Neutron Activation Characterization of the Chemical Elements in Preparation for Nuclear Reactor Decommissioning

Total Page:16

File Type:pdf, Size:1020Kb

Neutron Activation Characterization of the Chemical Elements in Preparation for Nuclear Reactor Decommissioning Neutron activation characterization of the chemical elements in preparation for nuclear reactor decommissioning AS Maodi orcid.org/ 0000-0002-4588-8598 Dissertation accepted in partial fulfilment of the requirements for the degree Master of Sciences in Engineering Sciences with Nuclear Engineering at the North West University Supervisor: Prof DE Serfontein Co-Supervisor: Mr TJ van Rooyen Graduation: July 2020 Student number: 25905570 PREFACE Firstly, I would like to thank the LORD God for his grace in my life. To my study-leader Prof Dawid Serfontein who was my lecturer for Nuclear Engineering, I would like to thank you for your encouragement and support throughout my study journey. Your work ethic and leadership are so inspiring. I will forever be grateful for the opportunity that you awarded me as a lecture and study leader. To my co-study leader and mentor, Mr Johann van Rooyen. We thank God for you. I would like to thank you for your expertise, assistance, guidance, and patience throughout the process of writing this piece of work. Without your help, this dissertation would not have been possible. I will forever be grateful for your assistance, guidance, encouragement and more than anything, the training, and skills you transferred to me and other students wholeheartedly without holding back. Necsa and the Nuclear industry as a whole are blessed to have a gem like you. To Necsa — the South African Nuclear Energy Corporation — thank you for granting me the opportunity of a lifetime. You paid my fees and granted me generous study leave to attend classes; I will forever be grateful for that. To LandisGyr I am grateful for the study-leave you granted me to be able to meet with my co- study leader for progression on this writeup. To my parents Daniel and Sinah, thank you for the love and support in everything I do, I love you. To my son Lethabo, you inspire me to raise the bar, I am proud to be your mother, I love you. To my partner, thank you for your unwavering love, support, and understanding, I love you. To my ex-colleagues from Necsa for encouraging me to pick up where I left off, many thanks for the love, support, and inspiration. ii ABSTRACT At nuclear reactor facilities, intense neutron radiation fields are encountered inside and around reactor vessels. Engineering materials exposed to the neutron field absorb neutrons in nuclear reactions, and radioisotopes are produced in this way. This process is termed neutron activation. Neutron activation produces radionuclides in irradiated materials, i.e. the irradiated materials become radioactive. Some neutron activation reactions are of commercial interest, e.g. the production of the radionuclide Ir-192 from irradiated Ir-191. Most radionuclides produced by neutron activation, are undesired, long-lived radioisotopes and will place a radioactive waste burden on the licensed facility, adding to total operational costs and inflating future liabilities. After irradiation by the neutron field ends, long-lived radionuclides will remain present in irradiated materials and will present radiological and radioactive waste- disposal problems such as e.g. (1) a radiation field will be present around the activated material and will expose workers to doses of ionising radiation, and (2) some activated material may not pass clearance level criteria set by e.g. the IAEA and will therefore have to be disposed of as radioactive waste, at a significant cost. An inquiry into the systematics of neutron activation, using radiation transport and materials activation codes, was designed and successfully concluded. The systematic study showed that neutron activation will, specifically under high neutron fluence-rate conditions, depend in a profoundly non-linear way on the fluence-rate. For this reason, it is incorrect to attempt to perform a neutron activation calculation at a chosen reference integral fluence-rate 휙푟푒푓 and then attempt to scale activities and dose-rates linearly for other fluence-rates. There are no “shortcuts” i.e. every neutron activation problem is unique and must, therefore, be modelled individually. Using a representative neutron spectrum calculated for a typical light water reactor (LWR), a total of 81 chemical elements were irradiated and cooled down under specific scenarios that represent important decommissioning and operational scenarios. For selected important scenarios, the elements were ranked in terms of the unshielded dose-rate at 1 m from a point- source with a reference mass of 1 g of each irradiated chemical element. These tables clearly show which elements are high-activators, intermediate activators and low-activators, for different irradiation scenarios. This information may be used to select low-activation materials for new reactor facilities, and for components that must be replaced in existing nuclear facilities. The tabulated results can serve to guide decommissioning engineers, project managers, iii radiation protection specialists and neutron radiography teams. Neutron radiography teams can use the information to e.g. pre-empt which radiographed components will be highly radioactive, and which will remain radioactive for a long time, after exposure to neutrons, based on known material compositions. Decommissioning engineers can use the information to e.g. pre-empt that steels with the same neutron irradiation history as aluminium-alloys, will have a significantly higher burden of long-lived radionuclides. A comprehensive literature study on the nature and importance of the formation of long-lived radionuclides by neutron activation, for nuclear reactor decommissioning, was undertaken and presented. From the literature-study emerged a list of high-activator elements as well as problematic, long-lived radioisotopes formed by neutron activation. A total of approximately 1700 calculations with the activation code FISPACT-II 3.00 were performed, in order to describe the systematics of neutron activation in realistic irradiation-and-cooldown scenarios, focusing on reactor decommissioning. The full set of systematic FISPACT-II calculations served to verify and validate the list of high-activation materials and problematic long-lived radionuclides gathered from the literature survey. A comprehensive set of graphs are presented to show how induced activities and photon dose- rate fields will evolve over the first 50 years after the end of irradiation, for chemical elements used in important engineering materials such as low-alloys steels, stainless steel-alloys, nickel- alloys, ordinary concrete, magnetite concrete and hematite concrete. The durations of these irradiations range from 1 hour to 60 years. A notable result was that, for a decommissioning scenario, titanium-alloys are significantly more benign neutron activators compared to steel-alloys. Problematic elements that are high- activators in practically all irradiation scenarios are europium (Eu), cobalt (Co), caesium (Cs), silver (Ag) and niobium (Nb). The testing of raw materials used in concrete close to a nuclear reactor must be designed to minimise the amount of the above high-activators in the concrete. Al-alloys and steel-alloys used in intense neutron fields must also be tested to minimise the high-activators. Benign elements that are low-activators in practically all irradiation scenarios are aluminium (Al), Silicon (Si), magnesium (Mg) and titanium (Ti). Where practical and possible, aluminium-alloys and titanium-alloys must, therefore, be preferred in areas where significant neutron fluence-rates are expected. iv TABLE OF CONTENTS PREFACE ......................................................................................................... II ABSTRACT ..................................................................................................... III TABLE OF CONTENTS .................................................................................. V LIST OF FIGURES ...................................................................................... XIV LIST OF TABLES .......................................................................................... XX ABBREVIATIONS AND SPECIAL NOMENCLATURE ........................ XXV 1 INTRODUCTION .....................................................................................1 1.1 Background and Rationale........................................................................1 1.1.1 Neutron Activation ...................................................................................................... 1 1.1.2 Clearance Levels: IAEA .............................................................................................. 1 1.1.3 Clearance Levels: Canadian Nuclear Safety Commission (CNSC) 2018 ...................... 3 1.1.4 Clearance Levels: Nuclear Industry Safety Directors Forum (NISDF, 2017) ............... 4 1.1.5 Materials Affected by Neutron Activation at Necsa, South Africa ............................... 7 1.1.6 Reactor Decommissioning: The Need for Knowledge about the Systematics of the Neutron Activation of Elements in Engineering Materials ...................................................... 8 1.2 Research Problem, Research Purpose and Research Objectives ............9 1.3 Research Hypothesis ............................................................................... 10 2 RESEARCH METHODOLOGY ............................................................ 11 2.1 Outline of the Research Methodology .................................................... 11 2.2 Identities of the Main Chemical Elements Encountered
Recommended publications
  • Neutron Interactions and Dosimetry Outline Introduction Tissue
    Outline • Neutron dosimetry Neutron Interactions and – Thermal neutrons Dosimetry – Intermediate-energy neutrons – Fast neutrons Chapter 16 • Sources of neutrons • Mixed field dosimetry, paired dosimeters F.A. Attix, Introduction to Radiological • Rem meters Physics and Radiation Dosimetry Introduction Tissue composition • Consider neutron interactions with the majority tissue elements H, O, C, and N, and the resulting absorbed dose • Because of the short ranges of the secondary charged particles that are produced in such interactions, CPE is usually well approximated • Since no bremsstrahlung x-rays are generated, the • The ICRU composition for muscle has been assumed in absorbed dose can be assumed to be equal to the most cases for neutron-dose calculations, lumping the kerma at any point in neutron fields at least up to 1.1% of “other” minor elements together with oxygen to an energy E ~ 20 MeV make a simple four-element (H, O, C, N) composition Neutron kinetic energy Neutron kinetic energy • Neutron fields are divided into three • Thermal neutrons, by definition, have the most probable categories based on their kinetic energy: kinetic energy E=kT=0.025eV at T=20C – Thermal (E<0.5 eV) • Neutrons up to 0.5eV are considered “thermal” due to simplicity of experimental test after they emerge from – Intermediate-energy (0.5 eV<E<10 keV) moderator material – Fast (E>10 keV) • Cadmium ratio test: • Differ by their primary interactions in tissue – Gold foil can be activated through 197Au(n,)198Au interaction and resulting biological effects
    [Show full text]
  • Neutron Activation and Prompt Gamma Intensity in Ar/CO $ {2} $-Filled Neutron Detectors at the European Spallation Source
    Neutron activation and prompt gamma intensity in Ar/CO2-filled neutron detectors at the European Spallation Source E. Diana,b,c,∗, K. Kanakib, R. J. Hall-Wiltonb,d, P. Zagyvaia,c, Sz. Czifrusc aHungarian Academy of Sciences, Centre for Energy Research, 1525 Budapest 114., P.O. Box 49., Hungary bEuropean Spallation Source ESS ERIC, P.O Box 176, SE-221 00 Lund, Sweden cBudapest University of Technology and Economics, Institute of Nuclear Techniques, 1111 Budapest, M}uegyetem rakpart 9. dMid-Sweden University, SE-851 70 Sundsvall, Sweden Abstract Monte Carlo simulations using MCNP6.1 were performed to study the effect of neutron activation in Ar/CO2 neutron detector counting gas. A general MCNP model was built and validated with simple analytical calculations. Simulations and calculations agree that only the 40Ar activation can have a considerable effect. It was shown that neither the prompt gamma intensity from the 40Ar neutron capture nor the produced 41Ar activity have an impact in terms of gamma dose rate around the detector and background level. Keywords: ESS, neutron detector, B4C, neutron activation, 41Ar, MCNP, Monte Carlo simulation 1. Introduction Ar/CO2 is a widely applied detector counting gas, with long history in ra- diation detection. Nowadays, the application of Ar/CO2-filled detectors is ex- tended in the field of neutron detection as well. However, the exposure of arXiv:1701.08117v2 [physics.ins-det] 16 Jun 2017 Ar/CO2 counting gas to neutron radiation carries the risk of neutron activa- tion. Therefore, detailed consideration of the effect and amount of neutron ∗Corresponding author Email address: [email protected] (E.
    [Show full text]
  • TUTORIAL on NEUTRON PHYSICS in DOSIMETRY S. Pomp1
    TUTORIAL ON NEUTRON PHYSICS IN DOSIMETRY S. Pomp1,* 1 Department of physics and astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden. *Corresponding author. E‐mail address: [email protected] (S.Pomp) Abstract: Almost since the time of the discovery of the neutron more than 70 years ago, efforts have been made to understand the effects of neutron radiation on tissue and, eventually, to use neutrons for cancer treatment. In contrast to charged particle or photon radiations which directly lead to release of electrons, neutrons interact with the nucleus and induce emission of several different types of charged particles such as protons, alpha particles or heavier ions. Therefore, a fundamental understanding of the neutron‐nucleus interaction is necessary for dose calculations and treatment planning with the needed accuracy. We will discuss the concepts of dose and kerma, neutron‐nucleus interactions and have a brief look at nuclear data needs and experimental facilities and set‐ups where such data are measured. Keywords: Neutron physics; nuclear reactions; kerma coefficients; neutron beams; Introduction Dosimetry is concerned with the ability to determine the absorbed dose in matter and tissue resulting from exposure to directly and indirectly ionizing radiation. The absorbed dose is a measure of the energy deposited per unit mass in the medium by ionizing radiation and is measured in Gray, Gy, where 1 Gy = 1 J/kg. Radiobiology then uses information about dose to assess the risks and gains. A risk is increased probability to develop cancer due to exposure to a certain dose. A gain is exposure of a cancer tumour to a certain dose in order to cure it.
    [Show full text]
  • Conceptual Design Report Jülich High
    General Allgemeines ual Design Report ual Design Report Concept Jülich High Brilliance Neutron Source Source Jülich High Brilliance Neutron 8 Conceptual Design Report Jülich High Brilliance Neutron Source (HBS) T. Brückel, T. Gutberlet (Eds.) J. Baggemann, S. Böhm, P. Doege, J. Fenske, M. Feygenson, A. Glavic, O. Holderer, S. Jaksch, M. Jentschel, S. Kleefisch, H. Kleines, J. Li, K. Lieutenant,P . Mastinu, E. Mauerhofer, O. Meusel, S. Pasini, H. Podlech, M. Rimmler, U. Rücker, T. Schrader, W. Schweika, M. Strobl, E. Vezhlev, J. Voigt, P. Zakalek, O. Zimmer Allgemeines / General Allgemeines / General Band / Volume 8 Band / Volume 8 ISBN 978-3-95806-501-7 ISBN 978-3-95806-501-7 T. Brückel, T. Gutberlet (Eds.) Gutberlet T. Brückel, T. Jülich High Brilliance Neutron Source (HBS) 1 100 mA proton ion source 2 70 MeV linear accelerator 5 3 Proton beam multiplexer system 5 4 Individual neutron target stations 4 5 Various instruments in the experimental halls 3 5 4 2 1 5 5 5 5 4 3 5 4 5 5 Schriften des Forschungszentrums Jülich Reihe Allgemeines / General Band / Volume 8 CONTENT I. Executive summary 7 II. Foreword 11 III. Rationale 13 1. Neutron provision 13 1.1 Reactor based fission neutron sources 14 1.2 Spallation neutron sources 15 1.3 Accelerator driven neutron sources 15 2. Neutron landscape 16 3. Baseline design 18 3.1 Comparison to existing sources 19 IV. Science case 21 1. Chemistry 24 2. Geoscience 25 3. Environment 26 4. Engineering 27 5. Information and quantum technologies 28 6. Nanotechnology 29 7. Energy technology 30 8.
    [Show full text]
  • Sonie Applications of Fast Neutron Activation Analysis of Oxygen
    S E03000182 CTH-RF- 16-5 Sonie Applications of Fast Neutron Activation Analysis of Oxygen Farshid Owrang )52 Akadenmisk uppsats roir avliiggande~ av ilosofie ficentiatexamen i Reaktorf'ysik vid Chalmer's tekniska hiigskola Examinator: Prof. Imre PiAst Handledare: Dr. Anders Nordlund Granskare: Bitr. prof. G~iran Nyrnan Department of Reactor Physics Chalmers University of Technology G6teborg 2003 ISSN 0281-9775 SOME APPLICATIONS OF FAST NEUTRON ACTIVATION OF OXYGE~'N F~arshid Owrang Chalmers University of Technology Departmlent of Reactor Physics SEP-1-412 96 G~iteborg ABSTRACT In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline S engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron enerator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe.
    [Show full text]
  • Decommissioning of Research Reactors in Finland
    Decommissioning of research reactors in Finland SAMIRA workshop 13th November 2019 Linda Kumpula FiR 1 Research reactor Helsinki The reactor building in Otaniemi, Finland. Source: VTT Technical Research Centre of Finland Espoo, Otaniemi VTT’s FiR 1 research reactor (on the left) and the research reactor’s pool and core (on the right). Source: VTT Technical Research Centre of Finland FiR 1, Triga Mark II, 250 kW The opening day in 1962 (on the left) and the last day 30.6.2015 (up). Source: VTT Technical Research Centre of Finland Footer VTT is responsible for the waste management – cooperation needed • According to Finnish legislation, VTT is responsible for the management of the spent fuel and the radioactive waste of the research reactor. • The government has the secondary responsibility. • Low and intermediate level waste produced in the research reactor must be handled, stored and disposed of in Finland. • Spent fuel of the research reactor can be handled, stored and disposed of abroad. • VTT have no disposal facilities of their own and no centralised disposal facilities exist in Finland. Footer Waste management plans were not ready during operation • VTT performed EIA process in 2013 – 2015. • VTT applied licence from the Finnish Government for decommissioning and dismantling in 2017. • VTT is currently negotiating with national companies and also internationally for waste management. • There is a need of national co-operation before the licence can be granted. • The cost estimates of the decommissioning depends on plans and commercial agreements and are still evolving. Footer Waste inventories are well known • The fuel is a homogenous mixture of low-enrichment (less than 20%) uranium and zirconium hydride.
    [Show full text]
  • Practical Aspects of Operating a Neutron Activation Analysis Laboratory
    IAEA-TECDOC-564 PRACTICAL ASPECTS OF OPERATING A NEUTRON ACTIVATION ANALYSIS LABORATORY A TECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1990 PRACTICAL ASPECT OPERATINF SO G A NEUTRON ACTIVATION ANALYSIS LABORATORY IAEA, VIENNA, 1990 IAEA-TECDOC-564 ISSN 1011-4289 Printe IAEe th AustriAn i y d b a July 1990 PLEASE BE AWARE THAT MISSINE TH AL F LO G PAGE THIN SI S DOCUMENT WERE ORIGINALLY BLANK FOREWORD This boo s intendei k o advist d n everydai e y practical problems relateo t d operating a neutron activation analysis (NAA) laboratory. It gives answers to questions like "what to use NAA for", "how to find relevant research problems", "how to find users for the technique", "how to estimate the cost of the analysis and how to finance the work", "how to organize the work in a rational way d "ho"an o perforwt e qualitth m y control" givet I . s advice in choosing staff, equipment d consumableo desigt an , w nho facilitied an s s and procedures accordin neeo d availablt g an d e resources. e boo Th s designei k o discust d s problem t dealno s t wit n ordinari h A NA y textbooks, but also, in order to prevent it from being too voluminous, to avoid duplication of material described in normal NAA text books. Therefore e readeth , r will find that some materia f intereso l missins i t g from this book and it is recommended that one or two of the textbooks listed in chapter 11 be read in addition to this one.
    [Show full text]
  • Neutron Effects on Living Things
    also negotiating an agreement with the Commission International Confederation of Free Trade for Technical Co-operation in Africa. Unions International Co-operative Alliance In addition the Agency has granted consultative International Council of Scientific Unions status to nineteen non-governmental organizations, International Federation of Christian Trade and is considering applications from a number of Unions others. The nineteen are as follows: International Federation of Documentation International Federation of Industrial European Atomic Forum Producers of Electricity for Own European Confederation of Agriculture Consumption International Air Transport Association International Organization for Standardization International Cargo Handling Co-ordination International Union of Inland Navigation Association International Union of Producers and International Chamber of Commerce Distributors of Electrical Energy International Commission on Radiological Japan Industrial Forum Protection World Federation of United Nations International Committee on Radiological Associations Units and Measurements World Power Conference NEUTRON EFFECTS ON LIVING THINGS Scientific interest in neutrons and protons - two Although much has been learned about X-ray fundamental particles of the atomic nucleus - has and gamma-ray effects, comparatively little is known grown in recent years as the technology of peaceful about the biological effects of neutrons, and therefore uses of atomic energy has progressed. Such interest many of the Symposium papers reviewed
    [Show full text]
  • Photon, Neutron, Proton, Electron, Gamma Ray, Carbon Ion)
    Fundamental types of radiation particle beams (Photon, Neutron, Proton, Electron, Gamma Ray, Carbon Ion) Photon This is the most common, widely used type of radiation, and is available at most treatment centers and hospitals. This is widely used to treat most cancers including known or suspect residual ACC which was not able to be removed with surgery by itself. In simple terms, it is fundamentally a very high dose X-ray beam. This is also the type of radiation beam utilized for most of the pinpoint targeted types of radiation treatments, such as CyberKnife, TomoTherapy and Novalis. Most hospitals have photon radiation available and the beam is generated by a beam accelerator device that takes up the space of a typical bedroom. Some of the newer manufacturers have developed a more compact beam accelerator, such as the CyberKnife. Neutron Neutron radiation therapy is a unique, high-LET radiation (the particles are accelerated at a very fast rate) with very specific differences in how it affects DNA in ACC cancer cells when compared to standard Photon radiation. Neutrons are produced from a large and expensive particle accelerator called a cyclotron. This high-LET (high linear-energy-transfer) radiation is also referred to as “fast neutron therapy”. Neutrons, pions and heavy ions (such as carbon, neon and argon) deposit more energy along their path than x-rays or gamma rays, thus causing more damage to the cells they hit. The cyclotron accelerator produces protons and then a series of powerful magnets bend and aim the beam to strike a beryllium target, where the interaction produces neutrons.
    [Show full text]
  • Protection Against Neutron Radiation up to 30 Million Electron Volts
    PROTECTION AGAINST NEUTRON RADIATION UP TO 30 MILLION ELECTRON VOLTS Handbook 63 U. S. Department of Commerce National Bureau of Standards HANDBOOKS OF THE NATIONAL BUREAU OF STANDARDS The following Handbooks issued by the Bureau are avail¬ able by purchase from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., at the prices indicated: No. Price 28 Screw-Thread Standards for Federal Services 1944-$1.25 28 1950 Supplement to Screw-Thread Standards for Federal Services 1944 .60 28 Screw-Thread Standards for Federal Services 1957, Part I. (Amends in part H28 1944 and in part its 1950 Supplement) . 1.25 30 National Electrical Safety Code. 2.25 37 Testing of Weighing Equipment. 2.50 42 Safe Handling of Radioactive Isotopes.20 43 Installation and Maintenance of Electric Supply and Communication Lines. Safety Rules and Discussion.. 2.25 44 Specifications, Tolerances, and Regulations for Commer¬ cial Weighing and Measuring Devices—2d Edition.... 2.00 45 Testing of Measuring Equipment . 1.50 46 Code for Protection Against Lightning.45 48 Control and Removal of Radioactive Contamination in Laboratories .15 49 Recommendations for Waste Disposal of Phosphorus-32 and Iodine-131 for Medical Users.15 50 X-ray Protection Design.20 51 Radiological Monitoring Methods and Instruments.20 52 Maximum Permissible Amounts of Radioisotopes in the Human Body and Maximum Permissible Concentra¬ tions in Air and Water.25 53 Recommendations for the Disposal of Carbon-14 Wastes .15 54 Protection Against Radiations From Radium, Cobalt-60,
    [Show full text]
  • Thermal Neutron Detection
    Thermal Neutron Detection Louie Cueva December 8, 2015 PHYS 575 1 Neutrons • 1932 – Chadwick discovered the neutron • No charge, No Coulomb force, No Service! • Interaction with detectors • Interactions with nuclei • ~10 min life time (free neutron) • Sources Fig 1. Chadwick (nobelprize.org) • Nuclear Reactors, Spallation (accelerator based), Fusion sources (D-T), Radioactive decay (252Cf, 250Cm, 240Pu) • Applications • Nuclear, material science, imaging, medical physics 2 Neutron Energy Ranges INTERACTIONS < 0.005 eV Cold Diffraction 0.025 eV Thermal 0.02 eV Epithermal Capture Elastic (η,γ)(η,p)(η,α) Scattering 1–10 eV Slow Fission 300 eV ‐ 1 MeV Intermediate (η,f) 1 –20 MeV Fast Inelastic > 20 MeV Ultra Fast Scattering (η,χ) 3 Interaction with Matter Extremely weak electromagnetic interactions Radiation Protection Penetration through matter • Shielding is more complicated Nuclear interactions only, low probability at that Interaction is inversely proportional to energy • It’s about probability, not density • Atypical materials: paraffin, borated materials (concrete, water, polyethylene) Fig 2. Neutron Interaction (explorcuriosity.org) 4 Neutron Cross Section • Cross section is measure of the probability for a reaction between particles • “Barn” has area dimensions (10-28 m2) • Microscopic – probability of reaction between neutron and nucleus • Macroscopic – probability of interaction between neutron and material • Typical reactions Fig 3. neutron reactions (nucleonica.net) 5 Neutron Detection Cross Section vs. Energy • Cross section goes down as energy increases so slow neutrons (thermal) have a vastly different detection scheme than fast neutrons • Moderator material is used to slow neutrons down thereby generally increasing detection efficiency (to an extent…) • Fast Neutron spectroscopy allows for detection to quantify incoming neutrons and deduction of incoming neutron energy.
    [Show full text]
  • Management and Storage of Research Reactor Spent Nuclear Fuel Proceedings Series
    Spine for 280 pages: 14,48 mm Management and Storage of Research Reactor Spent Nuclear Fuel Research Reactor Spent Storage of Management and Proceedings Series Management and Storage of Research Reactor Spent Nuclear Fuel Proceedings of a Technical Meeting held in Thurso, United Kingdom, 19–22 October 2009 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–138210–8 ISSN 0074–1884 MANAGEMENT AND STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PANAMA ALBANIA HAITI PAPUA NEW GUINEA ALGERIA HOLY SEE PARAGUAY ANGOLA HONDURAS PERU ARGENTINA HUNGARY PHILIPPINES ARMENIA ICELAND POLAND AUSTRALIA INDIA PORTUGAL AUSTRIA INDONESIA AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF QATAR BAHRAIN IRAQ REPUBLIC OF MOLDOVA BANGLADESH IRELAND ROMANIA BELARUS ISRAEL RUSSIAN FEDERATION BELGIUM ITALY Rwanda BELIZE JAMAICA SAUDI ARABIA BENIN JAPAN SENEGAL BOLIVIA JORDAN SERBIA BOSNIA AND HERZEGOVINA KAZAKHSTAN SEYCHELLES BOTSWANA KENYA SIERRA LEONE BRAZIL KOREA, REPUBLIC OF BULGARIA KUWAIT SINGAPORE BURKINA FASO KYRGYZSTAN SLOVAKIA BURUNDI LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMBODIA REPUBLIC SOUTH AFRICA CAMEROON LATVIA SPAIN CANADA LEBANON SRI LANKA CENTRAL AFRICAN LESOTHO SUDAN REPUBLIC LIBERIA SWAZILAND CHAD LIBYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC CONGO MADAGASCAR TAJIKISTAN COSTA RICA MALAWI THAILAND CÔTE D’IVOIRE MALAYSIA THE FORMER YUGOSLAV CROATIA MALI REPUBLIC OF MACEDONIA CUBA MALTA TOGO CYPRUS MARSHALL
    [Show full text]