Chemical Compatibility Guide Chemical Compatibility Guide Chemical Compatibility

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Compatibility Guide Chemical Compatibility Guide Chemical Compatibility DICHTOMATIK O-RING HANDBOOK SECTION FIVE CHEMICAL COMPATIBILITY GUIDE CHEMICAL COMPATIBILITY GUIDE CHEMICAL COMPATIBILITY 5 DICHTOMATIK O-RING HANDBOOK CHEMICAL COMPATIBILITY GUIDE CHEMICAL COMPATIBILITY TABLES These tables are intended to assist the user in determining the suitability of various elastomers in many different chemical environments. The ratings are based on a combination of published literature, laboratory tests, actual field experience, and informed judgments. As laboratory tests do not necessarily predict end-use performance, users of DICHTOMATIK products should conduct their own evaluations to determine application suitability. NOTE: Ratings are based on volume swell which is only one indicator of elastomer fluid compatibility and may be based on the solubility parameter alone. Fluid attack on the backbone of the polymer may show up as a change in physical properties such as tensile strength, elongation at break, and hardness. Elevated temperatures and extended exposure times may create more aggressive conditions than cited in this guide. This information is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. The information presented is based on laboratory testing and does not necessarily indicate end product performance. It is recommended that users of DICHTOMATIK products conduct their own evaluations to determine suitability for the intended application. COMPATIBILITY RATING SYSTEM RATING DESCRIPTION VOLUME CHANGE COMMENTS 1 Little or no effect <10% Elastomer may exhibit slight swelling and/or loss of physical properties under severe conditions. 2 Possible loss of 10–20% Elastomer may exhibit swelling in addition to a physical properties change in physical properties. May be suitable for static applications. 3 Noticeable change 20–40% Elastomer exhibits a noticeable change in swelling and physical properties. Questionable performance in most applications. 4 Excessive change >40% Elastomer not suitable for service. – Insufficient information n/a Insufficient information available for rating. 142 DICHTOMATIK O-RING HANDBOOK ELASTOMER ABBREVIATIONS ABBREVIATION ELASTOMER TYPE ACM Polyacrylate Rubber TFE/P Aflas® (Tetrafluoroethylene/Propylene) AU Polyurethane CR Neoprene/Chloroprene EPDM Ethylene-Propylene-Diene Rubber FFKM Perfluoroelastomer FKM Fluorocarbon Elastomer FKM-ETP ETP Based Fluorocarbon Elastomer FVMQ Fluorosilicone Rubber HNBR Hydrogenated Nitrile (or HSN) IIR Butyl Rubber NBR Nitrile or Buna-N (Acrylonitrile-Butadiene Rubber) NR Natural Rubber SBR Styrene-Butadiene Rubber VMQ Silicone Rubber 143 DICHTOMATIK O-RING HANDBOOK CHEMICAL COMPATIBILITY GUIDE CHEMICAL/ELASTOMER LISTINGS NBR EPDM HNBR CR FVMQ FKM-ETP NR SBR Chemical Medium FKM VMQ AU ACM TFE/P FFKM IIR Acetaldehyde 4422––––4442––– Acetamide 1312––––1231––– Acetic Acid Amine 1312––––1231––– Acetic Acid, 25% to 60% 33114–––2–21414 Acetic Acid, 85% 4 – – – 4 ––––––14–4 Acetic Acid, Glacial 3422444–4322424 Acetic Aldehyde 4422––––4442––– Acetic Anhydride 44234–1–4221211 Acetic Ester 4432444–4431444 Acetic Ether 4432444–4431444 Acetic Oxide 44234–1–4221211 Acetone 441444444431111 Acetonitrile 3 1 1 ––––––111––– Acetophenone 4414––––4441––– Acetyl Chloride 4143––––1111––– Acetyl Oxide 44234–1–4221211 Acetylacetone 4414––––4441––– Acetylbenzene 4414––––4441––– Acetylene 11121–111111111 Acetylene Tetrabromide 4114––––2111––– Acrylic Acid, Ethyl Ester 343444–44441–2– Acrylonitrile 44444–4–4231444 Adipic Acid 1 2 2 – 1 – 1 – 1221111 Air Below 200°F 111111111111111 Air, Oil-Containing 114111111––1442 Alkazene 4244––––2221––– Allomaleic Acid 1122––––1111––– Allyl Alcohol 2 4 1 – 2 4 2 ––––1111 Allyl Chloride 2 2 1 ––––––221––– Alum (NH3-Cr-K) 111–1–1––––1411 Aluminum Acetate 2414––––4131––– Aluminum Bromide 1111––––1111––– Aluminum Chloride 1112––––1111––– Aluminum Fluoride 1112––––1111––– Aluminum Hydroxide 2 2 2 ––––––121––– 1] Little or no effect (Volume swell <10%) 2] Possible loss of physical properties (Volume swell 10–20%) 3] Noticeable change (Volume swell 20–40%) 4] Not suitable for service –] Insufficient info 144 DICHTOMATIK O-RING HANDBOOK CHEMICAL/ELASTOMER LISTINGS NBR EPDM HNBR CR FVMQ FKM-ETP NR SBR Chemical Medium FKM VMQ AU ACM TFE/P FFKM IIR Aluminum Nitrate 2112–––––111––– Aluminum Orthophosphate 1111–––––111––– Aluminum Phosphate 1111–––––111––– Aluminum Salts 1111––––1111––– Aluminum Sulfate 1311142–1111211 Amines Mixed (Allyl, Ethyl, etc.) 4422––––4241––– Aminobenzene 4324444–42214–4 Aminobenzoic Acid 4 2 2 ––––––121––– Aminopyridine 4 4 2 ––––––341––– Ammonia 2 4 1 – 2 4 2 ––––2111 Ammonia Gas, Cold 1411––––4141––– Ammonia Gas, Hot 4421––––4241––– Ammonia, Anhydrous Liquid 2412––––4341––– Ammonia-Aqua 4211––––1111––– Ammonium Acetate 1 4 1 – 1 4 2 ––––1111 Ammonium Carbonate 3 4 1 – 1 4 2 – – 131111 Ammonium Chloride 1112142–1111111 Ammonium Fluoride 1 4 1 – 1 – 2 ––––2421 Ammonium Hydroxide 4211––––1111––– Ammonium Nitrate 13121–2––111411 Ammonium Persulfate 4 3 1 –––––1131––– Ammonium Phosphate 1 4 1 – 1 4 2 ––––1111 Ammonium Phosphate, Dibasic 1111–––––111––– Ammonium Salts 1311––––3131––– Ammonium Sesquicarbonate 3 4 1 – 1 4 2 – – 131111 Ammonium Sulfate 1 3 1 – 1 4 2 – – 111411 Ammonium Sulfide 2 3 1 – 2 4 2 – – 111412 Amyl Acetate 44144–––4441114 Amyl Alcohol 2314242–1111111 Amyl Borate 1 1 4 ––––––111––– Amyl Cabrinol 1132––––2–11––– Amyl Chloride 1144––––2111––– Amyl Chloronaphthalene 4144––––2211––– Amyl Hydrate 2314242–1111111 Amyl Hydride 11441–2–3––1444 1] Little or no effect (Volume swell <10%) 2] Possible loss of physical properties (Volume swell 10–20%) 3] Noticeable change (Volume swell 20–40%) 4] Not suitable for service –] Insufficient info 145 DICHTOMATIK O-RING HANDBOOK CHEMICAL COMPATIBILITY GUIDE CHEMICAL/ELASTOMER LISTINGS NBR EPDM HNBR CR FVMQ FKM-ETP NR SBR Chemical Medium FKM VMQ AU ACM TFE/P FFKM IIR Amyl Naphthalene 4144––––1211––– Aniline 4324444–42214–4 Aniline Chloride 423444––21214–4 Aniline Dyes 4223––––2121––– Aniline Hydrochloride 423444––21214–4 Aniline Oil 4324444–42214–4 Aniline Salt 423444––21214–4 Animal Fats 1122––––1111––– Anon 4 – 4 – 4 – 4 ––––1444 Ant Oil, Artificial 442444–––442––– Anthraquinone Sulphonic Acid 2 – 1 – 2 4 –––––1111 Antifreeze, Automotive 1111141–1211111 Antimony Chloride 11111–111––1111 Antimony Trichloride 1 – 1 – 1 – 2 ––––1111 Antimony Trioxide 1 1 1 ––––––111––– Aqua Regia 434444444321444 Argon 1112––––2111––– Aroclor 1248 3123––––2111––– Aroclor 1254 4123––––1111––– Aroclor 1260 1121––––1111––– Aromatic Fuels 2144––––2211––– Arsenic Acid 1111142–1111111 Arsenic Chloride 1 4 4 ––––––441––– Arsenic Trichloride 1 4 4 ––––––441––– Asphalt 2144––––2–11––– ASTM FUEL A 114411221311444 ASTM FUEL B 214424441411444 ASTM FUEL C 324444442411444 ASTM FUEL D 2 1 4 ––––––411––– ASTM OIL NO. 1 114112111141444 ASTM OIL NO. 2 114312211211444 ASTM OIL NO. 3 114322211311444 ASTM OIL NO. 4 2144––––2211––– ASTM OIL NO.
Recommended publications
  • The Difference of Butyl Rubber and Butadiene Styrene Rubber? by Butyl Rubber Sheets - [email protected], Date: Sep.18.06
    The difference of butyl rubber and butadiene styrene rubber? By Butyl Rubber Sheets - www.dongrubber.com, [email protected], Date: Sep.18.06 Butyl rubber sheets is a kind of synthetic rubber which is a copolymer of Isobutylene and a small amount of isoprene copolymer, short for IIR. Butyl rubber sheeting has good chemical stability and thermal stability, the most prominent character is the air tightness and water tightness. Its air transmittance is only about 1/7 of the natural rubber, 1/5 of the styrene-butadiene rubber. Meanwhile its transmittance of steam is 1/200 of the natural rubber, and 1/140 of the styrene-butadiene rubber. Thus IIR is mainly used in the manufacture of tires, inner tubes, steam pipe, water dam and bottom gasket and other rubber products. Styrene-butadiene rubber (SBR) is one of the biggest general synthetic rubber varieties, and is also among the first rubber to realize industrialization production. Styrene butadiene rubber sheet is a random copolymer of butadiene and styrene. Its physical performance, processing performance and product performance is close to those of natural rubber sheets, and some properties such as wear resistance, heat resistance, ageing resistance and curing rate are more excellent than natural rubber sheeting, SBR can be used with a variety of natural rubber sheets and synthetic rubbers, widely applied to tires, tape, rubber hose, wire and cable, medical instruments and various kinds of rubber products production and other fields. Author: Butyl Rubber Sheets copyright reserved. Original URL should be kept in reproduction. .
    [Show full text]
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • [19] [11] Patent Number: 4518808
    Ulllted States Patent [19] [11] Patent Number: 4,518,808 Wang et a1. [45] Date of Patent: May 21, 1985 [54] PREPARATION OF [56] References Cited 2,5-DICHLOROHYDROQUINONE Us. PATENT DOCUMENTS _ 2,151,137 3/1939 Moness .............................. .. 568/765 [75] Inventors: Richard H. S. Wang; Garry L. Myers, 2,777,002 1/1957 Sullivan . 1 . .. 568/779 both of Kingsport, Tenn. 2,902,518 9/1959 Hurdis et a1. .... .. .. 568/726 X FOREIGN PATENT DOCUMENTS [73] Asslgnee: Eastman Kodak Company’ 839972 6/1960 United Kingdom .............. .. 568/779 Rochester, NY. Primary Examiner—Bernard Hel?n Attorney, Agent, or Firm—Clyde L. Tootle; J. Frederick [21] Appl. No; 537,227 Thomsen [57] ABSTRACT . _ 7 [22] Flled' Sep' "9’ 1983 Disclosed is a process for the preparation of certain dichloro-hydroxy and alkoxy aromatic compounds by [51] Int. Cl.3 ............................................ .. C07C 37/62 reacting the corresponding unchlorinated compound [52] US. Cl. .................................. .. 568/765; 568/633; with sulfuryl chloride in the presence of acetic acid, 568/634; 568/656; 568/726; 568/737; 568/779 propionic acid or lower alkyl esters thereof. [58] Field of Search ............. .. 568/779, 656, 726, 737, 568/765, 649 1 Claim, N0 Drawings 4,518,808 - 1 2 methyl and methoxy being the most common. The aryl PREPARATION OF substituent may be phenyl or alkyl-substituted phenyl. 2,5-DICHLOROHYDROQUINONE The chlorination temperatures used may be varied widely, e.g. from about 15° to 110° C., depending on the DESCRIPTION particular compound being chlorinated. The chlorina This invention relates to a novel process for the prep~ tion promoting temperature preferably is in the range of aration of dichloro-hydroxy and alkoxy aromatic com about 30° to 80° C.
    [Show full text]
  • Latex Free Claims: a White Paper on the Risks Associated with Latex Allergies and Latex in Healthcare
    Latex Free Claims: A White Paper on the Risks Associated with Latex Allergies and Latex in Healthcare Brought to you by: Allergy and Asthma Network: Sue Lockwood and Robert Hamilton, M.S., Ph.D. Avella Specialty Pharmacy: Eric Sredzinski, Pharm.D., AAHIVP and Jenna Vaughn, Pharm.D., PGY1 Executive Summary There is significant confusion as to the meaning of “latex free” in healthcare. The FDA has urged manufacturers to drop the term “latex free” or a ”does not contain latex” claim from labels because of the challenge to ensure a product is completely devoid of natural rubber latex proteins which cause the allergic reactions. While there are no regulations requiring the On December 2, labeling of a medical product to state natural rubber latex was not used as a material in the manufacturing process, the terms “latex free” or 2014, the FDA “does not contain latex” are used too broadly. According to the FDA, these labeling techniques are not sufficiently specific, not necessarily scientifically released the accurate, and may be misunderstood and applied too widely. final latex guidance On December 2, 2014, the FDA released the final latex guidance document document advising [https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/ GuidanceDocuments/UCM342872.pdf] advising firms to use “not made with firms to use natural rubber latex” if no natural (Hevea brasiliensis) rubber latex was used in the "not made manufacturing process. Not all types of latex are from natural rubber latex; for example, products that contain nitrile and polyvinyl chloride, will not cause a with natural natural rubber latex allergy because these are synthetic formulations.
    [Show full text]
  • Restriction of Per- and Polyfluoroalkyl Substances (PFAS) Under REACH
    Webinar: Restriction of per- and polyfluoroalkyl substances (PFAS) under REACH Questions and answers ECHA organised a webinar on 29 October 2020 on Restriction of per- and polyfluoroalkyl substances (PFAS) under REACH. It explained the REACH restriction process and the status of ongoing work by the Netherlands, Germany, Denmark, Sweden and Norway on a potential restriction to limit the risks to the environment and human health from the manufacture and use of per- and polyfluoroalkyl substances (PFAS). This document compiles the questions and answers from the webinar. Editorial changes have been made to improve clarity, correct spelling mistakes etc. Similar questions have been combined. The document will not be updated. For the most up-to-date advice on PFAS, contact us or refer to our support material. Disclaimer: The European Chemicals Agency and the authorities from the five countries does not accept any liability with regard to the use that may be made of the information contained in this document. Use of the information in this document remains the sole responsibility of the reader. Although, the information provided on this Q&A document has been prepared with the utmost care, possible errors or omissions cannot be excluded. The European Chemicals Agency and the authorities from the five countries does not accept any liability with regards to any such errors or omissions. P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | echa.europa.eu Question Answer General process We expect to notify the proposal in ECHA's registry of intention (RoI) in the first half of 2021 and to submit the completed assessment and proposal to ECHA for opinion making in the first half of 2022.
    [Show full text]
  • RFC: IRIS Barium and Compounds Substance File
    October 29, 2002 Information Quality Guidelines Staff Mail Code 28221T U.S. EPA 1200 Pennsylvania Ave., N.W. Washington, DC, 20460 Subject: Request for Correction of the IRIS Barium and Compounds substance file - Information disseminated by EPA that does not comply with EPA or OMB Information Quality Guidelines Dear Madam or Sir; Chemical Products Corporation (CPC), a Georgia corporation which produces Barium and Strontium chemicals at its Cartersville, Georgia facility, hereby submits this Request for Correction (RFC) concerning EPA’s Integrated Risk Information System Barium and Compounds Substance File (IRIS Ba File). The influential information contained in this file fails to comply with the OMB “Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity of Information Disseminated by Federal Agencies”. The information disseminated in EPA’s IRIS Barium and Compounds file directly contradicts the information published by EPA in the January 3, 1997 Federal Register and, therefore, cannot represent an EPA consensus position. The IRIS Ba File was revised in 1998 and 1999, yet it contains no mention of the toxicological evaluation conducted by EPA’s Office of Pollution, Pesticides, and Toxic Substances reported in 62 FR 366-372 (No. 2, January 3, 1997). There is no explanation of how a radically different interpretation of the same data could be justified. The NOAEL employed to calculate the Oral Reference Dose in the IRIS Ba File is 0.21 mg/kg/day; there is no LOAEL associated with this NOAEL. The NOAEL reported in 62 FR 366-372 is 70 mg/kg/day in rats and 165 mg/kg/day in mice; these values are taken from a National Toxicology Program technical report and are associated with a LOAEL of 180 mg/kg/day.
    [Show full text]
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • FKM Xplor™ V9T82
    TRELLEBORG SEALING SOLUTIONS FKM XploRTM V9T82 EXPLOSIVE DECOMPRESSION RESISTANT MATERIALS OUTSTANDING EXTREME LOW TEMPERATURE PERFORMANCE Explosive decompression is a major concern to the oil and gas industry. It occurs when applied system pressure is released, causing absorbed gas to expand, potentially damaging elastomer seals. Trelleborg Sealing Solutions has focused on this issue and Features and benefits presents the XploR™ range, an entire family of advanced elastomers especially developed for oil and gas applications. • Unrivalled ED restistance within its material type The portfolio includes compounds in HNBR, FKM, Aflas® and • Operating temperatures from -48°C to +200°C/-54°F to Isolast® Perfluoroelastomer, each of which demonstrates +392°F with short excursions to 210°C/+410°F best-in-class Explosive Decompression (ED) resistance for • Outstanding performance at extremely low temperatures its material type. • Exceptional mechanical performance • Low long-term compression set XploR™ V9T82 combines excellent chemical and thermal • Very good chemical compatibility properties, with outstanding low temperature capability. • Extended life in aggressive media, including the hydrocarbon It exhibits superior high pressure sealing performance in and aqueous media common within oil & gas applications ED situations, which is supported by independent institute • High modulus and high strength approval to standard test protocols. Applications When the composition of the well or conditions of the application are known, FKM XploR™ V9T82 may prove the • Separation equipment optimum and most cost-effective material for your application, • Connector systems especially when operating temperatures are extremely low. • Valves • Wellhead control equipment For further information on selecting the right compound and • Tubing hangers advice on seal specification for your individual application, • Swivel stacks on Floating Production Storage and consult your local Trelleborg Sealing Solutions marketing Offloading (FPSO) vessels company.
    [Show full text]
  • Exxon™ Butyl Rubber Innertube Technology Manual
    Exxon™ butyl rubber Exxon™ butyl rubber innertube technology manual Country name(s) 2 - Exxon™ butyl rubber innertube technology manual Exxon™ butyl rubber innertube technology manual - 3 Abstract Many bias and radial tires have innertubes. Radial truck tube-type tires are particularly common, and in many instances, such as in severe service, off-road applications, are preferred over tubeless radial tire constructions. The technology requirements for tubes for such tires is, in many respects, equally demanding when compared to that for the tire and wheel in the assembly. This manual has been prepared to describe how butyl rubber is important in meeting the demanding performance requirements of tire innertubes. Representative innertube compound formulations and compound properties are discussed along with typical processing guidelines of the compound in the manufacture of innertubes. Chlorobutyl rubber based compound formulations are also used in innertubes. Such innertubes show good heat resistance, durability, allow greater flexibility in compounding, and process equally well as regular butyl rubber tube compounds. An extensive discussion of bicycle tire innertubes has been included. Service conditions can range from simple commuting and recreation to high speed competitive sporting applications. Like automobile and truck tire innertubes, tubes for bicycle tires can thus have demanding performance requirements. Guidelines on troubleshooting provide a checklist for the factory process engineer to enhance manufacturing efficiency, high
    [Show full text]
  • 12E4968079.Pdf
    Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system Item Type Conference Paper Authors Merican, Zulkifli; Vu, Bao Khanh; Solovyeva, Vera; Rodionov, Valentin; Khe, Cheng Seong; Rajalingam, Sokkalingam; Vasant, Pandian Citation Merican Z, Vu BK, Solovyeva VA, Rodionov VO, Khe CS, et al. (2016) Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system. Available: http:// dx.doi.org/10.1063/1.4968079. Eprint version Publisher's Version/PDF DOI 10.1063/1.4968079 Publisher AIP Publishing Rights This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Merican, Z., Vu, B.K., Solovyeva, V.A., Rodionov, V.O., Khe, C.S., Rajalingam, S. and Vasant, P., 2016, November. Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system. In 4TH INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS2016) (Vol. 1787, No. 1, p. 030014). AIP Publishing and may be found at http://aip.scitation.org/doi/abs/10.1063/1.4968079. Download date 27/09/2021 23:14:23 Link to Item http://hdl.handle.net/10754/622088 Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system Zulkifli Merican, Bao Khanh Vu, Vera A. Solovyeva, Valentin O. Rodionov, Cheng Seong Khe, Sokkalingam Rajalingam, and Pandian Vasant Citation: 1787, 030014 (2016); doi: 10.1063/1.4968079 View online: http://dx.doi.org/10.1063/1.4968079 View Table of Contents: http://aip.scitation.org/toc/apc/1787/1 Published by the American Institute of Physics Fluorocarbon Compatibilized Gold-Silica Nanocomposites For Recyclable Regioselective Hydroamination of Alkynes In A Fluorous Biphasic System Zulkifli Merican1, a Bao Khanh Vu2, Vera A.
    [Show full text]
  • Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements
    Chem. Mater. 2000, 12, 33-40 33 Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements Shu Yang, Jianguo Wang,† Kenji Ogino,‡ Suresh Valiyaveettil,§ and Christopher K. Ober* Department of Materials Science and Engineering, Cornell University, Bard Hall, Ithaca, New York 14853-1501 Received April 26, 1999. Revised Manuscript Received October 19, 1999 A series of block polymers were synthesized from tetrahydropyranyl methacrylate (THPMA) and several fluorinated methacrylates. By changing both the length of the fluorinated side chain and the nature of its end group, the surface properties of these polymers were greatly influenced. The polymers with perfluoroheptyl groups showed the lowest surface tension, ∼7 mN/m, whereas those with perfluoropropyl groups showed surface tension around 12 mN/m. The surface tension changed dramatically when the perfluorinated side chain with a CF2H end group was capped, increasing to 18 mN/m for three -CF2- units. The relative volume ratios of different block copolymers did not affect the resulting surface energy. After thermal decomposition of labile THP- groups in these polymers, acid and acid anhydride groups were produced. Thermal cross-linking of these groups increased mechanical robustness and led to better surface stability and adhesion of the polymer to the substrate. Because these polymers were designed for their lithographic abilities, some aspects of their photoimaging properties are discussed. Introduction surfactants, or emulsifiers,2 some of which are soluble in supercritical carbon dioxide.3,4 A monolayer of these Precise control of the surface properties of polymeric materials, properly organized, will make a very low- materials by means of self-organization is a major energy surface.
    [Show full text]
  • Material Safety Data Sheet Scction I -IDENTIFICATION
    CREAf IN6 TO ORROW Material Safety Data Sheet Scction I -IDENTIFICATION Product Name: LITHIUM SULFURYL CHLORIDE CELLS AND BATTERIES (all hermetically sealed Electrochem CSC/PMX cells) Manufacturer: Electrochem Solutions (Subsidiary of Greatbatch, lnc) 670 Paramount Drive Raynham, MA 02767 USA Telephone: 781-830-5800 Fax: 781-575-1545 Transportation Emergency Number -CHEMTREC 1-800424-9300 Revision Date -2-1 5-201 3 Section 2 - COMPOSITION/INFORMATION ON INGREDIENTS Hazardous Components: 1 ) Lithium- CAS#7439-93-2: TLV/PEL: None est. 2) Sulfuryl Chloride -CAS#7791 -25-5 TLV/PEL: None established 3) Chlorine (Cl2) -CAS# 7782-50-5 ACGIH: 0.5m9/m3 TWA/1ppm STEL 4) Carbon CAS# 1333-86-4 ACGIH: 3.5 mg/m3 TWA For cell lithium content, refer to technical datasheet information. Scction 3-HAZARDS IDENTIFICATION DANGER - lnternal contents are extremely hazardous. Leaking fluid is corrosive and dangerous upon inhalation. Battery may be explosive at higher temperatures. Do not expose to temperatures above the maximum rated temperature as specified by the manufacturer due to potential leak hazard. lf batterv leaks or vents: Primary Routes of Entry: Inhalation or skin contact Carcinogenicity: Not listed by NTP, IARC, or regulated by OSHA Health Hazards: Acute -Vapors are very irritating to skin, eyes, and mucous membranes. lnhalation of sulfuryl chloride or thionyl chloride vapors can result in pulmonary edema. Chronic - Overexposure can cause symptoms of non-fibrotic lung injury. Signs and symtoms of exposure : Eye and mucous membrane irritation. Medical conditions generally aggravated by exposure: Asthma, or other respiratory conditions, skin allergies, and eczema. MSDS-OOO3 Rev. B ECO# I 1598 Page 1 (/atltlrvc toinoRpow Scction 4 -FIRST AID MEASURES Eye Contact: Flush with running water for at least 15 minutes while holding eyelids apart.
    [Show full text]