2016 Year in Review

Total Page:16

File Type:pdf, Size:1020Kb

2016 Year in Review DENVER MUSEUM OF NATURE & SCIENCE Department of Earth Sciences 2016 Year in Review Happy New Year! We are excited to continue our tradition of “year-in-review” reports. In the following pages, the curators in the department share details on the progress of our multi-year research projects in the field and in the lab. You’ll also learn about some of the research accomplishments by our volunteers, associates and staff. As we continue to pursue our long-term vision to be the best field-based paleontology department in North America and build a world-class paleontology collection, we look to you for your amazing and continued support in the field, labs, collections, and research. The outstanding volunteer core in the Department of Earth Sciences at the Denver Museum of Nature & Science makes this all possible. In 2016, we added several new staff to the Department and celebrated those that moved on. The most recent addition to our team is David Krause. Dave recently “retired” as a Distinguished Service Professor from Stony Brook University in NY and joined our department as a half-time Curator of Vertebrate Paleontology. Dave brings expertise on fossil mammals to our team. After the promotion of Carla Bradmon, we hired our new Business Support Specialist, Taylor Foreman. Hailing from the flats of Lubbock, Texas, Taylor is not only excited about living next to the mountains, but also the opportunity to join our field teams. Kristen MacKenzie has also stepped into a new role in the Department, and is now our Interim Collections Manager. Thus far, her team of volunteers and collections assistants has catalogued over 30,000 microfossils from Snowmass and Porcupine Cave. Now Kristen is turning her talents to the rest of our collections. Finally, after being an intern with the Department for a year, Gabi Rossetto stepped into a term Collections Assistant position. Gabi supports all aspects of the collections but is focused on paleobotany and leading the Leaf Whacker volunteer group, which has now been going strong for six months. Last year, we also saw two dedicated staff members leave our department. After 24 years as Collections Manager, Logan Ivy retired. During his time, he saw the collections grow from about 5,000 specimens to more than 1.2 million specimens. He mentored a few undergrads and high school students along the way, including two of our current curators (Ian & Joe). We will miss Logan already and we hope he comes back soon to join our team in a volunteer capacity. Adam Behlke, our preparator and head of the casting and molding lab, landed his dream job at the Smithsonian, helping to assemble specimens for their new Hall of Dinosaurs. We are currently hiring for both Adam and Logan’s positions in 2017. We will also be adding three new term Collections Assistants to Vertebrate Paleontology and Geology/Invertebrate Paleontology in addition to a new “Digital Technician” working to expand our volunteer-driven science into 3D fossil “preparation.” 2017 is shaping up to be a huge year for Earth Sciences. Thank you again for all the support you have given the Department in 2016! We are looking forward to an incredible 2017 field with new fossils and new discoveries! Denver Museum of Nature & Science 2016 Earth Sciences Year in Review Ian Miller Curator of Paleobotany Chair, Department of Earth Sciences Over the past few years, my work at the Museum has concentrated on 1) field, lab, and collections activities focused on fossils from formations in Utah, New Mexico, Colorado, North Dakota, Montana and Madagascar; 2) growing and sustaining the amazing Department of Earth Sciences; and 3) leading an ongoing major Museum initiative called the Natural World of Colorado, which aims to deepen people’s connection with the natural world. In 2016, I spent most of my research time focused on the Denver and Williston Basins in North Dakota and Montana with Tyler Lyson, and the Grand Staircase-Escalante National Monument in Utah with Joe Sertich. In truth, most of my fieldwork is supported by the massive, long-term projects that my colleagues in the Department are leading. I am fortunate to be part of this incredibly collegial and collaborative group of scientists as we work together to tell the grand story of life on Earth. Finally, I am so grateful for the incredible support that the Earth Sciences volunteers give to the Department. Without them, our field, lab and collections work would not be possible. Denver Basin Denver Formation, Colorado Maastrichtian to Paleocene During the summer of 2010, we were gearing up to make a major push to restart the Denver Basin Project. That fall, our lives changed and with the incredible discoveries in Snowmass. With that project done and after nearly a nearly six year hiatus, I was thrilled to be working in the Denver Basin again last summer. Here, I am working with Tyler and we are mostly concentrating on the recovery of life after the dinosaur extinction at the KT boundary. Even though my work is primarily partnered with Tyler, Joe and I co-authored a paper on the recovery this past summer with our colleagues at CU (Dahlberg, E.L., J.J. Eberle, J.J.W. Sertich, I.M. Miller. 2016. A new earliest Paleocene (Puercan) mammalian fauna from Colorado’s Denver Basin, U.S.A. Rocky Mountain Geology 51: 1-22.) Denver Museum of Nature & Science 2016 Earth Sciences Year in Review In addition to this work, I’ve also helped supervise a master’s student at Wesleyan University. She applied four different proxies for estimating past CO2 levels in the atmosphere to fossils from the Castle Rock Rainforest. While the paper is imminent, she presented our work at AGU. Science Magazine picked up the story and wrote about it in the first issue of 2017. http://www.sciencemag.org/news/2017/01/fossil-leaves-suggest-global-warming-will-be-harder-fight-scientists- thought. Early Paleocene fossil leaves from the Denver Basin collected in 2016. Denver Museum of Nature & Science 2016 Earth Sciences Year in Review Grand Staircase-Escalante National Monument (GSENM) Kaiparowits Formation, Utah Campanian My work in the Kaiparowits Formation and collaboration with Joe Sertich on the Laramidia Project continued in 2016. I was in the field for only a few days (8 to be exact). My fieldwork focused mostly on prospecting new areas and supporting the field camps. In my time, we found a few new leaf and vertebrate sites. I’m looking forward to a big field season in 2017! In the lab, we did a tremendous amount of work on the existing Kaiparowits collection, which numbers in the tens of thousands of specimens. As a result, we have a huge backlog. Thanks the diligent work of Gabi and the Leaf Whacker volunteer core, I expect we will have all existing Kaiparowits fossil plants prepared and curated by August 2017. Finally, I am also supervising Gussie Maccracken as she pursues her PhD at the University of Maryland. In a couple of months, I’ll be out to help administer her qualification exams! After that, she will have time to focus on her research work, which is centered on the insect-plant interactions in the Kaiparowits Formation. A fossil leaf of unnamed new species of vine from the Kaiparowits Formation. Denver Museum of Nature & Science 2016 Earth Sciences Year in Review Williston Basin Hell Creek and Fox Hills Formations, North Dakota and Montana Maastrichtian Over the past few years, I have been exploring how my paleobotanical work with Tyler in the Williston Basin would dovetail with the decades of work that Kirk Johnson did in the region. During 10 days in the field with Tyler and Kirk this past summer, we devised a plan in which our new research and collecting focus would be in the oldest sections of Hell Creek Formation and also in the underlying Fox Hills Formation. Since Kirk’s research focus has always been the youngest sections of the Hell Creek Formation and the extinction at the KT Boundary in the Williston Basin, by looking at older rocks, we can tie the previous work in the Williston Basin to that of the Laramidia Project. In 2016, we found several new key localities including a site that produces incredible Leepiercia leaves (figured below). We expect to keep this work going in future seasons. Leepiercia, an extinct sycamore, collected in 2016. Denver Museum of Nature & Science 2016 Earth Sciences Year in Review James Hagadorn Tim & Kathryn Ryan Curator of Geology Ediacaran-Cambrian Radiation (Sonora, Mexico): La Cienega, Puerto Blanco Formations April The Ediacaran - Cambrian transition (~550-520 mya) is of broad interest because it spans the evolution of most major animal phyla, the advent of burrowing and biomineralization (= bones, teeth, shells!), and the colonization of land and the deep sea. The latest Ediacaran La Cienega Formation and earliest Cambrian Puerto Blanco Formation of Sonora, Mexico are unique among the world’s Ediacaran-Cambrian successions because they contain an intercalated record of siliciclastic, carbonate, and volcanic rocks. The diverse lithologies of the Sonoran succession permit us to capture information from trace fossils, soft-bodied fossils, and biomineralized fossils, which usually have different modes of preservation governed by lithology. Unlike most successions of this age, which only preserve a fraction of the biological diversity of this interval, the Sonoran strata offer us windows into three of the most common modes of fossil preservation that typify this time period. The succession also offer opportunity to characterize the sedimentology and environments represented by these strata, and to integrate them with geochemical proxies (mostly from the carbonate rocks) and provenance proxies that help correlate, date, and constrain the environmental evolution of these rocks.
Recommended publications
  • Zootaxa,Montealtosuchus Arrudacamposi, a New Peirosaurid
    Zootaxa 1607: 35–46 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Montealtosuchus arrudacamposi, a new peirosaurid crocodile (Mesoeucrocodylia) from the Late Cretaceous Adamantina Formation of Brazil ISMAR DE SOUZA CARVALHO1, FELIPE MESQUITA DE VASCONCELLOS1 & SANDRA APARE- CIDA SIMIONATO TAVARES2 1Universidade Federal do Rio de Janeiro. Departamento de Geologia, CCMN/IGEO. 21.949-900 Cidade Universitária - Ilha do Fundão. Rio de Janeiro - RJ. Brasil. E-mail: [email protected]; [email protected] 2Museu de Paleontologia de Monte Alto. Praça do Centenário, Centro de Artes s/no. 15.910-000, MonteAlto-Brazil. E-mail: [email protected] Abstract We describe a new species of Peirosauridae (Crocodyliformes, Mesoeucrocodylia), Montealtosuchus arrudacamposi gen. nov. et sp. nov., from the Late Cretaceous (Turonian-Santonian) strata of the Bauru Basin, Brazil. Montealtosuchus was found at the outskirts of Monte Alto County in reddish sandstones of the Adamantina Formation. This specimen is exquisitely preserved with skull, mandible, postcranial and exoskeletal elements in articulation that provides critical information of the anatomy of this group. The occurrence of Peirosauridae in the Adamantina Formation (Turonian-San- tonian) widens the chronostratigraphic range of this Mesoeucrocodylia taxon in Brazil. Recent analysis suggests that the Peirosauridae is restricted to the Late Cretaceous deposits of South America. Key words: Montealtosuchus arrudacamposi gen. nov. et sp. nov.; Peirosauridae; Upper Cretaceous; Adamantina For- mation; Bauru Basin Introduction The Bauru Basin comprises an area between latitudes 18o S and 24o S, and longitudes 47o W and 56o W, and covers an area over 370.000 km2 in the southeast interior of Brazil, with outcrops in São Paulo, Minas Gerais, Mato Grosso do Sul and Goiás states.
    [Show full text]
  • GEOLOGIC MAP of the GREATER DENVER AREA, FRONT RANGE URBAN CORRIDOR, COLORADO by Donald E
    U.S DEPARTMENT OF THE INTERIOR MISCELLANEOUS INVESTIGATIONS SERIES I–856–H U.S. GEOLOGICAL SURVEY Version 1.1 105°22'30" 105°15' 105°7'30" 105°0' 104°52'30" 104°45' 104°37'30" 40¡0’ 40°0' Qs Qv Ql Qes DESCRIPTION OF MAP UNITS Qco Qp Qlo Kp Qp Kp Kl Kl Qb TKda Ysp Qes Kf Qb Qp Qco Qv Xbc Kp Qb Qes Qp POST-PINEY CREEK AND PINEY CREEK ALLUVIUM (UPPER HOLOCENE) Kl Qes Qes Qco Qlo Qs Qlo Kp Kl Qb Qrf Qls Kf Ql Ysp TKd Qs Qco COLLUVIUM (UPPER HOLOCENE) Xbc Qp Qv Ysp Qp Qb Kl Qv Qes PPf Qp Qco Qco Qrf Kp Qs Qls Qs LANDSLIDE DEPOSITS (HOLOCENE TO MIDDLE? PLEISTOCENE) Qs Qv Kl Qb Qp JPml Kl Qrf Qco Qs Qco Qv Qp Qes WINDBLOWN SAND (LOWER HOLOCENE TO UPPER PLEISTOCENE) Qv Ql TKd Ql Qes Kd Qv Kp Kl Qes Qco River Qco Qp Kf Ql TKda YXp TKda Kl TKda TKd Qs Xbc Qrf Qv Qp Qb Qb BROADWAY ALLUVIUM (UPPER PLEISTOCENE) Qp Qco Qs Qco Qlo Qco Ql Qp Qes Kf Ql Qco Qp Qv Qs Qrf Ql LOESS (UPPER PLEISTOCENE) Qrf Qs Qlo Kf Qs Qco Qco Qp Qes Qp Qco Qp TKd Qb Qco Qlo Qes LOUVIERS ALLUVIUM (UPPER PLEISTOCENE) Xbc Kf Kp Ql Qs Qrf Marshall Qv Qb Ql Kl TKda Qes Qs Kl Lake Qv Qs SLOCUM ALLUVIUM (PLEISTOCENE) Qv Ql Qco JPml Ql Qco PPf Qv Qs Kl Qs Qco Qv Qco Kn Qv Qs Qs Kp Qrf Qb Qb Barr Lake Kcgg Qv VERDOS ALLUVIUM (PLEISTOCENE) Qs Qrf Qco Ql TKda Qlo Qp Qs TKda Qp Ql TKda Xqm Qlo Qrf Qs Qs Qs ROCKY FLATS ALLUVIUM (PLEISTOCENE) Qp Xq Kd Kf Qco Qp Qco Qb Kl Kp Qco Platte Qlo Qb Qrf Qs Qn Qls Qco NUSSBAUM ALLUVIUM (PLEISTOCENE) Kp Qco Qp Xbc TKd Qrf Qrf Qv Qco Tg Qv Qv HIGH-LEVEL GRAVEL DEPOSITS (PLIOCENE TO OLIGOCENE) Xbc Qp PPf Qb TKd Qb Qv TKda JPml Qv Ql Tcr CASTLE ROCK
    [Show full text]
  • CPY Document
    v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • CRETACEOUS-TERTIARY BOUNDARY Ijst the ROCKY MOUNTAIN REGION1
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA V o l..¿5, pp. 325-340 September 15, 1914 PROCEEDINGS OF THE PALEONTOLOGICAL SOCIETY CRETACEOUS-TERTIARY BOUNDARY IjST THE ROCKY MOUNTAIN REGION1 BY P. H . KNOWLTON (Presented before the Paleontological Society December 31, 1913) CONTENTS Page Introduction........................................................................................................... 325 Stratigraphic evidence........................................................................................ 325 Paleobotanical evidence...................................................................................... 331 Diastrophic evidence........................................................................................... 334 The European time scale.................................................................................. 335 Vertebrate evidence............................................................................................ 337 Invertebrate evidence.......................................................................................... 339 Conclusions............................................................................................................ 340 I ntroduction The thesis of this paper is as follows: It is proposed to show that the dinosaur-bearing beds known as “Ceratops beds,” “Lance Creek bieds,” Lance formation, “Hell Creek beds,” “Somber beds,” “Lower Fort Union,”- Laramie of many writers, “Upper Laramie,” Arapahoe, Denver, Dawson, and their equivalents, are above a major
    [Show full text]
  • Unit-V Evolution of Horse
    UNIT-V EVOLUTION OF HORSE Horses (Equus) are odd-toed hooped mammals belong- ing to the order Perissodactyla. Horse evolution is a straight line evolution and is a suitable example for orthogenesis. It started from Eocene period. The entire evolutionary sequence of horse history is recorded in North America. " Place of Origin The place of origin of horse is North America. From here, horses migrated to Europe and Asia. By the end of Pleis- tocene period, horses became extinct in the motherland (N. America). The horses now living in N. America are the de- scendants of migrants from other continents. Time of Origin The horse evolution started some 58 million years ago, m the beginning of Eocene period of Coenozoic era. The modem horse Equus originated in Pleistocene period about 2 million years ago. Evolutionary Trends The fossils of horses that lived in different periods, show that the body parts exhibited progressive changes towards a particular direction. These directional changes are called evo- lutionary trends. The evolutionary trends of horse evolution are summarized below: 1. Increase in size. 2. Increase in the length of limbs. 3. Increase in the length of the neck. 4. Increase in the length of preorbital region (face). 5. Increase in the length and size of III digit. 6. Increase in the size and complexity of brain. 7. Molarization of premolars. Olfactory bulb Hyracotherium Mesohippus Equus Fig.: Evolution of brain in horse. 8. Development of high crowns in premolars and molars. 9. Change of plantigrade gait to unguligrade gait. 10. Formation of diastema. 11. Disappearance of lateral digits.
    [Show full text]
  • A Large Hadrosaurid Dinosaur from Presa San Antonio, Cerro Del Pueblo Formation, Coahuila, Mexico
    A large hadrosaurid dinosaur from Presa San Antonio, Cerro del Pueblo Formation, Coahuila, Mexico ROGELIO ANTONIO REYNA-HERNÁNDEZ, HÉCTOR E. RIVERA-SYLVA, LUIS E. SILVA-MARTÍNEZ, and JOSÉ RUBÉN GUZMAN-GUTIÉRREZ Reyna-Hernández, R.A., Rivera-Sylva, H.E., Silva-Martínez, L.E., and Guzman-Gutiérrez, J.R. 2021. A large hadro- saurid dinosaur from Presa San Antonio, Cerro del Pueblo Formation, Coahuila, Mexico. Acta Palae onto logica Polonica 66 (Supplement to x): xxx–xxx. New hadrosaurid postcranial material is reported, collected near Presa San Antonio, Parras de la Fuente municipality, Coahuila, Mexico, in a sedimentary sequence belonging to the upper Campanian of the Cerro del Pueblo Formation, in the Parras Basin. The skeletal remains include partial elements from the pelvic girdle (left ilium, right pubis, ischium, and incomplete sacrum), a distal end of a left femur, almost complete right and left tibiae, right metatarsals II and IV, cervical and caudal vertebrae. Also, partially complete forelimb elements are present, which are still under preparation. The pubis shows characters of the Lambeosaurinae morphotypes, but the lack of cranial elements does not allow us to directly differentiate this specimen from the already described hadrosaurid taxa from the studied area, such as Velafrons coahuilensis, Latirhinus uitstlani, and Kritosaurus navajovius. This specimen, referred as Lambeosaurinae indet., adds to the fossil record of the hadrosaurids in southern Laramidia during the Campanian. Key words: Dinosauria, Hadrosauridae, Lambeosaurinae, Cretaceous, Campanian, Mexico. Rogelio Antonio Reyna-Hernández [[email protected]], Luis E. Silva-Martínez [[email protected]], Laboratorio de Paleobiología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av.
    [Show full text]
  • 38-Simpson Et Al (Wahweap Fm).P65
    Sullivan et al., eds., 2011, Fossil Record 3. New Mexico Museum of Natural History and Science, Bulletin 53. 380 UPPER CRETACEOUS DINOSAUR TRACKS FROM THE UPPER AND CAPPING SANDSTONE MEMBERS OF THE WAHWEAP FORMATION, GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, UTAH, U.S.A. EDWARD L. SIMPSON1, H. FITZGERALD MALENDA1, MATTATHIAS NEEDLE1, HANNAH L. HILBERT-WOLF2, ALEX STEULLET3, KEN BOLING3, MICHAEL C. WIZEVICH3 AND SARAH E. TINDALL1 1 Department of Physical Sciences, Kutztown University, Kutztown, PA 19530; 2 Department of Geology, Carleton College, Northfield, MN, 55057; 3 Central Connecticut State University, Department of Physics and Earth Sciences, New Britain, Connecticut 06050, USA Abstract—Tridactyl tracks were identified in the fluvial strata of the Upper Cretaceous Wahweap Formation in Grand Staircase-Escalante National Monument, southern Utah, U.S.A. An isolated track and a trackway are located within the upper member at the Cockscomb, and an isolated track is in the capping sandstone member at Wesses Canyon. The upper member tracks are tridactyl pes imprints consisting of a longer, blunt digit III and shorter, blunt digits II-IV. This trace corresponds well to an ornithropod dinosaur as the trackmaker. The capping sandstone member track is a tridactyl pes with an elongate digit III and shorter digits II-IV. Claw impressions are present on the terminus of digits II and III. This trace is consistent with the pes impression of a one meter tall theropod. The tracks further highlight the diversity of dinosaurs in the capping sandstone of the Wahweap Formation. INTRODUCTION During the Late Cretaceous, North America, in particular the west- ern United States, was the site of a radiation of new dinosaurian genera.
    [Show full text]
  • At Carowinds
    at Carowinds EDUCATOR’S GUIDE CLASSROOM LESSON PLANS & FIELD TRIP ACTIVITIES Table of Contents at Carowinds Introduction The Field Trip ................................... 2 The Educator’s Guide ....................... 3 Field Trip Activity .................................. 4 Lesson Plans Lesson 1: Form and Function ........... 6 Lesson 2: Dinosaur Detectives ....... 10 Lesson 3: Mesozoic Math .............. 14 Lesson 4: Fossil Stories.................. 22 Games & Puzzles Crossword Puzzles ......................... 29 Logic Puzzles ................................. 32 Word Searches ............................... 37 Answer Keys ...................................... 39 Additional Resources © 2012 Dinosaurs Unearthed Recommended Reading ................. 44 All rights reserved. Except for educational fair use, no portion of this guide may be reproduced, stored in a retrieval system, or transmitted in any form or by any Dinosaur Data ................................ 45 means—electronic, mechanical, photocopy, recording, or any other without Discovering Dinosaurs .................... 52 explicit prior permission from Dinosaurs Unearthed. Multiple copies may only be made by or for the teacher for class use. Glossary .............................................. 54 Content co-created by TurnKey Education, Inc. and Dinosaurs Unearthed, 2012 Standards www.turnkeyeducation.net www.dinosaursunearthed.com Curriculum Standards .................... 59 Introduction The Field Trip From the time of the first exhibition unveiled in 1854 at the Crystal
    [Show full text]
  • Taxonomic Reappraisal of the Sphagesaurid Crocodyliform Sphagesaurus Montealtensis from the Late Cretaceous Adamantina Formation of São Paulo State, Brazil
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3686 (2): 183–200 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3686.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:9F87DAC0-E2BE-4282-A4F7-86258B0C8668 Taxonomic reappraisal of the sphagesaurid crocodyliform Sphagesaurus montealtensis from the Late Cretaceous Adamantina Formation of São Paulo State, Brazil FABIANO VIDOI IORI¹,², THIAGO DA SILVA MARINHO3, ISMAR DE SOUZA CARVALHO¹ & ANTONIO CELSO DE ARRUDA CAMPOS² 1UFRJ, Departamento de Geologia, CCMN/IGEO, Cidade Universitária – Ilha do Fundão, 21949-900. Rio de Janeiro, Brazil. E-mail: [email protected]; [email protected] 2Museu de Paleontologia “Prof. Antonio Celso de Arruda Campos”, Praça do Centenário s/n, Centro, 15910-000 – Monte Alto, Brazil 3Instituto de Ciências Exatas, Naturais e Educação (ICENE), Universidade Federal do Triângulo Mineiro (UFTM), Av. Dr. Randolfo Borges Jr. 1700 , Univerdecidade, 38064-200, Uberaba, Minas Gerais, Brasil. [email protected] Abstract Sphagesaurus montealtensis is a sphagesaurid whose original description was based on a comparison with Sphagesaurus huenei, the only species of the clade described to that date. Better preparation of the holotype and the discovery of a new specimen have allowed the review of some characteristics and the identification
    [Show full text]
  • Rule Booklet
    Dig for fossils, build skeletons, and attract the most visitors to your museum! TM SCAN FOR VIDEO RULES AND MORE! FOSSILCANYON.COM Dinosaurs of North America edimentary rock formations of western North America are famous for the fossilized remains of dinosaurs The rules are simple enough for young players, but and other animals from the Triassic, Jurassic, and serious players can benefit Cretaceous periods of the Mesozoic Era. Your objective from keeping track of the cards that is to dig up fossils, build complete skeletons, and display have appeared, reasoning about them in your museum to attract as many visitors as possible. probabilities and expected returns, and choosing between aggressive Watch your museum’s popularity grow using jigsaw-puzzle and conservative plays. scoring that turns the competition into a race! GAME CONTENTS TM 200,000300,000 160,000 VISITORS VISITORS PER YEAR 140,000 VISITORS PER YEAR 180,000 VISITORS PER YEAR 400,000 VISITORS PER YEAR Dig for fossils, build skeletons, and 340,000 VISITORS PER YEAR RD COLOR ELETONS CA GENUS PERIODDIET SK FOSSIL VISITORSPARTS 360,000 VISITORS PER YEAR PER YEAR attract the most visitors to your museum! VISITORS PER YEAR PER YEAR Tyrannosaurus K C 1 4 500,000 Brachiosaurus J H 1 3 400,000 ON YOUR TURN: TM SCAN FOR VIDEO Triceratops K H 1 3 380,000 RULES AND MORE! Allosaurus J C 2 Dig3 a first360,000 card. If it is a fossil, keep it hidden. FOSSILCANYON.COM Ankylosaurus K H 2 If it3 is an340,000 action card, perform the action.
    [Show full text]
  • A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
    ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs.
    [Show full text]