Legume Living Mulches in Corn and Soybean
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Are Soybeans?
candy, cakes, cheeses, peanut butter, animal feeds, candles, paint, body lotions, biodiesel, furniture soybeans USES: What are soybeans? Soybeans are small round seeds, each with a tiny hilum (small brown spot). They are made up of three basic parts. Each soybean has a seed coat (outside cover that protects the seed), VOCABULARY cotyledon (the first leaf or pair of leaves within the embryo that stores food), and the embryo (part of a seed that develops into Cultivar: a variety of plant that has been created or a new plant, including the stem, leaves and roots). Soybeans, selected intentionally and maintained through cultivation. like most legumes, perform nitrogen fixation. Modern soybean Embryo: part of a seed that develops into a new plant, cultivars generally reach a height of around 1 m (3.3 ft), and including the stem, leaves and roots. take 80–120 days from sowing to harvesting. Exports: products or items that the U.S. sells and sends to other countries. Exports include raw products like whole soybeans or processed products like soybean oil or Leaflets soybean meal. Fertilizer: any substance used to fertilize the soil, especially a commercial or chemical manure. Hilum: the scar on a seed marking the point of attachment to its seed vessel (the brown spot). Leaflets: sub-part of leaf blade. All but the first node of soybean plants produce leaves with three leaflets. Legume: plants that perform nitrogen fixation and whose fruit is a seed pod. Beans, peas, clover and alfalfa are all legumes. Nitrogen Fixation: the conversion of atmospheric nitrogen Leaf into a nitrogen compound by certain bacteria, such as Stem rhizobium in the root nodules of legumes. -
Soy Free Diet Avoiding Soy
SOY FREE DIET AVOIDING SOY An allergy to soy is common in babies and young children, studies show that often children outgrow a soy allergy by age 3 years and the majority by age 10. Soybeans are a member of the legume family; examples of other legumes include beans, peas, lentils and peanut. It is important to remember that children with a soy allergy are not necessarily allergic to other legumes, request more clarification from your allergist if you are concerned. Children with a soy allergy may have nausea, vomiting, abdominal pain, diarrhea, bloody stool, difficulty breathing, and or a skin reaction after eating or drinking soy products. These symptoms can be avoided by following a soy free diet. What foods are not allowed on a soy free diet? Soy beans and edamame Soy products, including tofu, miso, natto, soy sauce (including sho yu, tamari), soy milk/creamer/ice cream/yogurt, soy nuts and soy protein, tempeh, textured vegetable protein (TVP) Caution with processed foods - soy is widely used manufactured food products – remember to carefully read labels. o Soy products and derivatives can be found in many foods, including baked goods, canned tuna and meat, cereals, cookies, crackers, high-protein energy bars, drinks and snacks, infant formulas, low- fat peanut butter, processed meats, sauces, chips, canned broths and soups, condiments and salad dressings (Bragg’s Liquid Aminos) USE EXTRA CAUTION WITH ASIAN CUISINE: Asian cuisine are considered high-risk for people with soy allergy due to the common use of soy as an ingredient and the possibility of cross-contamination, even if a soy-free item is ordered. -
T. Colin Campbell, Ph.D. Thomas M. Campbell II
"Everyone in the field of nutrition science stands on the shoulders of Dr. Campbell, who is one of the giants in the field. This is one of the most important books about nutrition ever written - reading it may save your life." - Dean Ornish, MD THE MOST COMPREHENSIVE STUDY OF NUTRITION EVER CONDUCTED --THE-- STARTLING IMPLICATIONS FOR DIET, WEIGHT Loss AND LONG-TERM HEALTH T. COLIN CAMPBELL, PHD AND THOMAS M. CAMPBELL II FOREWORD BY JOHN ROBBINS, AUTHOR, DIET FOR A NEW AMERICA PRAISE FOR THE CHINA STUDY "The China Study gives critical, life-saving nutritional information for ev ery health-seeker in America. But it is much more; Dr. Campbell's expose of the research and medical establishment makes this book a fascinating read and one that could change the future for all of us. Every health care provider and researcher in the world must read it." -JOEl FUHRMAN, M.D. Author of the Best-Selling Book, Eat To Live . ', "Backed by well-documented, peer-reviewed studies and overwhelming statistics the case for a vegetarian diet as a foundation for a healthy life t style has never been stronger." -BRADLY SAUL, OrganicAthlete.com "The China Study is the most important book on nutrition and health to come out in the last seventy-five years. Everyone should read it, and it should be the model for all nutrition programs taught at universities, The reading is engrossing if not astounding. The science is conclusive. Dr. Campbells integrity and commitment to truthful nutrition education shine through." -DAVID KLEIN, PublisherlEditor Living Nutrition MagaZine "The China Study describes a monumental survey of diet and death rates from cancer in more than 2,400 Chinese counties and the equally monu mental efforts to explore its Significance and implications for nutrition and health. -
ISR Summer Camp Lunch Menu 28.06.-02.07
Meat option 28.06. Meatless Monday Allergens Legume curry Tofu cheese Mayonnaise and tomato sauce 3,7,10 Fresh cucumbers Rye bread / sweet and sour bread 1 Curd snack Baltais 7 Banana 29.06.Tuesday Allergens Chicken fillet chop 1,3 Pasta 1,3 Steamed broccoli and cauliflower with bean pods Basil, mayonnaise and sour cream sauce 3,7,10 Rye bread / sweet and sour bread 1 Fruit and berry salad 30.06. Wednesday Allergens Turkey goulash 1,7,9 Mashed potatoes 7 Fresh cabbage salad with oil dressing Rye bread / sweet and sour bread 1 Peach, kiwi and strawberry cocktail 01.07.Thursday Allergens Beef rissole 1,3 Rice Tomato sauce Beet salad with oil dressing Rye bread / sweet and sour bread 1 Sweet bun 1,3 02.07. Friday Allergens Chicken sausages 1,3 Fried potato wedges Tomato sauce Tomatoes Rye bread / sweet and sour bread 1 Sweet cherries Lactose-free 28.06. Meatless Monday Allergens Legume curry Tofu cheese Tomato sauce Fresh cucumbers Rye bread / sweet and sour bread 1 Muesli bar Banana 29.06.Tuesday Allergens Chicken fillet chop 1,3 Pasta 1,3 Steamed broccoli and cauliflower with bean pods Basil and oil dressing Rye bread / sweet and sour bread 1 Fruit and berry salad 30.06. Wednesday Allergens Turkey pieces Boiled potatoes Fresh cabbage salad with oil dressing Rye bread / sweet and sour bread 1 Peach, kiwi and strawberry cocktail 01.07.Thursday Allergens Beef rissole 1,3 Rice Tomato sauce Beet salad with oil dressing Rye bread / sweet and sour bread 1 Strawberries 02.07. -
The EAT Lancet Publication: Implications for Nutrition Health and Planet
The EAT Lancet Publication: Implications for Nutrition Health and Planet 12 December 2019 Namukolo Covic (PhD) Senior Research Coordinator, IFPRI/A4NH Addis Ababa, Ethiopia Why and who? • Address absence of scientific targets for achieving healthy diets from sustainable food systems limiting large scale coordinated efforts to transform the global food system. • The Commission: 19 Commissioners and 18 co-authors from 16 countries and areas of specialization (human health, agriculture, political sciences, and environmental sustainability) • Develop global scientific targets informed by the best evidence available for healthy diets and sustainable food production. • Define a safe operating space for food systems that address nutrition, health and a sustainable planetary system. • Ensure meeting Sustainable Development Goals (SDGs) and Paris Climate Agreement. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)31788-4/fulltext# The scale of the challenge And the world is off track to meet all global nutrition targets EAT-Lancet Commission Approach Define a healthy reference diet using the best available evidence (controlled feeding studies, long-term cohort studies, randomized trials). Define planetary boundaries for 6 key environmental systems and processes (GHG, cropland use, water use, nitrogen and phosphorus application, extinction rate). Apply a global food systems modeling framework to analyze what combinations of readily implementable measures are needed to stay within food production boundaries while still delivering -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Consumer Understanding and Culinary Use of Legumes in Australia
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: Part B Faculty of Science, Medicine and Health 2019 Consumer Understanding and Culinary Use of Legumes in Australia Natalie Figueira University of Wollongong Felicity Curtain Grains and Legumes Nutrition Council Eleanor J. Beck University of Wollongong, [email protected] Sara J. Grafenauer University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/smhpapers1 Publication Details Citation Figueira, N., Curtain, F., Beck, E. J., & Grafenauer, S. J. (2019). Consumer Understanding and Culinary Use of Legumes in Australia. Faculty of Science, Medicine and Health - Papers: Part B. Retrieved from https://ro.uow.edu.au/smhpapers1/947 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Consumer Understanding and Culinary Use of Legumes in Australia Abstract While health benefits of legume consumption are well documented, intake is well below recommendations in many Western cultures, and little is known regarding culinary use and consumer understanding of these foods. This study aimed to investigate consumption, knowledge, attitudes, and culinary use of legumes in a convenience sample of Australians. An online computer-based survey was used to gather data and demographic characteristics. Respondents (505 individuals answered in full or in part) were regular consumers of legumes (177/376 consumed legumes 2-4 times weekly). Chickpeas, green peas, and kidney beans were most often consumed, and were made into most commonly Mexican, then Indian and Middle Eastern meals. Consumers correctly identified protein and dietary fibre (37%) as key nutritional attributes. -
Legume Beverages from Chickpea and Lupin, As New Milk Alternatives
foods Article Legume Beverages from Chickpea and Lupin, as New Milk Alternatives Mariana Lopes 1, Chloé Pierrepont 1, Carla Margarida Duarte 1,* , Alexandra Filipe 2, Bruno Medronho 3,4 and Isabel Sousa 1 1 LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; [email protected] (M.L.); [email protected] (C.P.); [email protected] (I.S.) 2 CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II–R. Silvio Lima, 3030-790 Coimbra, Portugal; xanafi[email protected] 3 MED–Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; [email protected] 4 FSCN, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden * Correspondence: [email protected] Received: 31 August 2020; Accepted: 9 October 2020; Published: 14 October 2020 Abstract: Recently, milk consumption has been declining and there is a high demand for non-dairy beverages. However, market offers are mainly cereal and nut-based beverages, which are essentially poor in protein (typically, less than 1.5% against the 3.5% in milk) and are not true milk replacers in that sense. In this work, new beverages from different pulses (i.e., pea, chickpea and lupin) were developed using technologies that enable the incorporation of a high level of seed components, with low or no discharge of by-products. Different processing steps were sequentially tested and discussed for the optimization of the sensorial features and stability of the beverage, considering the current commercial non-dairy beverages trends. -
Use of Living and Dying Mulches As Barriers to Protect Zucchini from Insect-Caused Viruses and Phytotoxemias
Plant Disease Jan. 2008 PD-36 Use of Living and Dying Mulches as Barriers To Protect Zucchini from Insect-Caused Viruses and Phytotoxemias Cerruti R2 Hooks and Mark G. Wright Department of Plant and Environmental Protection Sciences Summary Infected plants are stunted, yield fewer fruits than healthy A field study was conducted to examine the influence plants, and the fruits are frequently distorted, rendering of interplanting zucchini (Cucurbita pepo L.) with the them unmarketable. In Hawai‘i, cucurbit crop losses cover crops white clover (Trifolium repens L.) and buck- due to aphid-transmitted viruses sometimes approach wheat (Fagopyrum esculentum) on densities of aphids 100 percent. and whiteflies, occurrences of aphid-caused viruses and In addition to aphids, whiteflies can be severe pests of whitefly-induced phytotoxemia, and crop yield. The cucurbit crops. Some can induce phytotoxemias in several white clover and buckwheat cover crops were used as plant species. Phytotoxemia is an adverse, often delayed a living and dying mulch, respectively. Zucchini plants reaction of plants to toxins introduced during insect feed- grown in bare-ground plots had greater aphid numbers ing. The silverleaf whitefly Bemisia( argentifolii Bellows and higher incidences of virus-infected plants than and Perring) is a severe pest of several agricultural crops those in the white clover and buckwheat treatment plots. throughout the world. Silverleaf whiteflies are responsible Whitefly nymph numbers were similar among treatment for a phytotoxemia know as squash silverleaf disorder types. However, the severity of squash silverleaf disorder (SSL). Feeding by immature silverleaf whiteflies causes was significantly lower on zucchini plants in white clover this physiological disorder, and symptom severity is treatments than in buckwheat treatments on each sam- dependant on the number of immature whiteflies per pling date. -
Corn (Zea Mays L.) Production in a Grass/Ciover Living Mulch System
Corn (Zea mays L.) Production in a Grass/CIover Living Mulch System by Philip R Greyson Submitted in partial fùlfillment of the requirements for the degree of Master of Science at Nova Scotia Agricultural College Truro, Nova Scotia, in cooperation with Dalhousie University Halifax, Nova Scotia March, 1998 OCopyright by Philip R. Greyson 1998 National Library Bibiiothèque nationale du Canada Acquisions and Acquisitions et Bibliographie Services services bibliographiques The author has granted a non- L'auteur a accordé une licence non exclusive licence dlowing the exc1usive permettant à la National Libmy of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de rnicrofiche/film, de reproduction sur papier ou sur format électronique. The author retains ownefihip of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celleci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. TABLE OF CONTENTS TABLE OF CONTENTS LIST OF TABLES vii LIST OF FIGURES LIST OF ABBREVIATIONS xi ABSTRACT xii .- - ACKNOWEDGMENTS xii1 BJTRODUCTION 1 LITERATURE REVIEW 2.1 Corn 2.2 Living Mulches 2.2.1 Mulch suppression 2.2.1.I Chernical suppression 2.2.1.2Mechanical -
Living Mulch Performance in a Tropical Cotton System and Impact on Yield and Weed Control
agriculture Article Living Mulch Performance in a Tropical Cotton System and Impact on Yield and Weed Control Vinay Bhaskar 1,* ID , Robin R. Bellinder 1,†, Antonio DiTommaso 2 ID and Michael F. Walter 3 1 Horticulture Section, School of Integrative Plant Science, Cornell University, 236 Tower Rd., Ithaca, NY 14853, USA; [email protected] 2 Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, 306 Tower Rd., Ithaca, NY 14853, USA; [email protected] 3 Department of Biological and Environmental Engineering, Cornell University, 111 Wing Dr., Ithaca, NY 14853, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-607-280-7104 † Deceased. Received: 19 November 2017; Accepted: 25 January 2018; Published: 31 January 2018 Abstract: Cotton (Gossypium hirsutum L.) is a major crop in the Vidarbha region of central India. The vertisol soils on which much of the cotton is grown have been severely degraded by the tropical climate, excessive tillage and depletion of organic matter. Living mulches have the ability to mitigate these problems but they can cause crop losses through direct competition with the cotton crop and unreliable weed control. Field experiments were conducted in 2012 and 2013 at four locations in Vidarbha to study the potential for growing living mulches in mono-cropped cotton. Living mulch species evaluated included gliricidia [Gliricidia sepium (Jacq.) Kunth ex Walp.], sesbania [Sesbania sesban (L.) Merr.], sorghum sudan grass [Sorghum bicolor (L.) Moench × Sorghum bicolor (L.) Moench ssp. Drummondii (Nees ex Steud.) de Wet & Harlan] and sunnhemp (Crotalaria juncea L.). Living mulch height was controlled through mowing and herbicides were not used. -
19. Advanced Food Technology of Soybean and Other Legumes in Japan
209 19. ADVANCED FOOD TECHNOLOGY OF SOYBEAN AND OTHER LEGUMES IN JAPAN Kyoko SAIO* Tokuji WATANABE** Ancient Chinese literatures reveal that soybeans were extensively cultivated and highly evaluated as food resource. It is true that the legumes including soybean have been quite familiar for centuries to the people in the Orient, and therefore, many food items derived from them are still very popular in their eating habits. In Japan, a large amount of soybeans and other legumes are consumed tradi tionally after reasonable processing. Recent amount of consumption of soybean and other legumes for these traditional food in Japan are shown in Table 1. Soybeans consumed for these products depend more heavily upon import from Table 1. Amounts of soybean and other legumes consumed for the traditional foods. Production Food (1000 metric ton) Whole soybean products Tofu and Fried-tofu 29.5 Miso 169 Natto 47 Kori-tofu (dried or frozen Tofu) 34 Shoyu (dried or frozen Tofu) 15 Kinako 12 Others 70 Total 642 Defatted soybean products Shoyu 154 Tofu and Fried-tofu 77 Miso 8 Others 45 Total 284 Other legume products Ann (bean paste) 240 Cooked bean 42 Toasted bean 21 Amanatto (sweeb) 12 Others 33 Total 349 * Senior Research Officer National Food Research Institute, Shiohama 1-4-12, Koto-ku, Tokyo, Japan. ** Director, the sa.me Institute 210 Table 1. (cont.) --·--·--·,.- - •··--,.~·····----,_---c•--- ··--·--•- ·-.,..a ·- ! . Production Food (1000 metric tonn) Peanut products Toasted peanut Confectionary use including 56 Peanut butter 48 Total 104 the U.S. and China than domestic production, and peanuts are also imported from China, Indonesia and Holland.