩝κԉႄ࣋ఌ᭪ᓃ℀䶢俔ⴙȠ 喏V 17672⮰䷉โ㗕㘇俔℀V 16354⮰ᰠͦ⭒䪫ȠᎨڱโ㗕㘇俔ॴ䓽䪫̵㻾ᒎ喏ᅂ㻾ऽ䷉ ⵀ⾢ 7ڹ1᱋ 䅙Ȟ䩠ふ: νࢃ㒃᎟̵͙ऌ͂ᘻโ㸤冨⮰ ѿᴳ᱘⮰䶢俔ȟ㛈䉔㔨㕟俔ȟ䷉โ㗕㘇俔ऌߌ౔̬䊣喏ᒴ䯪Ӊ⁍ࡦܲᐬȠऺ䷊俔㉓䉠䷉ โ㗕㘇俔喏๓㏒ॴ110º⮰ᝳᒎ喏̬㝘Ბ䄠ݹ䓥㑄䪫κӓ䓥㑄ȠV 17672⮰ऺ䷊俔ӓ䓥㑄 ݹ䓥㑄䒯Ⱐ喏̹׻V 16354⮰䗏ᵣऽݹժ᫈喏ఌₐV 17672⮰ऺ䷊俔ݹ䓥㑄ڢᰵⵠᢋ喏̀ সӓ䓥㑄᭪ᓃ䪫ᏒⰤᑿȠV 17911⮰ऺ䷊俔স᜼ѿԉႄ⟢̬ۡ㜠喏㔸V 17912⮰ऺ䷊俔㔧 ӓ䲎᱉โ喏ݹ䓥㑄᱉̶Ƞڱ䒘ᄨ㜠 ೈⴊ偼Ȟͧ㺭࠱᠘Ɫݹ俔ȟ͐ಃⱢ̷俔ȟⱢऺ俔স㛈䉔㲢㕟俔(ప3)ȠⱢݹ俔ѹκ ⱨⱢݹ᫥喏̺䷉俔স呧俔ⰤᣑȠV 16354⮰Ɫݹ俔ᕧѿॴ̵㻾ᒎ喏ݹ䘔ネ⟢喏ऺ䘔ⶺ㷮 ⣜ᒴๆ㏡ऽᑛᰞ⮰㏥⤲ȠV 17672⮰Ɫݹ俔̺ڣᎢ̺ݹ䘔᫙ᐬ喏ⶺ㷮⮰ᄻ俔❳᜼㊚⟢喏 ᐿ凹冨⮰ᒴ׻喏ॴ䪫Ⅰ␠ಷ喏ऺ〛䒯ᅂ喏ݹ〛䒯䧉ȠV 16354̶㘩ⰷݜ͐ಃⴕᒎ⮰Ɫ⩋ ❲俔喏じ̬ಃⵠⶺ喏ݹ〛⪑⾰ऺ〛⪑ჩ喞じθಃӓ䲎䲎⼛㏒᭛じ̬ಃ⮰5~6Թ喏Ϻ俔̷ ̷͙ࡶ䘔ܲ℀䒯ᬺ᭪喏㔸̀㏥⤲䬠䬠䯀΋℀䒯౳㶍喏ڢ͙ᓯऽโᰵ̬㈧݃ᩪᄰ⟢㏥亜喏 ℀䷉俔স䶢俔̶⮰ᩪᄰ㏥㻰݅ȠV 17672खᰵじθಃⱢ̷俔छ㻭喏ԉႄ℀䒯ⵠⶺ喏Ѳ᭛ ᪜Ⱊসᒎ⟢̹㘩⶚჆Ƞ㛈䉔㲢㕟俔ѹκⱨⱢऺ̶ڢᩪᄰ⟢㏥亜Ϲछ㻭ȠⱢऺ俔ⵠⶺ喏 ᒎ⟢ͦᄻ̵㻾ᒎ喏㗸ᣑ䷉俔喏ऺᣑ㛈䉔㔨㕟俔ȠV 16354ڢ᫥喏࣮̺β䶱䶢䘔⮰Ჰ᜼喏 ⮰㏥亜সᙋ㻵⺊㏻ႀѹ㒚౳䷌Ծ̶ڢ⮰ጒӓ䲎㘩ⰷݜटӓ⮰㛈䉔㲢㕟俔ⶺ㷮㔧䒘180º喏 䓳ᲑȠₐโ喏ⱨⱢ䘔ѹ䔄㻭ᰵ̬χ̹Ⴘ᪠⮰㏲ᄻ俔❳喏छ㘩ͦጕ㛈⣛⮰₷⪅ȠᎨѿᴳ᱘ Ђⶺ俔❳⌣ऴ౔̬䊣̹ᬿ㻮ᄋ喏Ɫऺ俔স㛈䉔㲢㕟ڢ⮰Ɫݹ俔⩝κ๖ᄻ⇍ᰵԉႄᝂ㔱̺
Recommended publications
  • From the Crato Formation (Lower Cretaceous)
    ORYCTOS.Vol. 3 : 3 - 8. Décembre2000 FIRSTRECORD OT CALAMOPLEU RUS (ACTINOPTERYGII:HALECOMORPHI: AMIIDAE) FROMTHE CRATO FORMATION (LOWER CRETACEOUS) OF NORTH-EAST BRAZTL David M. MARTILL' and Paulo M. BRITO'z 'School of Earth, Environmentaland PhysicalSciences, University of Portsmouth,Portsmouth, POl 3QL UK. 2Departmentode Biologia Animal e Vegetal,Universidade do Estadode Rio de Janeiro, rua SâoFrancisco Xavier 524. Rio de Janeiro.Brazll. Abstract : A partial skeleton representsthe first occurrenceof the amiid (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus from the Nova Olinda Member of the Crato Formation (Aptian) of north east Brazil. The new spe- cimen is further evidencethat the Crato Formation ichthyofauna is similar to that of the slightly younger Romualdo Member of the Santana Formation of the same sedimentary basin. The extended temporal range, ?Aptian to ?Cenomanian,for this genus rules out its usefulnessas a biostratigraphic indicator for the Araripe Basin. Key words: Amiidae, Calamopleurus,Early Cretaceous,Brazil Première mention de Calamopleurus (Actinopterygii: Halecomorphi: Amiidae) dans la Formation Crato (Crétacé inférieur), nord est du Brésil Résumé : la première mention dans le Membre Nova Olinda de la Formation Crato (Aptien ; nord-est du Brésil) de I'amiidé (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus est basée sur la découverted'un squelettepar- tiel. Le nouveau spécimen est un élément supplémentaireindiquant que I'ichtyofaune de la Formation Crato est similaire à celle du Membre Romualdo de la Formation Santana, située dans le même bassin sédimentaire. L'extension temporelle de ce genre (?Aptien à ?Cénomanien)ne permet pas de le considérer comme un indicateur biostratigraphiquepour le bassin de l'Araripe. Mots clés : Amiidae, Calamopleurus, Crétacé inférieu4 Brésil INTRODUCTION Araripina and at Mina Pedra Branca, near Nova Olinda where cf.
    [Show full text]
  • The Strawberry Bank Lagerstätte Reveals Insights Into Early Jurassic Lifematt Williams, Michael J
    XXX10.1144/jgs2014-144M. Williams et al.Early Jurassic Strawberry Bank Lagerstätte 2015 Downloaded from http://jgs.lyellcollection.org/ by guest on September 27, 2021 2014-144review-articleReview focus10.1144/jgs2014-144The Strawberry Bank Lagerstätte reveals insights into Early Jurassic lifeMatt Williams, Michael J. Benton &, Andrew Ross Review focus Journal of the Geological Society Published Online First doi:10.1144/jgs2014-144 The Strawberry Bank Lagerstätte reveals insights into Early Jurassic life Matt Williams1, Michael J. Benton2* & Andrew Ross3 1 Bath Royal Literary and Scientific Institution, 16–18 Queen Square, Bath BA1 2HN, UK 2 School of Earth Sciences, University of Bristol, Bristol BS8 2BU, UK 3 National Museum of Scotland, Chambers Street, Edinburgh EH1 1JF, UK * Correspondence: [email protected] Abstract: The Strawberry Bank Lagerstätte provides a rich insight into Early Jurassic marine vertebrate life, revealing exquisite anatomical detail of marine reptiles and large pachycormid fishes thanks to exceptional preservation, and especially the uncrushed, 3D nature of the fossils. The site documents a fauna of Early Jurassic nektonic marine animals (five species of fishes, one species of marine crocodilian, two species of ichthyosaurs, cephalopods and crustaceans), but also over 20 spe- cies of insects. Unlike other fossil sites of similar age, the 3D preservation at Strawberry Bank provides unique evidence on palatal and braincase structures in the fishes and reptiles. The age of the site is important, documenting a marine ecosystem during recovery from the end-Triassic mass extinction, but also exactly coincident with the height of the Toarcian Oceanic Anoxic Event, a further time of turmoil in evolution.
    [Show full text]
  • A Middle Triassic Kyphosichthyiform from Yunnan, China, and Phylogenetic Reassessment of Early Ginglymodians
    SUPPLEMENTARY DATA A Middle Triassic kyphosichthyiform from Yunnan, China, and phylogenetic reassessment of early ginglymodians XU Guang-Hui1,2 MA Xin-Ying1,2,3 WU Fei-Xiang1,2 REN Yi1,2,3 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 University of Chinese Academy of Sciences Beijing 100049) Part A Material examined and references Amia calva and Solnhofenamia elongata (Grande and Bemis, 1998); Araripelepidotes temnurus (Maisey, 1991; Thies, 1996); Asialepidotus shingyiensis (Xu and Ma, 2018); Atractosteus spatula, Cuneatus wileyi, Dentilepisosteus laevis, Lepisosteus osseus, Masillosteus janeae, and Obaichthys decoratus (Grande, 2010); Caturus furcatus (Patterson, 1975; Lambers, 1992; Grande and Bemis, 1998; FMNH UC2057); Dorsetichthys (‘Pholidophorus’) bechei (Patterson, 1975; Grande and Bemis, 1998; Arratia, 2013); Elops hawaiensis (Forey, 1973); Fuyuanichthys wangi (Xu et al., 2018); Ichthyokentema purbeckensis (Griffith and Patterson, 1963); Ionoscopus cyprinoides (Grande and Bemis, 1998; Maisey, 1999; FMNH P15472); Isanichthys palustris (Cavin and Suteethorn, 2006); Kyphosichthys grandei (Xu and Wu, 2012; Sun and Ni, 2018); Lashanichthys (‘Sangiorgioichthys’) sui (López-Arbarello et al., 2011); Lashanichthys (‘Sangiorgioichthys’) yangjuanensis (Chen et al, 2014); Lepidotes gigas (Thies,
    [Show full text]
  • (Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
    Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al.
    [Show full text]
  • Figura 33: Consenso Estrito Das Cinco Árvores Mais Parcimoniosas
    98 Figura 33: Consenso estrito das cinco árvores mais parcimoniosas. 99 Figura 34: C onsenso de maioria das cinco árvores mais parcimoniosas. 100 3 DISCUSSÃO 3.1 Nomenclatura 3.1.1 Série orbital A descrição da série orbital da presente dissertação foi baseada, principalmente, na nomenclatura utilizada por Daget (1964), Patterson (1973) e Grande & Bemis (1998). Daget (1964) definiu os ossos da série infraorbital como sendo os ossos que se dispõem ao longo do canal infraorbital (canal que segue da região nasal, passa abaixo das narinas e dos olhos e segue para trás pelo dermopterótico, chegando ao extraescapular e encontrando o canal da linha lateral), à frente do pterótico e anexados à margem da órbita. Expôs que podiam ser designados por número de ordem, da parte mais anterior para a mais posterior (e.g., infraorbital 1, infraorbital 2, infraorbital 3) ou por posição em relação a órbita (e.g., antorbital, suborbital e postorbital). O autor adotou a designação por ordem. Expôs ainda que é comum a denominação do último infraorbial como dermoesfenótico, osso no qual muitas vezes ocorre a anastomose do canal infraorbital com o canal supraorbital (canal que passa no nasal e no frontal). Para os ossos sem canal da série orbital, os quais Daget tratou como puramente membranosos, ele definiu como supraorbitais os ossos anexados ao longo da borda antero-lateral do frontal e como adenasal (= antorbital para outros autores) o osso entre o nasal e o primeiro infraorbital (Daget, 1964: fig. 38). Patterson (1973), da mesma forma que Daget (1964), denominou de infraorbitais os ossos anexados à margem inferior da órbita pelos quais passava o canal infraorbital e de supraorbitais os ossos anexados à margem superior da órbita e ao frontal.
    [Show full text]
  • A Synopsis of the Vertebrate Fossils of the English Chalk
    A. S. WOODWARD ON FOSSILS OF THE ENGLI SH CHALK. 273 Portion of tooth of Mosasallrus, from the Upper Chalk of Norwich, exhibited hy Mr. B. B. W OODWARD, F.G.S. R ecent Conglomeratic Boulder (pebbles in clay), from the Isle of Wight, exhibited by Mr. E . LITCIIFIELD. A SYNOPSIS 0 .. THE VERTEBRATE FOSSILS OF THE ENGLISH CIIALK. By A. SMITH WOODWARD, F .G.S., F .Z.S., of the British Museum tNatural History). I. INTRODUCTION. Since the publication of the revised edition of Dixon's ' Geology and Fossils of Sussex,' in 1878, no synoptical review of the ver­ tebrate fossils of the English Chalk appears to have been at­ tempted; and with the exception of the elaborate (though not critical) synopsis of genera in Mr. Etheridge's new edition of Phillips' 'Manual,' students of Cretaceous pal reontology can still find no other concise treatise on the subject. Much advance, how­ ever, has been made within the last ten years in our knowledge of later Mesozoic life; and I propose in the present communication to offer a brief epit ome of the facts in regard to the Vertebrata of the period, yielded by th e well-known uppermost division of the Meso­ zoic strata in Western Europe. Th e' Proceedings' of th e Asso­ ciation afford a most appropriate medium for the publication of such a review, so many of th e Members being interested in the treasures continually disinterred from th e numerous chalk pits of the South of England. And I have fortunately been able to compare with all that has been written th e unrivalled series of original specimens in the British Museum, and th e collection of Henry Willett, Esq., F .G.S., of Brighton, besides many othe r fossils in th e Museum of Practical Geology, Jermyn Street, the W oodwardian Museum, Cambridge, and the private cabinets of Mr.
    [Show full text]
  • Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal)
    Alexandre Renaud Daniel Guillaume Licenciatura em Biologia celular Mestrado em Sistemática, Evolução, e Paleobiodiversidade Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal) Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Miguel Moreno-Azanza, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Octávio Mateus, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Paulo Alexandre Rodrigues Roque Legoinha (FCT-UNL) Arguente: Doutor Hughes-Alexandres Blain (IPHES) Vogal: Doutor Miguel Moreno-Azanza (FCT-UNL) Júri: Dezembro 2018 MICROVERTEBRATES OF THE LOURINHÃ FORMATION (LATE JURASSIC, PORTUGAL) © Alexandre Renaud Daniel Guillaume, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ACKNOWLEDGMENTS First of all, I would like to dedicate this thesis to my late grandfather “Papi Joël”, who wanted to tie me to a tree when I first start my journey to paleontology six years ago, in Paris. And yet, he never failed to support me at any cost, even if he did not always understand what I was doing and why I was doing it. He is always in my mind. Merci papi ! This master thesis has been one-year long project during which one there were highs and lows.
    [Show full text]
  • Article (PDF, 1844
    Fossil Record 10(1) (2007), 17–37 / DOI 10.1002/mmng.200600016 Eurycormus –– Eurypoma, two Jurassic actinopterygian genera with mixed identity Gloria Arratia* & Hans-Peter Schultze** The University of Kansas, Biodiversity Research Center and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Blvd., Lawrence, KS 66045-7561. U.S.A. Received 1 August 2006, accepted 31 August 2006 Published online 30 January 2007 With 14 figures Key words: actinopterygian fishes, Upper Jurassic, southern Germany, morphology, systematics. Abstract Three Late Jurassic actinopterygian species are commonly placed in the genus Eurycormus: E. egertoni, E. grandis and E. spe- ciosus. A detailed comparison supports an earlier assignment to two different genera, Eurycormus Wagner, 1863 (speciosus) and Eurypoma Huxley, 1866 (E. egertoni and E. grande). Systematically, the two genera are only distantly related; Eurycormus belongs to the Teleosteomorpha, whereas Eurypoma is a halecomorph closely related to or a member of the Caturoidea with- in the Amiiformes. Schlu¨ sselwo¨ rter: Actinopterygii, Oberer Jura, Su¨ ddeutschland, Morphologie, Systematik. Zusammenfassung Drei oberjurassische Actinopterygier-Arten, egertoni, grandis und speciosus, werden gewo¨ hnlich zur Gattung Eurycormus ge- stellt. Ein detaillierter Vergleich der drei Arten besta¨tigt eine fru¨ here Zuordnung zu zwei verschiedenen Gattungen, Eurycor- mus Wagner, 1863 (speciosus) und Eurypoma Huxley, 1866 (E. egertoni und E. grande), die zwei ho¨ heren Taxa innerhalb der Neopterygii zugeordnet werden: Eurycormus zu den Teleosteomorpha und Eurypoma zu den Amiiformes innerhalb der Hale- comorphi, mo¨ glicherweise nahe oder innerhalb der Caturoidea. # 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Introduction cies, E. grandis (see Fig. 2A), from the Upper Jur- assic of Cambridgeshire, England, within this Agassiz (1843) named a Late Jurassic fish from genus.
    [Show full text]
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
    [Show full text]
  • Paleobios 33: 1-9, June 9, 2016 Paleobios
    PaleoBios 33: 1-9, June 9, 2016 PaleoBios OFFICIAL PUBLICATION OF THE UNIVERSITY OF CALIFORNIA MUSEUM OF PALEONTOLOGY Patricia A. Holroyd and J. Howard Hutchison (2016). Fauna and setting of the Adelolophus hutchisoni type locality in the Upper Cretaceous (Campanian) Wahweap Formation of Utah Cover photo: Dentary fragment of the bowfin fish cf. Melvius chauliodous in ventral and dorsal view. Citation: Holroyd, P. A. and Hutchison, J. H. 2016. Fauna and setting of the Adelolophus hutchisoni type locality of the Upper Cretaceous (Campa- nian) Wahweap Formation of Utah. PaleoBios, 33. ucmp_paleobios_31196 PaleoBios 33: 1-9, June 9, 2016 Fauna and setting of the Adelolophus hutchisoni type locality in the Upper Cretaceous (Campanian) Wahweap Formation of Utah PATRICIA A. HOLROYD* and J. HOWARD HUTCHISON Museum of Paleontology, 1101 Valley Life Sciences Building, University of California, Berkeley, CA 94720 [email protected] and [email protected] We report new data on the type locality of the hadrosaurid ornithischian Adelolophus hutchisoni Gates et al., 2014 from the Campanian-aged Wahweap Formation of southern Utah, and the remainder of the vertebrate assemblage from the site. The type locality (UCMP V98173) is a previously-reported U.S. Geological Survey locality (USGS D815) and is stratigraphically low in the upper member of the Wahweap Formation. Additional taxa from the same site include acipenseriforms (sturgeon), amiiforms (bowfin), and lepisosteiforms (gar fish), baenid and trionychid turtles, and both theropod and ornithischian dinosaurs. Keywords: Acipenseriformes, Amiiformes, Lepisosteiformes, Testudines, Theropoda, Ornithischia INTRODUCTION from it by a line, as is the typical convention for physically Gates et al. (2014) recently named the new lambeosau- labeling UCMP specimens.
    [Show full text]
  • The Genus Furo (Pisces, Halecomorphi) from the Upper Jurassic Plattenkalke of Germany
    ORYCTOS,Vol. 1 :23-35,Octobre 1998 THEGENUS FURO (PISCES, HALECOMORPHI) FROMTHE UPPERJURASSIC PLATTENKALKE OF GERMANY Paul H. LAMBERS PaleontologischeWerkkamer, Biologisch Centrum RUG, Postbus 14,9750 AA Haren, the Netherlands. e-mail: phlambers@ biol.rug.nl Abstract : An overview of the speciesassigned to the genus Furo fowd in the German lithographic limestones of the Solnhofen-area(Bavaria) and Nusplingen (Baden-Wiirttemberg) is presentedand the monophyly of the Upper JurassicFuro is discussed.Six speciescan be recognized: 'F.' latim.anus,'F.' longiserratus, 'F.' microlepidotes, 'E' aldingeri, 'F.' angustus and'F.' miinsteri. Among these 'E' angustus and'F.' miinsteri form a monophyletic group, to which 'F.' aldingeri might be related as well. 'F.' longiserrarus might be closely related to the Ophiopsidae,whereas 'E' microlepidotes shows similarities with the Caturidae. The position of 'F.' latimanus remains to be determined. There are no indications of a monophyletic genusof Furo and the relationshipsof the Upper Jurassicfurids with the Lower Jurassicspecies of Furo remain to be examined. Key words: Eugnathus, Furo, Halecomorphi, phylogeny, Plattenknlke, Tithonian Le genreFuro (Pisces,Halecomorphi) du Jurassiquesupérieur d'Allemagne. Résumé : Les différentes espècesdu genre Furo enprovenancedes gisementsallemands à calcaireslithographiques des régions de Solnhofen (Bavière) et de Nusplingen (Bade-Wiirttemberg)sont présentéeset la monophylie du genre Furo du Jurassiquesupérieur est discutée.Six espècespeuvent être reconnues: '.8' Iatimanus,
    [Show full text]
  • 190 World's First Herbivorous Filter-Feeding Marine Reptile
    BCAS Vol.30 No.3 2016 Earth Sciences World’s First Herbivorous Filter- feeding Marine Reptile ome strange creatures cropped up in the wake Its head was poorly preserved, but it seemed to have of one of Earth’s biggest mass extinctions a flamingo-like beak. However, in a paper published S252 million years ago. In 2014, scientists May 6 in Science Advances, Dr. LI Chun, Institute of discovered a bizarre fossil – a crocodile-sized sea- Vertebrate Paleontology and Paleoanthropology (IVPP), dwelling reptile, Atopodentatus unicus, that lived 242 Chinese Academy of Sciences, and his international million years ago in what today is southwestern China. team described two new specimens and revealed what Fossil and reconstruction of Atopodentatus unicus (Image by IVPP) 190 Bulletin of the Chinese Academy of Sciences Vol.30 No.3 2016 Science Watch Earth Sciences was really going on—that "beak" is actually part of a among marine reptiles. It is older than other marine hammerhead-shaped jaw apparatus, which the reptile used animals that ate plants with a filter-feeding system by to feed on plants on the ocean floor. It's the earliest known about eight million years, said the team. example of an herbivorous marine reptile. Atopodentatus appeared during the Triassic period These two newly discovered specimens of soon after the biggest mass extinction of species in Earth's Atopodentatus were collected from the Middle Triassic history, illustrating that life recovered and diversified (Anisian) Guanling Formation of Luoping County, Yunnan more quickly than previously thought. Other oddball Province, southwestern China. The new specimens clearly creatures also swam the seas at the time, including a demonstrate that rather than being downturned, the reptile called Dinocephalosaurus whose neck comprised rostrum developed into a “hammerhead” with pronounced half of its 17-foot (5.25 meters) length.
    [Show full text]