Identifying Cancer Driver Genes in Tumor Genome Sequencing Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ZMYND10 Functions in a Chaperone Relay During Axonemal Dynein Assembly
bioRxiv preprint doi: https://doi.org/10.1101/233718; this version posted December 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ZMYND10 functions in a chaperone relay during axonemal dynein assembly. 2 3 Girish R Mali1,9 , Patricia Yeyati1, Seiya Mizuno2, Margaret A Keighren1, Petra zur Lage3, Amaya 4 Garcia-Munoz4, Atsuko Shimada5, Hiroyuki Takeda5, Frank Edlich6, Satoru Takahashi2,7, Alex von 5 Kreigsheim4,8, Andrew Jarman3 and Pleasantine Mill1,*. 6 7 1. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of 8 Edinburgh, Edinburgh, UK, EH4 2XU 9 2. Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan, 305-8575 10 3. Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK, EH8 9XD 11 4. Systems Biology Ireland, University College Dublin, Dublin, Ireland 12 5. Department of Biological Sciences, University of Tokyo, Tokyo, Japan, 113-0033 13 6. Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany, 14 79104 15 7. Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, 16 Japan, 305-8575 17 8. Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University 18 of Edinburgh, Edinburgh, UK, EH4 2XU 19 9. Current address: MRC Laboratory of Molecular Biology, Cambridge, UK, CB2 0QH 20 * Corresponding author: [email protected] 21 22 23 24 25 26 27 28 29 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/233718; this version posted December 13, 2017. -
The Mutability and Repair of DNA
B.Sc (Hons) Microbiology (CBCS Structure) C-7: Molecular Biology Unit 2: Replication of DNA The Mutability and Repair of DNA Dr. Rakesh Kumar Gupta Department of Microbiology Ram Lal Anand College New Delhi - 110021 Reference – Molecular Biology of the Gene (6th Edition) by Watson et. al. Pearson education, Inc Principles of Genetics (8th Edition) by D. Peter Snustad, D. Snustad, Eldon Gardner, and Michael J. Simmons, Wiley publications Replication errors and their repair The Nature of Mutations: • Transitions: A kind of the simplest mutation which is pyrimidine-to-pyrimidine and purine-to- purine substitutions such as T to C and A to G • Transversions: The other kind of mutation which are pyrimidine-to-purine and purine-to- pyrimidine substitutions such as T to A or G and ATransitions to C or T. Transversions 8 types 4 types Synonymous substitution Non synonymous substitution • Point mutations: Mutations that alter a single nucleotide Other kinds of mutations (which cause more drastic changes in DNA): • Insertions • Deletions • Gross rearrangements of Thesechromosome mutations might be caused by insertion by transposon or by aberrant action of cellular recombination processes. Mutation • Substitution, deletion, or insertion of a base pair. • Chromosomal deletion, insertion, or rearrangement. Somatic mutations occur in somatic cells and only affect the individual in which the mutation arises. Germ-line mutations alter gametes and passed to the next generation. Mutations are quantified in two ways: 1. Mutation rate = probability of a particular type of mutation per unit time (or generation). 2. Mutation frequency = number of times a particular mutation occurs in a population of cells or individuals. -
Genetic Causes.Pdf
1 September 2015 Genetic causes of childhood apraxia of speech: Case‐based introduction to DNA, inheritance, and clinical management Beate Peter, Ph.D., CCC‐SLP Assistant Professor Dpt. of Speech & Hearing Science Arizona State University Adjunct Assistant Professor AG Dpt. of Communication Sciences & Disorders ATAGCT Saint Louis University T TAGCT Affiliate Assistant Professor Dpt. of Speech & Hearing Sciences University of Washington 1 Disclosure Statement Disclosure Statement Dr. Peter is co‐editor of a textbook on speech development and disorders (B. Peter & A. MacLeod, Eds., 2013), for which she may receive royalty payments. If she shares information about her ongoing research study, this may result in referrals of potential research participants. She has no financial interest or related personal interest of bias in any organization whose products or services are described, reviewed, evaluated or compared in the presentation. 2 Agenda Topic Concepts Why we should care about genetics. Case 1: A sporadic case of CAS who is missing a • Cell, nucleus, chromosomes, genes gene. Introduction to the language of genetics • From genes to proteins • CAS can result when a piece of DNA is deleted or duplicated Case 2: A multigenerational family with CAS • How the FOXP2 gene was discovered and why research in genetics of speech and language disorders is challenging • Pathways from genes to proteins to brain/muscle to speech disorder Case 3: One family's quest for answers • Interprofessional teams, genetic counselors, medical geneticists, research institutes • Early signs of CAS, parent education, early intervention • What about genetic testing? Q&A 3 “Genetic Causes of CAS: Case-Based Introduction to DNA, Inheritance and Clinical Management,” Presented by: Beate Peter, PhD, CCC-SLP, September 29, 2015, Sponsored by: CASANA 2 Why should you care about genetics? 4 If you are a parent of a child with childhood apraxia of speech … 5 When she was in preschool, He doesn’t have any friends. -
Mutation by Dr. Ty C.M. Hoffman
Mutation by Dr. Ty C.M. Hoffman Slide 1 Transcription features a one-to-one correspondence between DNA nucleotides in the gene and RNA nucleotides in the RNA transcript. However, the four nucleotide types used in RNA are insufficient to individually specify all twenty biological amino acids during translation. Instead, a sequence of three mRNA nucleotides (collectively called a codon) specifies a single amino acid. Since there are three nucleotide positions within a codon, and each position can be occupied by any of four types of nucleotide, there are sixty-four possible codons. This is more than enough to specify the twenty biological amino acids. Slide 2 The genetic code is universal in that all organisms (with very few exceptions) use the same code for specifying amino acids with mRNA codons. The genetic code is redundant in that more than one codon can specify the same amino acid. This is because there are more types of codons than there are types of amino acids used by organisms. The genetic code is not ambiguous, however, because each codon always specifies the same amino acid. Four of the codons serve special functions. One operates as a start codon (signaling initiation of translation), and three codons operate as stop codons (signaling the termination of translation). Slide 3 Mutation is a random change in the DNA sequence of nucleotides. Mutation can be purely accidental (by a mistake made during DNA replication), or mutation can result from exposure of DNA to a mutagen (something that causes mutation). Mutations can be classified into two major types: • Base-pair substitutions do not change the number of nucleotides in the DNA, because one base pair is substituted for another. -
Bio 102 Practice Problems Genetic Code and Mutation
Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Choose the one best answer: Beadle and Tatum mutagenized Neurospora to find strains that required arginine to live. Based on the classification of their mutants, they concluded that: A. one gene corresponds to one protein. B. DNA is the genetic material. C. "inborn errors of metabolism" were responsible for many diseases. D. DNA replication is semi-conservative. E. protein cannot be the genetic material. 2. Choose the one best answer. Which one of the following is NOT part of the definition of a gene? A. A physical unit of heredity B. Encodes a protein C. Segement of a chromosome D. Responsible for an inherited characteristic E. May be linked to other genes 3. A mutation converts an AGA codon to a TGA codon (in DNA). This mutation is a: A. Termination mutation B. Missense mutation C. Frameshift mutation D. Nonsense mutation E. Non-coding mutation 4. Beadle and Tatum performed a series of complex experiments that led to the idea that one gene encodes one enzyme. Which one of the following statements does not describe their experiments? A. They deduced the metabolic pathway for the synthesis of an amino acid. B. Many different auxotrophic mutants of Neurospora were isolated. C. Cells unable to make arginine cannot survive on minimal media. D. Some mutant cells could survive on minimal media if they were provided with citrulline or ornithine. E. Homogentisic acid accumulates and is excreted in the urine of diseased individuals. 5. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Clinical and Genetic Characteristics and Prenatal Diagnosis of Patients
Lin et al. Orphanet J Rare Dis (2020) 15:317 https://doi.org/10.1186/s13023-020-01599-y RESEARCH Open Access Clinical and genetic characteristics and prenatal diagnosis of patients presented GDD/ID with rare monogenic causes Liling Lin1, Ying Zhang1, Hong Pan1, Jingmin Wang2, Yu Qi1 and Yinan Ma1* Abstract Background: Global developmental delay/intellectual disability (GDD/ID), used to be named as mental retardation (MR), is one of the most common phenotypes in neurogenetic diseases. In this study, we described the diagnostic courses, clinical and genetic characteristics and prenatal diagnosis of a cohort with patients presented GDD/ID with monogenic causes, from the perspective of a tertiary genetic counseling and prenatal diagnostic center. Method: We retrospectively analyzed the diagnostic courses, clinical characteristics, and genetic spectrum of patients presented GDD/ID with rare monogenic causes. We also conducted a follow-up study on prenatal diagnosis in these families. Pathogenicity of variants was interpreted by molecular geneticists and clinicians according to the guidelines of the American College of Medical Genetics and Genomics (ACMG). Results: Among 81 patients with GDD/ID caused by rare monogenic variants it often took 0.5–4.5 years and 2–8 referrals to obtain genetic diagnoses. Devlopmental delay typically occurred before 3 years of age, and patients usu- ally presented severe to profound GDD/ID. The most common co-existing conditions were epilepsy (58%), micro- cephaly (21%) and facial anomalies (17%). In total, 111 pathogenic variants were found in 62 diferent genes among the 81 pedigrees, and 56 variants were novel. The most common inheritance patterns in this outbred Chinese popula- tion were autosomal dominant (AD; 47%), following autosomal recessive (AR; 37%), and X-linked (XL; 16%). -
Computational Genomics and Genetics of Developmental Disorders
Computational genomics and genetics of developmental disorders Hongjian Qi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Hongjian Qi All Rights Reserved ABSTRACT Computational genomics and genetics of developmental disorders Hongjian Qi Computational genomics is at the intersection of computational applied physics, math, statistics, computer science and biology. With the advances in sequencing technology, large amounts of comprehensive genomic data are generated every year. However, the nature of genomic data is messy, complex and unstructured; it becomes extremely challenging to explore, analyze and understand the data based on traditional methods. The needs to develop new quantitative methods to analyze large-scale genomics datasets are urgent. By collecting, processing and organizing clean genomics datasets and using these datasets to extract insights and relevant information, we are able to develop novel methods and strategies to address specific genetics questions using the tools of applied mathematics, statistics, and human genetics. This thesis describes genetic and bioinformatics studies focused on utilizing and developing state-of-the-art computational methods and strategies in order to identify and interpret de novo mutations that are likely causing developmental disorders. We performed whole exome sequencing as well as whole genome sequencing on congenital diaphragmatic hernia parents-child trios and identified a new candidate risk gene MYRF. Additionally, we found male and female patients carry a different burden of likely-gene-disrupting mutations, and isolated and complex patients carry different gene expression levels in early development of diaphragm tissues for likely-gene-disrupting mutations. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Activation of the Ha-, Ki-, and N-Ras Genes in Chemically Induced Liver Tumors from CD-I Mice Sujata Mananu' Richard D
(CANCER RESEARCH 52. 3347-3352. June 15. 1992] Activation of the Ha-, Ki-, and N-ras Genes in Chemically Induced Liver Tumors from CD-I Mice Sujata Mananu' Richard D. Storer, Srinivasa Prahalada, Karen R. Leander, Andrew R. Kraynak, Brian J. Ledwith, Matthew J. van Zwieten, Matthews O. Bradley, and Warren W. Nichols Department of Safety Assessment, Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486 ABSTRACT although the frequency of these mutations varies among mouse strains (6, 10-13). Previous studies in B6C3F,2 mice demon We compared the profilo of ras gene mutations in spontaneous CD-I strated that liver tumors induced by some genotoxic carcinogens mouse liver tumors with that found in liver tumors that were induced by a single i.p. injection of either 7,12-dimethylbenz(a)anthracene(DMBA), (6, 14, 15) and nongenotoxic carcinogens (11) had different 4-aminoazobenzene, Ar-hydroxy-2-acetylaminofluorene, or /V-nitrosodi- frequencies or profiles of ras gene point mutations than were ethylamine. By direct sequencing of polymerase chain reaction-amplified seen in spontaneous tumors. However, B6C3F, mouse liver tumor DNA, the carcinogen-induced tumors were found to have much tumors induced by benzidine (11), N-OH-AAF (14), and DEN higher frequencies of ras gene activation than spontaneous tumors. Fur (16) were reported to have a similar pattern of Ha-ras codon thermore, each carcinogen caused specific types of ras mutations not 61 mutations to that seen in spontaneous liver tumors. detected in spontaneous tumors, including several novel mutations not Determining the general applicability of ras gene analysis for previously associated with either the carcinogen or mouse hepatocarcin- distinguishing chemically induced tumors from spontaneous ogenesis. -
Epigenetic Regulators in Neuroblastoma: Brg1, a Future Therapeutic Target
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en EPIGENETIC REGULATORS IN NEUROBLASTOMA: BRG1, A FUTURE THERAPEUTIC TARGET PhD thesis presented by Luz Jubierre Zapater To obtain the degree of PhD for the Universitat Autónoma de Barcelona (UAB) PhD thesis carried out at the Translational Research in Child and Adolescent Cancer Laboratory, at Vall d’Hebron Research Institute (VHIR), under the supervision of Dr. Miguel F. Segura and Dr. Soledad Gallego Thesis affiliated to the Department of Biochemistry and Molecular Biology from the UAB, in the PhD program of Biochemistry, Molecular Biology and Biomedicine, under the tutoring of Dr. José Miguel Lizcano Universidad Autónoma de Barcelona, Septiembre 5th 2017 Dr. Miguel F. Segura Dr. Soledad Gallego (Director) (Director) Luz Jubierre Zapater (Student) 2017 Is this the real life? Is this just fantasy? Caught in a landslide No escape from reality; Open your eyes Look up to the skies and see Bohemian Rhapsody, Queen To my Mom To my Dad To Adri ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS Acknowledgement Desde que escribí la primera palabra en el libro de mi vida mucha gente se ha cruzado en mi camino para dejar su huella en él.