Neutron Effects on Living Things

Total Page:16

File Type:pdf, Size:1020Kb

Neutron Effects on Living Things also negotiating an agreement with the Commission International Confederation of Free Trade for Technical Co-operation in Africa. Unions International Co-operative Alliance In addition the Agency has granted consultative International Council of Scientific Unions status to nineteen non-governmental organizations, International Federation of Christian Trade and is considering applications from a number of Unions others. The nineteen are as follows: International Federation of Documentation International Federation of Industrial European Atomic Forum Producers of Electricity for Own European Confederation of Agriculture Consumption International Air Transport Association International Organization for Standardization International Cargo Handling Co-ordination International Union of Inland Navigation Association International Union of Producers and International Chamber of Commerce Distributors of Electrical Energy International Commission on Radiological Japan Industrial Forum Protection World Federation of United Nations International Committee on Radiological Associations Units and Measurements World Power Conference NEUTRON EFFECTS ON LIVING THINGS Scientific interest in neutrons and protons - two Although much has been learned about X-ray fundamental particles of the atomic nucleus - has and gamma-ray effects, comparatively little is known grown in recent years as the technology of peaceful about the biological effects of neutrons, and therefore uses of atomic energy has progressed. Such interest many of the Symposium papers reviewed the various also has increased because both protons and neutrons aspects of neutron experimentation. Similarly, since are encountered in outer space. However, only recently there is increasing interest in the biological effects has a thorough study of the biological effects of neutrons of protons, papers were given on that related subject. and protons become possible, as a result of progress in making physical measurements of the radiation dose Measurement Problems absorbed in biological systems (of plants and animals, The principal topic discussed at the Symposium for example). Reports of work in that field were pre­ was methodology for comparing absorption in tissue sented in December 1962, when IAEA sponsored at of different types of radiation. There seemed to be Harwell Laboratory in the United Kingdom the first general agreement among the participants that the international symposium on detection dosimetry (meas­ approach most commonly used in recent years, namely urement) and standardization of neutron radiation Relative Biological Effectiveness (RBE), can hardly sources. be considered adequate by itself as a method. The term RBE has been defined as the ratio of a "standard" The Harwell meeting was followed in October dose of X-radiation to the dose of test radiation re­ 1963 at Brookhaven National Laboratory, Long Island, quired to produce an equivalent biological effect. The New York, by the first scientific meeting sponsored standard dose is the amount of energy absorbed by a by IAEA in the U. S. Entitled "Biological Effects of given volume of plant or animal cells from the incoming Neutron Irradiations", the Symposium continued the X-rays. The test dose is the amount of energy ab­ review of problems of measuring radiation absorp­ sorbed from incoming neutrons. For example, if a tion in living things and provided in addition for several test dose of one rad* of neutrons produces the same reports dealing with the effects of radiation on living biological effect on the cells in question'as a standard organisms - plant, animal and human - and with dose of three rads of X-rays, the RBE of the neutrons delayed consequences of exposure to radiation, such is three. as: change in life span; tumour incidence; and fer­ * rad: unit of the amount of energy absorbed by material tility. Eighteen countries were represented. exposed to radiation. 26 refers to the pattern of distribution of energy as it is absorbed in a given material, such as animal cells. The term originates from pioneer work by physicists who study the lines or tracks left by nuclear particles as they penetrate photographic emulsions. When the film is developed, these tracks identify incoming particles which interact with the atoms of which the emulsion is composed. Nuclear particles which pene­ trate the cell itself produce secondary particles, which actually travel not just in a linear pattern, but three- dimensionally, penetrating various parts of the cell. The interplay of incoming nuclear particles (neutrons or protons) with particles which make up the cell prompts measurements by biologists assisted by physi­ cists. Resultant data are intended to help determine how radiation affects the life process in living cells. Similarly, data are collected on related experiments on tissue or organs or, to a more limited extent, on Column used for biology experiments on top of nuclear biological systems such as the nervous system, the reactor at Brookhaven. A container of plant seeds is endocrine system, etc. pushed into an elevator with o long rod. It is then lowered to the bottom of the column, halfway through the five-foot concrete shield which surrounds the LET was cricitized as being a "unidimensional" reactor. Some slow neutrons penetrate part way up the concept. Dr. H. H. Rossi, Department of Radiology, shield; a slab of bismuth filters out gamma rays. Columbia University, for example, has argued that 1. Seed container; 2. elevator; 3. neutron exposure investigators can indeed identify a cell track left by cavity; 4. bismuth slab; 5. shielding. (Photo. Brook- haven National Laboratory) an incoming nuclear particle, but it remains difficult to interpret the inconsistencies in data resulting, in RBE values for neutron exposure were stated part at least, from numerous variations found in dif­ ferent cells of the same basic type. Actually, because in many of the scientific papers presented at the of difficulties in "mapping" the trails left in the com­ Symposium. These values were also discussed at plex transfer of energy, measurements generally are length in a panel on biophysical considerations in neu­ made in gases stored in metal spheres of different tron experimentation. J. S. Krebs and R. W. Brauer, sizes. The gas-filled spheres serve as scale models of the U. S. Naval Radiological Defense Laboratory, of corresponding volumes of tissue. The density of a San Francisco, described recovery by cells in mice gas is generally of the order of some 1/1000th that of full reproductive function after exposure to neu­ of animal and human tissue. Thus most LET data trons at short-spaced intervals; the investigators are based on a multiplication of measurements actually noted that recovery after X-ray exposure is incom­ made in gases, rather than in living human or animal plete. They reported that destroyed cells are re­ cells, in which technological control is difficult. Some placed by division of the remaining cells when irra­ of the participants pointed out that there is only diations are spaced over long intervals of time. They limited scientific value in measurements of the amount conclude that knowledge of rate of recovery from large of radiation necessary to kill a single living cell. doses of neutron irradiation is more difficult to come Emphasis was placed on the importance of mounting by than for any other form of radiation, yet seems experiments in which new data can be collected on the essential if differences between effects caused by neu­ effects of radiation on the various life processes which trons and X-rays are to be interpreted significantly. take place in the cell. J. C. Moskalev, of the Institute They conclude: of Biophysics of the Academy of Medical Science in Moscow, advocated even more extensive investiga­ "The discoveries in the past few years about tion of organs and biological systems. He expressed the kinetics of accumulation of radiation injury the view that the functioning of cells together in the by cultured mammalian cells have made possi­ performance of a biological function is more signifi­ ble a more unified view of the process of injury cant to man's understanding of radiation effects than accumulation in whole mammals, with the re­ is the functioning of a cell as a single entity. conciling of many once divergent experimental viewpoints. With this new unity of view there is now the prospect of increasingly better under­ Measuring LET standing of the process of accumulation and re­ The use of "phantoms" or material containing pair of radiation injury in mammals. " chemical elements identical with those found in human beings, mice, dogs and guinea pigs was described by Interplay of Particles S. Snyder of Oak Ridge as part of a study of LET dis­ Another methodological concept discussed at tribution of neutron dose. When the cylindrical "phan­ length was linear energy transfer (LET). This term toms" are exposed to neutrons, the latter displace 27 nuclei of atoms in the cylinder, or interact with these on the basic mechanisms by which neutrons and pro­ nuclei to produce secondary neutrons and protons. tons produce effects in living things, there was also The LET of these recoil and secondary particles was occasional mention of the potential value of such work analysed by means of a computer for neutrons of dif­ in connection with maintaining health and safety pro­ fering energies, and types of "phantoms" compared. cedures in laboratories and other installations where V. I. Ivanov of the USSR Institute of Engineers these two fundamental nuclear particles are produced. and Physical Science, Moscow, presented evidence For example, protons are accelerated by cyclotrons of the utility of a new universal radiation dose unit in and other types of high energy particle accelerators standardizing measurements taken in various coun­ in dozens of universities and research organizations tries, and reported on work by investigators at the in various parts of the world. Neutrons are used in Joint Institute of Nuclear Research at Dubna in using experiments in connection with over 400 nuclear reac­ a synchrotron to produce a proton beam suitable for tors now in operation.
Recommended publications
  • Neutron Interactions and Dosimetry Outline Introduction Tissue
    Outline • Neutron dosimetry Neutron Interactions and – Thermal neutrons Dosimetry – Intermediate-energy neutrons – Fast neutrons Chapter 16 • Sources of neutrons • Mixed field dosimetry, paired dosimeters F.A. Attix, Introduction to Radiological • Rem meters Physics and Radiation Dosimetry Introduction Tissue composition • Consider neutron interactions with the majority tissue elements H, O, C, and N, and the resulting absorbed dose • Because of the short ranges of the secondary charged particles that are produced in such interactions, CPE is usually well approximated • Since no bremsstrahlung x-rays are generated, the • The ICRU composition for muscle has been assumed in absorbed dose can be assumed to be equal to the most cases for neutron-dose calculations, lumping the kerma at any point in neutron fields at least up to 1.1% of “other” minor elements together with oxygen to an energy E ~ 20 MeV make a simple four-element (H, O, C, N) composition Neutron kinetic energy Neutron kinetic energy • Neutron fields are divided into three • Thermal neutrons, by definition, have the most probable categories based on their kinetic energy: kinetic energy E=kT=0.025eV at T=20C – Thermal (E<0.5 eV) • Neutrons up to 0.5eV are considered “thermal” due to simplicity of experimental test after they emerge from – Intermediate-energy (0.5 eV<E<10 keV) moderator material – Fast (E>10 keV) • Cadmium ratio test: • Differ by their primary interactions in tissue – Gold foil can be activated through 197Au(n,)198Au interaction and resulting biological effects
    [Show full text]
  • Neutron Activation and Prompt Gamma Intensity in Ar/CO $ {2} $-Filled Neutron Detectors at the European Spallation Source
    Neutron activation and prompt gamma intensity in Ar/CO2-filled neutron detectors at the European Spallation Source E. Diana,b,c,∗, K. Kanakib, R. J. Hall-Wiltonb,d, P. Zagyvaia,c, Sz. Czifrusc aHungarian Academy of Sciences, Centre for Energy Research, 1525 Budapest 114., P.O. Box 49., Hungary bEuropean Spallation Source ESS ERIC, P.O Box 176, SE-221 00 Lund, Sweden cBudapest University of Technology and Economics, Institute of Nuclear Techniques, 1111 Budapest, M}uegyetem rakpart 9. dMid-Sweden University, SE-851 70 Sundsvall, Sweden Abstract Monte Carlo simulations using MCNP6.1 were performed to study the effect of neutron activation in Ar/CO2 neutron detector counting gas. A general MCNP model was built and validated with simple analytical calculations. Simulations and calculations agree that only the 40Ar activation can have a considerable effect. It was shown that neither the prompt gamma intensity from the 40Ar neutron capture nor the produced 41Ar activity have an impact in terms of gamma dose rate around the detector and background level. Keywords: ESS, neutron detector, B4C, neutron activation, 41Ar, MCNP, Monte Carlo simulation 1. Introduction Ar/CO2 is a widely applied detector counting gas, with long history in ra- diation detection. Nowadays, the application of Ar/CO2-filled detectors is ex- tended in the field of neutron detection as well. However, the exposure of arXiv:1701.08117v2 [physics.ins-det] 16 Jun 2017 Ar/CO2 counting gas to neutron radiation carries the risk of neutron activa- tion. Therefore, detailed consideration of the effect and amount of neutron ∗Corresponding author Email address: [email protected] (E.
    [Show full text]
  • TUTORIAL on NEUTRON PHYSICS in DOSIMETRY S. Pomp1
    TUTORIAL ON NEUTRON PHYSICS IN DOSIMETRY S. Pomp1,* 1 Department of physics and astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden. *Corresponding author. E‐mail address: [email protected] (S.Pomp) Abstract: Almost since the time of the discovery of the neutron more than 70 years ago, efforts have been made to understand the effects of neutron radiation on tissue and, eventually, to use neutrons for cancer treatment. In contrast to charged particle or photon radiations which directly lead to release of electrons, neutrons interact with the nucleus and induce emission of several different types of charged particles such as protons, alpha particles or heavier ions. Therefore, a fundamental understanding of the neutron‐nucleus interaction is necessary for dose calculations and treatment planning with the needed accuracy. We will discuss the concepts of dose and kerma, neutron‐nucleus interactions and have a brief look at nuclear data needs and experimental facilities and set‐ups where such data are measured. Keywords: Neutron physics; nuclear reactions; kerma coefficients; neutron beams; Introduction Dosimetry is concerned with the ability to determine the absorbed dose in matter and tissue resulting from exposure to directly and indirectly ionizing radiation. The absorbed dose is a measure of the energy deposited per unit mass in the medium by ionizing radiation and is measured in Gray, Gy, where 1 Gy = 1 J/kg. Radiobiology then uses information about dose to assess the risks and gains. A risk is increased probability to develop cancer due to exposure to a certain dose. A gain is exposure of a cancer tumour to a certain dose in order to cure it.
    [Show full text]
  • Conceptual Design Report Jülich High
    General Allgemeines ual Design Report ual Design Report Concept Jülich High Brilliance Neutron Source Source Jülich High Brilliance Neutron 8 Conceptual Design Report Jülich High Brilliance Neutron Source (HBS) T. Brückel, T. Gutberlet (Eds.) J. Baggemann, S. Böhm, P. Doege, J. Fenske, M. Feygenson, A. Glavic, O. Holderer, S. Jaksch, M. Jentschel, S. Kleefisch, H. Kleines, J. Li, K. Lieutenant,P . Mastinu, E. Mauerhofer, O. Meusel, S. Pasini, H. Podlech, M. Rimmler, U. Rücker, T. Schrader, W. Schweika, M. Strobl, E. Vezhlev, J. Voigt, P. Zakalek, O. Zimmer Allgemeines / General Allgemeines / General Band / Volume 8 Band / Volume 8 ISBN 978-3-95806-501-7 ISBN 978-3-95806-501-7 T. Brückel, T. Gutberlet (Eds.) Gutberlet T. Brückel, T. Jülich High Brilliance Neutron Source (HBS) 1 100 mA proton ion source 2 70 MeV linear accelerator 5 3 Proton beam multiplexer system 5 4 Individual neutron target stations 4 5 Various instruments in the experimental halls 3 5 4 2 1 5 5 5 5 4 3 5 4 5 5 Schriften des Forschungszentrums Jülich Reihe Allgemeines / General Band / Volume 8 CONTENT I. Executive summary 7 II. Foreword 11 III. Rationale 13 1. Neutron provision 13 1.1 Reactor based fission neutron sources 14 1.2 Spallation neutron sources 15 1.3 Accelerator driven neutron sources 15 2. Neutron landscape 16 3. Baseline design 18 3.1 Comparison to existing sources 19 IV. Science case 21 1. Chemistry 24 2. Geoscience 25 3. Environment 26 4. Engineering 27 5. Information and quantum technologies 28 6. Nanotechnology 29 7. Energy technology 30 8.
    [Show full text]
  • Sonie Applications of Fast Neutron Activation Analysis of Oxygen
    S E03000182 CTH-RF- 16-5 Sonie Applications of Fast Neutron Activation Analysis of Oxygen Farshid Owrang )52 Akadenmisk uppsats roir avliiggande~ av ilosofie ficentiatexamen i Reaktorf'ysik vid Chalmer's tekniska hiigskola Examinator: Prof. Imre PiAst Handledare: Dr. Anders Nordlund Granskare: Bitr. prof. G~iran Nyrnan Department of Reactor Physics Chalmers University of Technology G6teborg 2003 ISSN 0281-9775 SOME APPLICATIONS OF FAST NEUTRON ACTIVATION OF OXYGE~'N F~arshid Owrang Chalmers University of Technology Departmlent of Reactor Physics SEP-1-412 96 G~iteborg ABSTRACT In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline S engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron enerator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe.
    [Show full text]
  • Practical Aspects of Operating a Neutron Activation Analysis Laboratory
    IAEA-TECDOC-564 PRACTICAL ASPECTS OF OPERATING A NEUTRON ACTIVATION ANALYSIS LABORATORY A TECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1990 PRACTICAL ASPECT OPERATINF SO G A NEUTRON ACTIVATION ANALYSIS LABORATORY IAEA, VIENNA, 1990 IAEA-TECDOC-564 ISSN 1011-4289 Printe IAEe th AustriAn i y d b a July 1990 PLEASE BE AWARE THAT MISSINE TH AL F LO G PAGE THIN SI S DOCUMENT WERE ORIGINALLY BLANK FOREWORD This boo s intendei k o advist d n everydai e y practical problems relateo t d operating a neutron activation analysis (NAA) laboratory. It gives answers to questions like "what to use NAA for", "how to find relevant research problems", "how to find users for the technique", "how to estimate the cost of the analysis and how to finance the work", "how to organize the work in a rational way d "ho"an o perforwt e qualitth m y control" givet I . s advice in choosing staff, equipment d consumableo desigt an , w nho facilitied an s s and procedures accordin neeo d availablt g an d e resources. e boo Th s designei k o discust d s problem t dealno s t wit n ordinari h A NA y textbooks, but also, in order to prevent it from being too voluminous, to avoid duplication of material described in normal NAA text books. Therefore e readeth , r will find that some materia f intereso l missins i t g from this book and it is recommended that one or two of the textbooks listed in chapter 11 be read in addition to this one.
    [Show full text]
  • Photon, Neutron, Proton, Electron, Gamma Ray, Carbon Ion)
    Fundamental types of radiation particle beams (Photon, Neutron, Proton, Electron, Gamma Ray, Carbon Ion) Photon This is the most common, widely used type of radiation, and is available at most treatment centers and hospitals. This is widely used to treat most cancers including known or suspect residual ACC which was not able to be removed with surgery by itself. In simple terms, it is fundamentally a very high dose X-ray beam. This is also the type of radiation beam utilized for most of the pinpoint targeted types of radiation treatments, such as CyberKnife, TomoTherapy and Novalis. Most hospitals have photon radiation available and the beam is generated by a beam accelerator device that takes up the space of a typical bedroom. Some of the newer manufacturers have developed a more compact beam accelerator, such as the CyberKnife. Neutron Neutron radiation therapy is a unique, high-LET radiation (the particles are accelerated at a very fast rate) with very specific differences in how it affects DNA in ACC cancer cells when compared to standard Photon radiation. Neutrons are produced from a large and expensive particle accelerator called a cyclotron. This high-LET (high linear-energy-transfer) radiation is also referred to as “fast neutron therapy”. Neutrons, pions and heavy ions (such as carbon, neon and argon) deposit more energy along their path than x-rays or gamma rays, thus causing more damage to the cells they hit. The cyclotron accelerator produces protons and then a series of powerful magnets bend and aim the beam to strike a beryllium target, where the interaction produces neutrons.
    [Show full text]
  • Protection Against Neutron Radiation up to 30 Million Electron Volts
    PROTECTION AGAINST NEUTRON RADIATION UP TO 30 MILLION ELECTRON VOLTS Handbook 63 U. S. Department of Commerce National Bureau of Standards HANDBOOKS OF THE NATIONAL BUREAU OF STANDARDS The following Handbooks issued by the Bureau are avail¬ able by purchase from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., at the prices indicated: No. Price 28 Screw-Thread Standards for Federal Services 1944-$1.25 28 1950 Supplement to Screw-Thread Standards for Federal Services 1944 .60 28 Screw-Thread Standards for Federal Services 1957, Part I. (Amends in part H28 1944 and in part its 1950 Supplement) . 1.25 30 National Electrical Safety Code. 2.25 37 Testing of Weighing Equipment. 2.50 42 Safe Handling of Radioactive Isotopes.20 43 Installation and Maintenance of Electric Supply and Communication Lines. Safety Rules and Discussion.. 2.25 44 Specifications, Tolerances, and Regulations for Commer¬ cial Weighing and Measuring Devices—2d Edition.... 2.00 45 Testing of Measuring Equipment . 1.50 46 Code for Protection Against Lightning.45 48 Control and Removal of Radioactive Contamination in Laboratories .15 49 Recommendations for Waste Disposal of Phosphorus-32 and Iodine-131 for Medical Users.15 50 X-ray Protection Design.20 51 Radiological Monitoring Methods and Instruments.20 52 Maximum Permissible Amounts of Radioisotopes in the Human Body and Maximum Permissible Concentra¬ tions in Air and Water.25 53 Recommendations for the Disposal of Carbon-14 Wastes .15 54 Protection Against Radiations From Radium, Cobalt-60,
    [Show full text]
  • Thermal Neutron Detection
    Thermal Neutron Detection Louie Cueva December 8, 2015 PHYS 575 1 Neutrons • 1932 – Chadwick discovered the neutron • No charge, No Coulomb force, No Service! • Interaction with detectors • Interactions with nuclei • ~10 min life time (free neutron) • Sources Fig 1. Chadwick (nobelprize.org) • Nuclear Reactors, Spallation (accelerator based), Fusion sources (D-T), Radioactive decay (252Cf, 250Cm, 240Pu) • Applications • Nuclear, material science, imaging, medical physics 2 Neutron Energy Ranges INTERACTIONS < 0.005 eV Cold Diffraction 0.025 eV Thermal 0.02 eV Epithermal Capture Elastic (η,γ)(η,p)(η,α) Scattering 1–10 eV Slow Fission 300 eV ‐ 1 MeV Intermediate (η,f) 1 –20 MeV Fast Inelastic > 20 MeV Ultra Fast Scattering (η,χ) 3 Interaction with Matter Extremely weak electromagnetic interactions Radiation Protection Penetration through matter • Shielding is more complicated Nuclear interactions only, low probability at that Interaction is inversely proportional to energy • It’s about probability, not density • Atypical materials: paraffin, borated materials (concrete, water, polyethylene) Fig 2. Neutron Interaction (explorcuriosity.org) 4 Neutron Cross Section • Cross section is measure of the probability for a reaction between particles • “Barn” has area dimensions (10-28 m2) • Microscopic – probability of reaction between neutron and nucleus • Macroscopic – probability of interaction between neutron and material • Typical reactions Fig 3. neutron reactions (nucleonica.net) 5 Neutron Detection Cross Section vs. Energy • Cross section goes down as energy increases so slow neutrons (thermal) have a vastly different detection scheme than fast neutrons • Moderator material is used to slow neutrons down thereby generally increasing detection efficiency (to an extent…) • Fast Neutron spectroscopy allows for detection to quantify incoming neutrons and deduction of incoming neutron energy.
    [Show full text]
  • Neutron Measurements Around High Energy X-Ray Radiotherapy Machines
    AAPM REPORT NO. 19 NEUTRON MEASUREMENTS AROUND HIGH ENERGY X-RAY RADIOTHERAPY MACHINES Published for the American Association of Physics in Medicine by the American Institute of Physics AAPM REPORT NO. 19 NEUTRON MEASUREMENTS AROUND HIGH ENERGY X-RAY RADIOTHERAPY MACHINES A REPORT OF TASK GROUP 27 RADIATION THERAPY COMMITTEE AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE Ravinder Nath, Yale University, Chairman Arthur L. Boyer, M.D. Anderson Hospital Philip D. La Riviere, Varian Associates Richard C. McCall, Stanford Linear Accelerator Center Kenneth W. Price, Yale University July 1986 Published for the American Association of Physicists in Medicine by the American Institute of Physics Further copies of this report may be obtained from Executive Officer American Association of Physicists in Medicine 335 E. 45 Street New York, NY 10017 Library of Congress Catalog Card Number: 86-73193 International Standard Book Number: 0-88318-518-0 International Standard Serial Number: 0271-7344 Copyright © 1987 by the American Association of Physicists in Medicine All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of the publisher. Published by the American Institute of Physics, Inc., 335 East 45 Street, New York, New York 10017 Printed in the United States of America Table of Contents I. Introduction 3 II. Measurements Inside the Treatment Room A. General Considerations 4 B. Phosphorus Activation Method 9 C. Moderated Foil Method 13 D. Activation Rem Meter Method 19 III. Measurements Outside the Treatment Room 24 IV.
    [Show full text]
  • Long-Range Neutron Detection
    JNNL-13044 PacificNorthwest National Laboratoy Operated by Battelle for the U.S. Depa@ment of Energy LongRange Neutron Detection A.J. Peurrung D.C. Stromswold R.R. Hansen P.L. Reeder D.S. Barnett November 1999 Prepared for the U.S. Department of Energy under Contract DE-AC06-76M0 1830 DISCLAIMER This report WASprepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereofi nor Battelle Memorial Institute, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility ,- for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein “to any specific commercial product process, or service by trade name, trademark manufacturer, or o.lherwise does not necessarily constitute or imply its endorsemen~ recommendation, or favoring by the United States Government or any agency thereof or BatteHe Memorial - Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BAITELLE MEMORIAL IN- ~ forthe UNITED =ATES DEPARTMENT OF ENERGY under ContractDE-AC06-76RL01830 ,, ,, Printed in tbe United States of America Available to DOE and DOE contractors from the OffIce of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. ,, Available to the public fr,omthe National Technical Information Service, U.S. Department of Commerce,’5285Port Royal Rd., Springfield, VA 22161, ,.
    [Show full text]
  • Table of Contents
    ORAU Team Document Number: ORAUT-TKBS-0006-6 NIOSH Dose Reconstruction Project Effective Date: 10/05/2006 Revision No.: 01 PC-1 Technical Basis Document for the Hanford Site – Controlled Copy No.: ______ Occupational External Dosimetry Page 1 of 80 Subject Expert: Jack Fix Supersedes: Document Owner Approval: Signature on File Date: 01/09/2004 Edward D. Scalsky, TBD Team Leader Revision No.: 00 Approval: Signature on File Date: 01/09/2004 Judson L. Kenoyer, Task 3 Manager Concurrence: Signature on File Date: 01/09/2004 Richard E. Toohey, Project Director Approval: Signature on File Date: 01/09/2004 James W. Neton, OCAS Health Science Administrator TABLE OF CONTENTS Section Page Record of Issue/Revisions ................................................................................................................... 5 Acronyms and Abbreviations ............................................................................................................... 6 6.1 Introduction ................................................................................................................................. 8 6.1.1 Purpose ............................................................................................................................ 9 6.1.2 Scope ............................................................................................................................... 9 6.2 External Dosimetry ...................................................................................................................... 9 6.3 Basis of
    [Show full text]