JTEFT-04-00146.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
12E4968079.Pdf
Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system Item Type Conference Paper Authors Merican, Zulkifli; Vu, Bao Khanh; Solovyeva, Vera; Rodionov, Valentin; Khe, Cheng Seong; Rajalingam, Sokkalingam; Vasant, Pandian Citation Merican Z, Vu BK, Solovyeva VA, Rodionov VO, Khe CS, et al. (2016) Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system. Available: http:// dx.doi.org/10.1063/1.4968079. Eprint version Publisher's Version/PDF DOI 10.1063/1.4968079 Publisher AIP Publishing Rights This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Merican, Z., Vu, B.K., Solovyeva, V.A., Rodionov, V.O., Khe, C.S., Rajalingam, S. and Vasant, P., 2016, November. Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system. In 4TH INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS2016) (Vol. 1787, No. 1, p. 030014). AIP Publishing and may be found at http://aip.scitation.org/doi/abs/10.1063/1.4968079. Download date 27/09/2021 23:14:23 Link to Item http://hdl.handle.net/10754/622088 Fluorocarbon compatibilized gold-silica nanocomposites for recyclable regioselective hydroamination of alkynes in a fluorous biphasic system Zulkifli Merican, Bao Khanh Vu, Vera A. Solovyeva, Valentin O. Rodionov, Cheng Seong Khe, Sokkalingam Rajalingam, and Pandian Vasant Citation: 1787, 030014 (2016); doi: 10.1063/1.4968079 View online: http://dx.doi.org/10.1063/1.4968079 View Table of Contents: http://aip.scitation.org/toc/apc/1787/1 Published by the American Institute of Physics Fluorocarbon Compatibilized Gold-Silica Nanocomposites For Recyclable Regioselective Hydroamination of Alkynes In A Fluorous Biphasic System Zulkifli Merican1, a Bao Khanh Vu2, Vera A. -
Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements
Chem. Mater. 2000, 12, 33-40 33 Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements Shu Yang, Jianguo Wang,† Kenji Ogino,‡ Suresh Valiyaveettil,§ and Christopher K. Ober* Department of Materials Science and Engineering, Cornell University, Bard Hall, Ithaca, New York 14853-1501 Received April 26, 1999. Revised Manuscript Received October 19, 1999 A series of block polymers were synthesized from tetrahydropyranyl methacrylate (THPMA) and several fluorinated methacrylates. By changing both the length of the fluorinated side chain and the nature of its end group, the surface properties of these polymers were greatly influenced. The polymers with perfluoroheptyl groups showed the lowest surface tension, ∼7 mN/m, whereas those with perfluoropropyl groups showed surface tension around 12 mN/m. The surface tension changed dramatically when the perfluorinated side chain with a CF2H end group was capped, increasing to 18 mN/m for three -CF2- units. The relative volume ratios of different block copolymers did not affect the resulting surface energy. After thermal decomposition of labile THP- groups in these polymers, acid and acid anhydride groups were produced. Thermal cross-linking of these groups increased mechanical robustness and led to better surface stability and adhesion of the polymer to the substrate. Because these polymers were designed for their lithographic abilities, some aspects of their photoimaging properties are discussed. Introduction surfactants, or emulsifiers,2 some of which are soluble in supercritical carbon dioxide.3,4 A monolayer of these Precise control of the surface properties of polymeric materials, properly organized, will make a very low- materials by means of self-organization is a major energy surface. -
Effect of Finishing Auxilliaries on the Color Perception of Cotton Knit Fabric Dyed with Reactive Dye
European Scientific Journal August 2018 edition Vol.14, No.24 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Effect of Finishing Auxilliaries on the Color Perception of Cotton Knit Fabric Dyed with Reactive Dye Shuvo Brahma, BSc Md. Rashedul Islam, MSc Emran Hossain, BSc Rasheda Begum Dina, MSc Department of Wet Process Engineering, Bangladesh University of Textiles (BUTEX) Smita Rani Debnath, BSc Department of Apparel Engineering, Bangladesh University of Textiles (BUTEX) Doi: 10.19044/esj.2018.v14n24p490 URL:http://dx.doi.org/10.19044/esj.2018.v14n24p490 Abstract Dyed textiles are influenced by finishing treatments more or less strongly. Individual dyes as well as finishing products and conditions are responsible for this. An attempt has been made to assess the effects of some finishing auxiliaries on the color yield of reactive dyed cotton knit fabric. It was found that treatment with finishing auxiliaries decreased the shade depth to a considerable extent. The shade changes obtained after treating with fixing and soaping agent were found less than the treatment with caustic soda and combined caustic and glauber salt. Keywords: Finishing, auxiliaries, cotton, color perception. Introduction Color sensation is a characteristic of human experience. Nature provides a particularly vivid display of color. An object viewed in white light, which consists of all wavelengths in the visible region (400–700 nm) in about equal proportions, will appear colored if there is selective absorption of some wavelengths and reflection or transmission of the others. Objects with high reflectance of all wavelengths of white light will appear white, whereas strong absorption of all wavelengths produces black (Broadbent, 2001). -
Hfcs for THERMAL INSULATION
HFCs FOR THERMAL INSULATION Visit our web site www.fluorocarbons.org A SOLUTION ADDRESSING THE CLIMATE CHANGE CHALLENGE EFCTC - European FluoroCarbon Technical Committee Avenue E.van Nieuwenhuyse 4 B-1160 Brussels - Phone : +32 2 676 72 11 HFCs FOR THERMAL INSULATION Visit our web site www.fluorocarbons.org A SOLUTION ADDRESSING THE CLIMATE CHANGE CHALLENGE EFCTC - European FluoroCarbon Technical Committee Avenue E.van Nieuwenhuyse 4 B-1160 Brussels - Phone : +32 2 676 72 11 Progress for our quality of life… Could we do without heating or air conditioning? …and climate protection Refrigeration, air conditioning and heating are often essential to life particularly in public areas such as The greenhouse effect to a great extent determines the climate in hospitals and laboratories, for food products on earth. Growth in emissions of greenhouse gases associated with in the cold chain, for medical and computer equipment. human activities threa tens the climate balance. Carbon dioxide (CO2) - the main greenhouse gas - is emitted when fossil fuels are burnt to But we have also to consider the impact of produce energy and increasing energy demands have led to rapid growth the wide-spread use of these services on in the amount of CO2 in the atmosphere. Heating, air conditioning the global environment. and refrigeration have contributed to this growth. Roof If no action is taken at all, greenhouse gas(*) emissions could be expected to further increase in EU Member States by 17% 22% between 1990 and 2010, while the target set by the Kyoto Protocol for the period is to reduce the emissions by 8%. -
Factsheet Fluorocarbons (Pfcs)
Factsheet Fluorocarbons (PFCs) Sympatex Technologies GmbH PTFE-free Sympatex membrane The Sympatex membrane is PTFE-free which means that it does not contain any fluorine compounds. It is made of perfectly safe polyether/ester, a compound of polyester and polyether molecules which makes it absolutely environmentally friendly and kind on the skin and also means it can be recycled like a PET bottle. Other membranes such as Gore-Tex and eVent are made of PTFE (polytetrafluoroethylene) whose manufacture, disposal, heating and incineration may release PFCs (per and polyfluorinated chemicals / fluorine compounds) which are regarded as ecologically problematic. The performance of fluorine-free polyester membranes and PTFE-based membranes are very similar in terms of them being windproof, breathable and waterproof. Water-repellent impregnations / General facts To meet requirements relating to functionality and care, the outer materials used in outdoor clothing generally have a water-repellent treatment (impregnation) on the outside and a membrane on the inside. The Sympatex membrane ensures that functional clothing is waterproof. Water-repellent treatments also ensure that the textile has durable water-repellent properties. A DWR (durable water repellent) treatments is an extremely thin coating of the individual fibres which ensures that water simply forms beads and falls off. This treatment prevents or delays the ingress of water into the outer material. The result of this is that the garment does not absorb water, it does not gain weight, the -
Pfos, Pfoa, and Other Fluorochemicals
® PFOS, PFOA, AND OTHER FLUOROCHEMICALS Fluorochemicals are used in water-repellent finishes and class-action lawsuits began against DuPont® regarding PFOA waterproof membranes in outdoor apparel. These fluorinated used in the manufacturing of Teflon® coatings for cookware. compounds also can be found in a wide variety of other consumer DuPont subsequently reached settlements and received dismissals goods, including nonstick cookware, paints and coatings, and in these lawsuits, and is well on its way to eliminate PFOA from stain-release treatments for carpet. We do our best to monitor the its manufacturing processes. health, safety and environmental impacts of chemicals used in the manufacture of our products by reviewing information published Fluorocarbon-Based Water Repellents by U.S. government agencies responsible for regulating these Water repellency is achieved by lowering the surface energy of the chemicals, and by discussions with the companies that make the fabric so that water will bead on the surface and won’t “wet out” materials used in our products. Based on what we have learned the garment. This can be achieved with many types of finishes, to date, we are not aware of information linking skin contact including waxes, oils and silicones. But these compounds can from the routine use of apparel to an uptake of fluorochemicals be penetrated by oil, including lotions and oils from skin. Since into the human body and any potential for harm. But because fluorocarbons are the most effective at repelling both oil and we are concerned about the persistence of these chemicals in the water they are commonly used in water-repellent finishes on environment, we have been working to find alternatives to two outerwear clothing. -
ESL Fact Sheet
FACT SHEET HYRODGEN FLUORIDE AND OTHER SOLUBLE INORGANIC FLUORIDES CAS#: 7664-39-3 This fact sheet provides a summary of the Development Support Document (DSD) created by the Toxicology Division (TD) of the Texas Commission on Environmental Quality (TCEQ) for the development of Regulatory Guidelines (ESL and ReVs) for ambient exposure to this chemical. For more detailed information, please see the DSD or contact the TD by phone (1-877-992-8370) or e-mail ([email protected]). What are hydrogen fluoride and inorganic soluble fluorides? Inorganic soluble fluorides (F) exist in the atmosphere as both gas and particulates and are used in the production of aluminum, steel, phosphate fertilizers, phosphoric acid, glass, ceramic, and brick products. Hydrogen fluoride (HF) is widely used in the production of fluorocarbon chemicals. Anhydrous HF is used as a catalyst in the production of most fluorine-containing chemicals; as a fluorinating agent in the production of fluorine and aluminum fluoride; and in refining uranium. It is used in the production of refrigerants, herbicides, pharmaceuticals, high- octane gasoline, aluminum, plastics, electrical components, and fluorescent light bulbs. Aqueous hydrofluoric acid is used in stainless steel pickling, glass etching, metal coatings, exotic metal extraction, and quartz purification. How are HF and soluble F released into ambient air? Naturally-occurring F including HF can be released into the air through volcanic activity, dust from soils, and sea-water droplets, then carried into the atmosphere by winds. However, most of the airborne F is generated through the burning of F-containing fuels and from industrial sources. Major sources of industrial HF and F emissions are aluminum production and phosphate fertilizer plants. -
Colorimetric Analysis and Fastness Properties of Jute Fabric Dyed With
Tekstilec, 2020, Vol. 63(3), 195–202 | DOI: 10.14502/Tekstilec2020.63.195-202 195 Kamrun Nahar1, Shurfun Nahar Arju2, Jannatul Ferdush1, Marzia Islam1, Tarifun Akter1 1 Northern University Bangladesh, Department of Textile Engineering, Kawlar Jamea Masjid Road 111/2, Dhaskhin Khan, Khilkhet, Dhaka 1229, Bangladesh 2 Bangladesh University of Textiles, Department of Wet Process Engineering, Shaheed Tajuddin Ahmed Avenue 92, Tejgaon Industrial Area, Dhaka 1208, Bangladesh Colorimetric Analysis and Fastness Properties of Jute Fabric Dyed with Eucalyptus Leaves Kolorimetrična analiza in obstojnost jutne tkanine, barvane z listi evkaliptusa Original scientific article/Izvirni znanstveni članek Received/Prispelo 3-2020 • Accepted/Sprejeto 6-2020 Corresponding author/Korespondenčna avtorica: Kamrun Nahar, senior lecturer E-mail: [email protected] Mobile: 8801731094445 Abstract Natural dyestuff has reverted its position in the colouration of textile substrates due to rising concerns of consumers and buyers, particularly about environmental impacts and health issues. Eucalyptus leaves were selected in this study as a source of natural dye along with some of the most generally used mordants to ob- serve the impact of dyeing on jute fabric while trying to keep the dyeing parameters at a minimum level. Dyes were extracted from eucalyptus leaves by boiling in water. Then, the fabric was pre-mordanted using different synthetic mordanting agents, such as alum, potassium dichromate, copper sulphate and ferrous sulphate, which are generally used to substantively enhance the dyestuff on textile fabrics and to improve the fastness properties. Synthetic mordant was used here instead of natural mordant due to the better dyeing compatibility of jute fabric with eucalyptus leaves, since natural mordant has little effect on jute fabric during the process of dyeing. -
Forane® Refrigerants Brochure/Technical Digest
Technical Digest HFCs HCFCs R-410A R-22 R-427A R-408A R-407A R-407C R-134a R-404A R-507A R-32 Table of Contents Know Your Source 4 Refrigerant Flow Chart 5 Application Reference Guide 6 Product Guide page 7 8 9 HFCs 2 Forane• Refrigerants Arkema continues its role as an industry leader through Included in this brochure are basic refrigerant the development and support of new and existing properties and product descriptions, as well as refrigerant solutions. This Technical Digest was created application guides and retrofit procedures. as a reference source for HVACR professionals, providing For more detailed information on any of our Forane® updated coverage of refrigerant-related information. refrigerants, please contact our Technical Service The products listed here are widely used to service the Hotline at (800) 738-7695, or visit our website at major air-conditioning and refrigeration markets. forane.com. 10 11 12 13 14 15 16 HCFCs Definitions and Other Topics 17 R-22 Transition 18 Kigali Agreement 19 Pressure-Temperature Chart 20 - 21 Basic Property Data Chart 22 Cylinder Information 23 3 KNOW YOUR SOURCE All Forane® refrigerant products meet the following qualifications UL® CLASSIFIED ANTI-COUNTERFEITING TECHNOLOGY UL® (Underwriters Laboratories Inc.) has classified all Launched in January of Arkema Forane® refrigerant products as meeting the safety 2017, Arkema implemented standards for refrigerants. These standards a brand protection initiative, are written documents that outline the which helps protect our process in which a product is tested to customers from purchasing help mitigate risk, injury, or danger. UL® is possible counterfeit refriger- a standard-setting organization, combining ant cylinders. -
12.2% 116,000 125M Top 1% 154 4,100
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 125M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Dyeing Chemicals Shekh Md. Mamun Kabir and Joonseok Koh Abstract Dyeing auxiliaries play an important role in the determination of the final dye- ing quality. The formation of additional complexes with dyes and auxiliary agents enhances the exhaustion of dyes on textile substrates. For aqueous-based dyeing, dye auxiliaries such as chelating agents, dispersing agents, leveling agents, electro- lyte, pH control agents, and surfactants form complexes with the dye on natural and synthetic fibers. A growing awareness of the impact of industrial pollution on the environment became crucial for the dyeing industry in the closing decades of the twentieth century. These chapters discuss the characteristics of dyeing chemicals and how auxiliary substances can assist in achieving outstanding dyeing performance. Keywords: chelating agent, dispersing agent, leveling agent, electrolyte, pH control agent, surfactant, antifoaming agents 1. Introduction The textile dyeing industry is constantly increasing because of the growing con- sumption of fabrics and garments; moreover, till the next decade, a billion consumers will be added to the global market [1]. -
Synthesis of Polymer Nanoparticles Using
SYNTHESIS OF POLYMER NANOPARTICLES USING INTRAMOLECULAR CHAIN COLLAPSE AND BENZOCYCLOBUTENE CHEMISTRY A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy Ajay Ramesh Amrutkar September 2016 i SYNTHESIS OF POLYMER NANOPARTICLES USING INTRAMOLECULAR CHAIN COLLAPSE AND BENZOCYCLOBUTENE CHEMISTRY Ajay Ramesh Amrutkar Dissertation Approved: Accepted: Advisor Department Chair Dr. Coleen Pugh Dr. Coleen Pugh Committee Chair Dean of the College Dr. Li Jia Dr. Eric Amis Committee Member Dean of the Graduate School Dr. Stephen Cheng Committee Member Date Dr. Mesfin Tsige Committee Member Dr. Alamgir Karim ii ABSTRACT Single chain polymer nanoparticle (SCPN) synthesis from different polymer precursors using benzocyclobutene (BCB) chemistry and intramolecular crosslinking was investigated in this study. Synthesis of highly fluorinated SCPNs from highly fluorinated uni-block copolymer precursor utilizing ‘pseudo-high dilution continuous addition technique’ was investigated. GPC confirmed selective intramolecular crosslinking and TEM images supported formation of sub-20 nm spherical polymer nanoparticles. Amphiphilic SCPNs prepared via step-wise crosslinking of an amphiphilic di-block copolymer chain were investigated for their morphology using 4 different characterization techniques: TEM, AFM, DLS and DOSY-NMR. TEM and AFM images showed presence of discreet SCPNs as loosely crosslinked coils that flatten out when deposited on the surface forming pancake like morphology with ≈ 20 nm sizes. All the techniques showed presence of bimodal size distribution of these nanoparticles in solution. A smaller sized distribution represented discreet SCPNs whereas larger sized (>40 nm) distribution represented physical aggregates of SCPNs. These aggregates were broken down upon significantly diluting the solution of nanoparticles (≤50 ng/mL). -
Engineering Branches
List of engineering branches Engineering is the discipline and profession that applies scientific theories, mathematical methods, and empirical evidence to design, create, and analyze technological solutions cognizant of safety, human factors, physical laws, regulations, practicality, and cost. In the contemporary era, engineering is generally considered to consist of the major primary branches of chemical engineering, civil engineering, electrical engineering, and mechanical engineering.[1] There are numerous other engineering subdisciplines and interdisciplinary subjects that may or may not be part of these major engineering branches. Contents Chemical engineering Civil engineering Electrical engineering Mechanical engineering Interdisciplinary See also References Chemical engineering Chemical engineering is the application of chemical, physical and biological sciences to the process of converting raw materials or chemicals into more useful or valuable forms. Subdiscipline Scope Major specialties Genetic engineering (of whole genes and their chromosomes) Biomolecular Immunology and Focuses on the manufacturing ofbiomolecules . engineering biomolecular/biochemical engineering Engineering of DNA and RNA (related to genetic engineering) Metallurgical engineering, works with metals Ceramic engineering works with raw oxide materials (e.g. alumina oxide) and advanced materials that are polymorphic, polycrystalline, oxide and Materials Involves properties of matter (material) and its applications to non-oxide ceramics engineering engineering.