A Study of the Kinetics Op Neutralization Op Cyclic

Total Page:16

File Type:pdf, Size:1020Kb

A Study of the Kinetics Op Neutralization Op Cyclic A STUDY OF THE KINETICS OP NEUTRALIZATION OP CYCLIC, BICYCLIC, AND ARYLALKYL NITRO COMPOUNDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By PAT WAYNE KEITH FLANAGAN, B.S, The Ohio State University 19<7 Approved by: Advlser Department of Chemistry ACKNOWLEDGEMENTS I would like to express my appreciation to Dr. Harold Shechter for suggesting this problem and for his guidance during the course of this investigation. I am grateful to the National Science Foundation and to the Allied Chemical and Dye Company for fellowship funds. ii TABLE OP CONTENTS Page I. INTRODUCTION. ............ ........ 1 II. THEORY AND HISTORY. ....... .......... 4 Structure and Reactivity.. of Acidic........ Nltro Compounds.......................... 4 Deuterium Effects on,Kinetics of...... .. .. Reaction........ '........................21 Factors Affecting Reactivities., of ....... Cyclic and Blcycllc Systems ............ 25 III. DISCUSSION OP RESULTS OP THE PRESENT. INVESTIGATION ............................. 56 Kinetics of Neutralization............... .36 Nltrocycloalkanes, ............. 36 The Deuterium Isotope Effect In Neutralization of Nltro­ cycloalkanes with Hydroxide Ion......... 51 Blcycllc Nltro Compounds ............ 53 Meta and Para-Sùbstitutod 1-Phenylnltroethanes ............. 59 The Ultraviolet Absorption Spectra of Cyclic and Blcycllc Nltro Compounds. 64 IV. EXPERIMENTAL...................................71 Preparation and Purification of Nltro Compounds......................... 71 Endo-4-nltroblcvclo 2 2 1 heptene-2. 71 Exo-5-nltrobicvclo 2 2 1 heptene-2 . 72 Endo-2-nltroblcvclo 2 2 1 heptane. ?4 Exo-2-nltroblcvclo 2 2 1 heptane . 75 Endo-5-nltroblcyolo 2 2 2 octene-2 . 76 2-Nltroblcyclo 2 2 2 octane........... 77 Exo-4-nltroblcvclo 2 2 2 octene-2. 78 1-Phenylnltreethane. .......... 79 l_(g_Nltrophenyl)nltroethane ..... 79 l-(E,-Tolyl)nltroethane.......... .. 80 l-(m-Nltrophenyl) nit roe thane. .. ., ..... 81 Nltrocyclobutane. ......... .81 Nltrocyclopentane .......... .83 Nltrocyclohexane. ......... .83 Nltrocycloheptane .................... 84 111 TABLE OP CONTENTS (Continued) Page Nitrocyclooctane .................. 84 4-Nitrocyolohexene .......... 85 1-d-Nitrocyolobutane ........ 85 1-d-Nitrocyclopentane. ...... 8? 1-d-Nltrooyclohexane . ............ 8? Determination of the. Kinetic Constants. 88 Equipment. ...................... 88 Constant temperature hath . 88 Conductometrio equipment. 91 Conductivity cells. ...... 93 Hypodermic syringes ...... 95 Kinetic Techniques............ 95 Solvents and solutions......... 95 Preparation and execution of a kinetic experiment......... 97 Calculations...................... 101 Kinetic analysis of neutralization of pure nitro compounds...... 101 Kinetic analysis of neutralization of a mixture of two nitro compounds«... lo6 Activation parameters. ... 110 Ultraviolet Spectra of Anions of Cyclic and Bicyclic Nitro Compounds. Ill APPENDIX A............ ............... 112 APPENDIX B. .......................... 122 APPENDIX C. .................................... 244 AUTOBIOGRAPHY ................... 259 iv LIST OF FIGURES Figure Page 1. Hammett Plot for Neutralization of ... .. 1-Phenylnitroethanes 62 2. Heater Control Circuit......................90 3. Diagram of Conductivity Apparatus ........ 92 Conductivity Cell............. 94- 5.-7. Activation Energy Plots for Neutralization of Cyclic and Bicyclic Nitro Compounds .113-115 8,-13. Representative Plots of t(Rgp-R) versus R for Neutralization of Nitro Compounds.116-121 14.-33. Infrared Spectra of the Nitro Compounds. .245-255 34 .-36. Ultraviolet Absorption Spectra of Anions of Cyclic and Bicyclic Nitro Compounds .256-258 V LIST OP TABLES Table Page 1. Rates of Reaction of Simple Nitroalkanes.. with Hydroxide Ion............... 12 2. Reaction of 2-Nitropropane with ....... Hydroxide Ion........................... 13 3. Reaction of Nitrocycloalkanes..with Hydroxide Ion........................... 14 4. Reaction of Aliphatic Nitro Compounds. , with Hydroxide I o n ..................... 14 5. Reaction of Nitroalkanes with Hydroxide Ion....................... ............ 15 6. Ionization Constants of Nitro Compounds and Nitronic Acids.................... 19 7. The Influence of Temperature on the Deuterium Isotope Effect for Rupture of a Bond to Carbon................ 22 8. Kinetics of Neutralization of Nitro- methane and Trideuteronitromethane by Acetate Ion in H2O and D2O at 25°. 24 9. Approximate Relative Rates of Acetolysis of Cyclic and Bicyclic Tosylates, . 32 10. Kinetic Constants and Parameters for Neutralization of Nitro Compounds with Sodium Hydroxide in Dioxan/Water (50:50 by vol.)............... .. 38 11. A Comparison of the Rate Constants Obtained by Various Investigators for Neutraliza­ tion of Homologous Nitrocycloalkanes with Hydroxide I o n ............................ 4o vi LIST OP TABLES (Continued) Table Page 12. The Effects of Ring Size on the Relative Reactivities of Homologous Cyclic.. , . Compounds. ........................ 13. Deuterium Isotope Effects in . Neutralization of Nitrocycloalkanes. 52 14. Reaction of Bicyclic Nitro Compounds. ., ., with Hydroxide Ion..................... 5^ 15 . Neutralization of m and p-Substituted 1-Phenylnitroethanes with. Hydroxide. , Ion. ........................ 60 16. Absorption Spectra of Anions of Nitro Compounds in Dioxan-Water (5 0 :50 vol. )................... 65 17 .-33. Collected Velocity Constants for the Neutralization of Nitro Compounds.... by Sodium Hydroxide............. .123-139 34 .-I37 . Kinetic Data for the Neutralization of Nitro Compounds by Sodium Hydroxide l4o-243 vii I. INTRODUCTION The rates of neutralization of primary and secondary nltro compounds (Equation 1) by bases show a marked dependence on both the structures of the nltro compounds H R'-c-A/d, + B: ^ R,-Ç = A/C1 + BH* (i) & 4 and of the bases. Removal of a proton from a nltro com­ pound Is subject to general basic catalysis, and correla­ tions of the Bronsted type between the strength of the base and rate of removal of the proton are, In general, applicable. No correlation as yet has been found, however, between the acid strengths of nltro compounds (as deter­ mined from their Ionization constants In water)' and their rates of reaction with a given base. The subject of ring strain and Its effects on the reactivity of cyclic molecules has received considerable attention during the past decade. Fundamental concepts have been Introduced relating reactivity and structure which have added greatly to the understanding of the fundamental details of organic chemistry. The theories proposed however are qualitative and certain anomalies still exist; furthermore the concepts have not been tested In reactions which involve mechanisms of widely differing types. Much attention has also been given to effects of structure on the reactivities of bicyclic compounds. Reports of rearrangements and anomalous reactivities in these systems are prevalent in the current literature. However, almost all the quantitative measurements of reactivity of bicyclic compounds have been concerned with reactions of the carbonium ion type and thus interpreta­ tion of the fundamental effects in these systems is limited. It was therefore the purpose of the present investi­ gation to determine the influence of structure on the rates and kinetic parameters of neutralization of acidic nitro compounds in the following series: (1) homologous nitrocycloalkanes, in which the size of the ring is varied from cyclobutyl to cyclooctyl, and,* (2) the 5-nitrobicycloC2'2 *lHheptyl and [2"2-2]octyl systems, in which the unsaturation in the carbon skeleton and the configuration of the carbon atom in position 5 are varied. In order to gain more insight into the fundamental details of the transition state for these neutralizations, it was decided: (1) to determine the isotope effects of deuterium in neutralization of 1-deuteronitrocyclobutane, 1-deuteronitrocyclopentane and l-deuteronitro- cyclohexane, and; (2) to determine the electrical effects of meta and nara substituents on the kinetics of neutrali­ zation of substituted 1-phenylnitroethanes. II. THEORY AND HISTORY Structure and Reactivity of Acidic Nitro Compounds Nitro compounds (1) (R-NOg) are derivatives of (1) Simple mononitro compounds were first synthesized by reaction of silver nitrite with alkyl halides; V. Meyer and 0. Stuber, Ber., 1, 203 (1872). hydrocarbons in which an electronegative nitro group (-NOg) is attached to carbon through nitrogen. These compounds are resonance hybrids of the following important structures in which the equal contributions make the nÜrb..g:iouKi symmetrical. Such derivatives may have a nitro group attached either to primary, secondary, or tertiary carbon atoms. Primary and secondary nitro compounds are usually described as pseudo-acids because they react slowly (and at measurable rates) with bases (Equation 1) to form salts which are strong electrolytes. Acidification of solutions of these salts (Equation 2) at low temperatures yields nitronic acids which are (generally) unstable tautomers (Equation 3) of true nitro compounds (2), 4 R—CH^— ^ ^ (1 ) '/(nitro compound) (nitronate anion) R-C//=/)C^f -----> R-C;/=/V(^ +B: (2) '0 (nitronic acid) R-CH=A^2i ^ R-CH-A/^^ (3) (2) (a) A* Hantzsch and 0, W, Schultz, Ber,, 2^, 699 (1896); (b) A. P. Holleraan, Bec. trav, chim., jji, 35^ (1896); (c) M. Konovaloff, Ber., 2£, 2193 (.1896). Nitronic acids differ from their
Recommended publications
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Safe Handling and Disposal of Chemicals Used in the Illicit Manufacture of Drugs
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Safe handling and disposal of chemicals used in the illicit manufacture of drugs United Nations publication USD 26 Printed in Austria ISBN 978-92-1-148266-9 Sales No. E.11.XI.14 ST/NAR/36/Rev.1 V.11-83777—September*1183777* 2011—300 Guidelines for the Safe handling and disposal of chemicals used in the illlicit manufacture of drugs UNITED NATIONS New York, 2011 Symbols of United Nations documents are composed of letters combined with figures. Mention of such symbols indicates a reference to a United Nations document. ST/NAR/36/Rev.1 UNITED NATIONS PUBLICATION Sales No. E.11.XI.14 ISBN 978-92-1-148266-9 eISBN 978-92-1-055160-1 © United Nations, September 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Requests for permission to reproduce this work are welcomed and should be sent to the Secretary of the Publications Board, United Nations Headquarters, New York, N.Y. 10017, U.S.A. or also see the website of the Board: https://unp.un.org/Rights.aspx. Governments and their institutions may reproduce this work without prior authoriza- tion but are requested to mention the source and inform the United Nations of such reproduction.
    [Show full text]
  • Title 35 Public Health and Safety
    TITLE 35 - PUBLIC HEALTH AND SAFETY CHAPTER 1 - ADMINISTRATION ARTICLE 1 - IN GENERAL 35-1-101. Local contributions; disposition. All monies paid to the state treasurer representing contributions by city councils, county commissioners, trustees of school districts, or other public agencies, for public health purposes, shall be set up and designated on the books of the state treasurer in a separate account, and shall be expended and disbursed upon warrants drawn by the state auditor against said account when the vouchers therefor have been approved by the department of health. 35-1-102. Sanitation of public institutions. It shall be the duty of the officers, managers, superintendents, proprietors and lessees of all hospitals, asylums, infirmaries, prisons, jails, schools, theaters, public places and public institutions to remedy any and all defects relating to the unsanitary condition of such institution, or institutions, as may be under their control, when such defects shall have been called to their attention in writing by the department of health. 35-1-103. Neglect or failure of officials to perform duty. Any member of the department of health, any county health officer, or any officer, superintendent, or principal of any city, town, county or institution named in this act, who shall fail or neglect to perform any of the duties herein required of them, shall be guilty of a misdemeanor and upon conviction thereof shall be fined in the sum of not less than one hundred dollars ($100.00) nor more than one thousand dollars ($1,000.00), or shall be confined in the county jail for a period of not less than six (6) months, nor more than a year, or both.
    [Show full text]
  • Multi-Step Processing in a Microstructured Flow Reactor: Direct Nitration of Propane–A Proof of Principle
    DOI 10.1515/gps-2012-0054 Green Process Synth 2012; 1: 439–448 Holger Löwe* , Gong Wei , Ma Jiang, Christian Hofmann , Hans-Joachim Kost and Christian Schütt Multi-step processing in a microstructured flow reactor: direct nitration of propane–a proof of principle Abstract: The vapor phase nitration of propane was suc- nitric acid decomposes at temperatures above 350 ° C to ‧ ‧ ‧ cessfully investigated in a multi-step microstructured give mainly OH and NO2 or ONO radicals. If propane is reactor. The concept integrates heating, evaporation of used as starting material the expected compounds 1-nitro- reactants, the reaction channel, and the quenching and propane or 2-nitropropane can be obtained by perform- cooling of the product mixture; all done in a reactor with ing the reaction at high temperatures, for example, above one plate. The nitration of propane with evaporated nitric 400 ° C. In addition, a cleavage of propane can be expected acid was carried out at 380 ° C–450 ° C. This radical chain and therefore nitromethane and nitroethane were also reaction was subsequently quenched, in a fast manner due found in the reaction mixture [ 1 , 2 ]. Not much informa- to the high surface-to-volume ratio of the reaction channel. tion about this process could be found in the literature, Therefore, the conversion of propane was deliberately kept nevertheless, the vapor-phase process is used in industry low (approx. 2%) but at favor of selectivity for 2-nitropro- [ 3 , 4 ]. Some information is given about equipment and pane which increases remarkably. The harsh reaction con- use of catalysts or additives, such as oxygen or halides [ 3 , ditions require a sophisticated microreactor concept, the 5 , 6 ], to enhance the nitration process.
    [Show full text]
  • 2-Nitropropane)
    Screening Assessment for the Challenge Propane, 2-nitro- (2-Nitropropane) Chemical Abstracts Service Registry Number 79-46-9 Environment Canada Health Canada July 2010 Screening Assessment CAS RN 79-46-9 Synopsis Pursuant to section 74 of the Canadian Environmental Protection Act, 1999 (CEPA 1999), the Ministers of the Environment and of Health have conducted a screening assessment of propane, 2-nitro-, also known as 2-nitropropane, Chemical Abstracts Service Registry Number 79-46-9. This substance was identified in the categorization of the Domestic Substances List as a high priority for action under the Challenge. 2- Nitropropane was identified as a high priority as it was determined to present an intermediate potential for exposure of individuals in Canada and had been classified by other agencies on the basis of carcinogenicity. Although 2-nitropropane met the ecological categorization criteria for persistence, it did not meet the criteria for bioaccumulation potential or inherent toxicity to aquatic organisms. Therefore, the focus of this assessment relates primarily to human health risks. According to information reported in response to a notice under section 71 of the Canadian Environmental Protection Act, 1999 (CEPA 1999), no companies in Canada reported manufacturing 2-nitropropane in a quantity greater than or equal to the reporting threshold of 100 kg for the 2006 calendar year. According to information submitted by Canadian companies, the total quantity imported into Canada in 2006 was between 100 and 1000 kg. Potential sources of exposure identified in the publicly available literature include residual concentrations in vegetable oils for human consumption and pharmaceutical products, as well as formulated products including inks, paints, adhesives, varnishes, polymers, and synthetic materials that may contain 2-nitropropane.
    [Show full text]
  • Toxic Screening Level Justification for 75-52-5
    MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY INTEROFFICE COMMUNICATION TO: File for Nitromethane (CAS# 75-52-5) FROM: Robert Sills, AQD Toxics Unit Supervisor SUBJECT: Nitromethane ITSL change in the averaging time from 24 hrs to annual DATE: September 9, 2015 3 The current ITSL for nitro methane (70 ug/m ) has a justification (attached) dated May 29, 2008. The averaging time (AT) assigned at that time was 24 hours, as per the default methodology (Rule 232(2)(b)). The current file review concludes that the AT may appropriately be set at annual, based on the nature and duration of the key study and the ITSL value derivation, as allowed under Rule 229(2)(b). Therefore, the AT is being changed from 24 hours to annual at this time. MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY INTEROFFICE COMMUNICATION TO: Memo to File for Nitromethane [CAS# 75-52-5] FROM: Margaret M. Sadoff, Toxics Unit DATE: May 29, 2008 · SUBJECT: Update of Interim ITSL and IRSL/SRSL Development A search of the literature and the following databases was performed for information regarding nitromethane: American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values, National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Hazardous Chemicals, EPA Integrated Risk Information System (IRIS), EPA High Production Volume Information System, Registry of Toxic Effects of Chemical Substances (RTECS), Environmental Protection Bureau Library, International Agency for Research on Cancer (IARC) Monographs, CAS Registry Online, Hazardous Substance Data Bank (HSDB), National Library of Medicine/Toxline, National Library of Medicine ToxSeek, Health Effects Assessment Summary Tables (HEAST), National Toxicology Program (NTP) Study Database, Entrez PubMed, Scirus, IPCS lntox Databank and CaiEPA's Toxicity Values Database General Information 1 (Source: Chemlnfo, ToxlineHSDB, Report on Carcinogens, 11 h ed.) Nitromethane is a colorless, oily liquid with a moderately strong disagreeable odor which falls into the class of chemicals known as nitroparaffins.
    [Show full text]
  • New Addition Reactions Op Nitro Compounds with Olefinic Systems
    NEW ADDITION REACTIONS OP NITRO COMPOUNDS WITH OLEFINIC SYSTEMS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By JUNIOR FRANKLIN CONRAD, B.A., M.S. A 9 9 The Ohio State University 1952 Approved byj j f J l f Adviser -i- ACKNOWLEDGMENTS j The author takes this opportunity to express his gratitude to Dr. Harold Shechter for his generous counsel and assistance in this problem. Thanks are also due to Dr. Ralph B. Kaplan, Dr. Harry L. Cates, and Dr. Larry Zeldin for their many helpful suggestions. The author also wishes to express his appreciation to the Office of Naval Research, who generously supplied the funds that made this research possible. S 0 0 4 4 3 -ii- TABLE OP CONTENTS Page ACKNOWLEDGMENTS; i SECTION I: ADDITION OP DINITROGEN TETROXIDE AND NITRYL CHLORIDE TO OLEPINIC SYSTEMS 1 PART I: Addition of Dinitrogen Tetroxide to Methyl Acrylate. 2 A. Background and Purpose 2 B. Results of Present Research 10 C. Discussion of Results 13 D. Conclusions 20 E. Experimental 21 (1) Reaction of Dinitrogen Tetroxide and Methyl Acrylate. 21 (2) Reaction of Methyl 2-Hydroxy-3-nitro- propionate with Acetyl Chloride; Methyl 3-Nitroacrylate. 24 (3) Hydrolysis of Methyl 2-Hydroxy-3- nitropropionate. 24 a. 2-Hydroxy-3-nitropropionic Acid 24 b. Oxalic Acid. 25 (4) Condensation of Glyoxylic Acid and Nitromethane; 2-Hydroxy-3-nitro- propionic Acid. 25 PART II: Addition of Nitryl Chloride to Methyl Acrylate, Acrylic Acid, and Acrylonitrile. 27 A. Background and Purpose 27 B.
    [Show full text]
  • Free-Radical Clocks in the Aliphatic S[Subscript RN]1 Process and Reactions of Nucleophiles with 1,1-Dinitro-2,2-Diphenylethylen
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Free-radical clocks in the aliphatic S[subscript RN]1 process and reactions of nucleophiles with 1,1-dinitro-2,2-diphenylethylene Douglas Frederick Dedolph Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Dedolph, Douglas Frederick, "Free-radical clocks in the aliphatic S[subscript RN]1 process and reactions of nucleophiles with 1,1-dinitro-2,2-diphenylethylene " (1983). Retrospective Theses and Dissertations. 7706. https://lib.dr.iastate.edu/rtd/7706 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • New Reactions of Nitro Compounds
    This dissertation has been 62-2176 microfilmed exactly as received KAPLAN, Ralph Benjamin, 1920- NEW REACTIONS OF NITRO COMPOUNDS. The Ohio State University, Ph.D., 1950 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan NEW REACTIONS OF NITRO COMPOUNDS DISSERTATION Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By RALPH B. KAPLAN, B.A., The Ohio State University 1950 Approved by: Adviser TABLE OF CONTENTS Page INTRODUCTION Acknowledgments Statement of the Problem SECTION I REACTION OF SODIUM NITROALKANES WITH VARIOUS NITRATING AGENTS 1 I. Discussion 1 A. Introduction 1 B. Agents Investigated 2 1. Nltryl Chloride 2 a. Preparation 2 b. Review of thé Reactions of Nltryl Chloride With Organic Reagents U c. Reaction of Sodium 2-Nltropropane With Nltryl Chloride 6 d. Reaction of Sodium 2-Nltropropane with Nltryl Chloride and Aluminum Chloride 11 2. Mixed Nitric and Sulfuric Acid 12 a. Reaction of Sodium 2-Nltropropane With Mixed Nitric and Sulfuric Acid 12 3. Methyl Nitrate Ih a. Reaction of Sodium 2-Nltropropane and of Potassium Nltroethane l4 I. Alkyl Nitrates as Nitrating Agents 14 II. Discussion of Results 15 Page II. Experimental 21 A. Agents Investigated 21 1. Nltryl Chloride 21 a. Preparation 21 1. Intermediates; Chlorosulfonlc Acid and Nitric Acid, Anhydrous 11. Procedure for Making Nltryl-Chloride h. Reaction of Nltryl Chloride with a Secondary Nltroalkane 2k 1. 2-Nltropropane 11. Sodium 2-Nltropropane c. Reaction of Sodium 2-Nltropropane, Nltryl Chloride and Aluminum Chloride. 27 2. Reaction of Sodium 2-Nltropropane With Mixed Nitric and Sulfuric Acids 28 3.
    [Show full text]
  • Chemical Compatibility Guide Chemical Compatibility Guide Chemical Compatibility
    DICHTOMATIK O-RING HANDBOOK SECTION FIVE CHEMICAL COMPATIBILITY GUIDE CHEMICAL COMPATIBILITY GUIDE CHEMICAL COMPATIBILITY 5 DICHTOMATIK O-RING HANDBOOK CHEMICAL COMPATIBILITY GUIDE CHEMICAL COMPATIBILITY TABLES These tables are intended to assist the user in determining the suitability of various elastomers in many different chemical environments. The ratings are based on a combination of published literature, laboratory tests, actual field experience, and informed judgments. As laboratory tests do not necessarily predict end-use performance, users of DICHTOMATIK products should conduct their own evaluations to determine application suitability. NOTE: Ratings are based on volume swell which is only one indicator of elastomer fluid compatibility and may be based on the solubility parameter alone. Fluid attack on the backbone of the polymer may show up as a change in physical properties such as tensile strength, elongation at break, and hardness. Elevated temperatures and extended exposure times may create more aggressive conditions than cited in this guide. This information is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. The information presented is based on laboratory testing and does not necessarily indicate end product performance. It is recommended that users of DICHTOMATIK products conduct their own evaluations to determine suitability for the intended application. COMPATIBILITY RATING SYSTEM RATING DESCRIPTION VOLUME CHANGE COMMENTS 1 Little or no effect <10% Elastomer may exhibit slight swelling and/or loss of physical properties under severe conditions. 2 Possible loss of 10–20% Elastomer may exhibit swelling in addition to a physical properties change in physical properties.
    [Show full text]
  • The Nitro-Mannich Reaction
    The Nitro-Mannich Reaction Adam Noble† and James C. Anderson,*,† †Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K. CONTENTS 1. Introduction 3 2. Early Developments 5 2.1. The First Reports 6 2.2. Heterocycle Synthesis 16 2.3. Nitroalkene Synthesis 21 2.4. Synthesis of Dinitroamines 23 2.5. Reactions with Pre-Formed Imines 25 2.6. Conjugate Addition Nitro-Mannich Reactions 27 2.7. Reactions of Nitroesters 30 3. Non-Catalytic Examples 33 3.1. Base-Mediated Reactions 33 3.2. Reactions of α-Amido Sulfones 36 3.3. Auxiliary Controlled Stereoselective Reactions 40 3.4. Reformatsky-Type Reactions 43 3.5. Electrochemically Induced Reactions 45 1 4. Indirect Metal-Catalyzed Reactions 46 4.1. Racemic Reactions 46 4.2. Asymmetric Reactions 47 5. Direct Metal-Catalyzed Reactions 49 5.1. Racemic Reactions 50 5.2. Asymmetric Reactions 54 6. Organocatalytic Reactions 66 6.1. Racemic Reactions 66 6.2. Asymmetric Reactions 68 6.2.1. Urea/Thiourea Catalysts 68 6.2.2. Brønsted Acid Catalysts 79 6.2.3. Phase Transfer Catalysts 83 6.2.4. Brønsted Base Catalysts 88 7. Reactions of Ketimines 90 7.1. Racemic Reactions 90 7.2. Auxiliary Controlled Reactions 92 7.3. Catalytic Asymmetric Reactions 94 8. Reactions of α-Nitroesters 96 9. Reactions of α-Nitrophosphonates 103 10. Conjugate Addition Nitro-Mannich Reactions 106 10.1. Organocatalytic Reactions with Carbon Nucleophiles 106 10.2. Reactions with Organometallic Nucleophiles 111 10.3. Aza-Morita-Baylis-Hillman Reactions 114 10.4. Synthesis of 3-Nitrochromene Derivatives 117 2 10.5.
    [Show full text]
  • Roc Profile: Nitromethane
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Nitromethane Property Information Molecular weight 61.0 CAS No. 75-52-5 Specific gravity 1.1322 at 25°C/4°C Melting point –29°C Reasonably anticipated to be a human carcinogen Boiling point 101.2°C Log K 0.17 First listed in the Eleventh Report on Carcinogens (2004) ow Water solubility 111 g/L — O2N CH3 Vapor pressure 27.8 mm Hg at 20°C Vapor density relative to air 2.11 Carcinogenicity Dissociation constant (pKa) 10.2 at 25°C Nitromethane is reasonably anticipated to be a human carcinogen Source: HSDB 2009. based on sufficient evidence of carcinogenicity from studies in -ex Use perimental animals. Most of the nitromethane produced in the United States (85% to 90%) Cancer Studies in Experimental Animals is used in the synthesis of nitromethane derivatives used as pharma- Exposure to nitromethane by inhalation caused tumors in two ro- ceuticals, agricultural soil fumigants, and industrial antimicrobials dent species and at several different tissue sites. Nitromethane caused (Markofsky 1991, Angus 2001). Nitromethane also is used as a fuel benign and malignant mammary-gland tumors (fibroadenoma and or fuel additive with methanol in racing cars, boats, and model en- carcinoma) in female rats. In mice, it increased the combined inci- gines. It formerly was used in the explosives industry as a compo- dences of benign and malignant tumors of the Harderian gland (ad- nent in a binary explosive formulation with ammonium nitrate and enoma and carcinoma) and lung (alveolar/bronchiolar adenoma and in shaped charges, and it was used as a chemical stabilizer to pre- carcinoma) in both sexes and liver tumors (hepatocellular adenoma vent decomposition of various halogenated hydrocarbons (NTP 1997, and carcinoma) in females (NTP 1997).
    [Show full text]