1,1 ,1-Trichloroethane
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org). -
PENTOBARBITAL SODIUM- Pentobarbital Sodium Injection Akorn, Inc
PENTOBARBITAL SODIUM- pentobarbital sodium injection Akorn, Inc. ---------- Nembutal® Sodium Solution CII (pentobarbital sodium injection, USP) + novaplus TM Rx only Vials DO NOT USE IF MATERIAL HAS PRECIPITATED DESCRIPTION The barbiturates are nonselective central nervous system depressants which are primarily used as sedative hypnotics and also anticonvulsants in subhypnotic doses. The barbiturates and their sodium salts are subject to control under the Federal Controlled Substances Act (See “Drug Abuse and Dependence” section). The sodium salts of amobarbital, pentobarbital, phenobarbital, and secobarbital are available as sterile parenteral solutions. Barbiturates are substituted pyrimidine derivatives in which the basic structure common to these drugs is barbituric acid, a substance which has no central nervous system (CNS) activity. CNS activity is obtained by substituting alkyl, alkenyl, or aryl groups on the pyrimidine ring. NEMBUTAL Sodium Solution (pentobarbital sodium injection) is a sterile solution for intravenous or intramuscular injection. Each mL contains pentobarbital sodium 50 mg, in a vehicle of propylene glycol, 40%, alcohol, 10% and water for injection, to volume. The pH is adjusted to approximately 9.5 with hydrochloric acid and/or sodium hydroxide. NEMBUTAL Sodium is a short-acting barbiturate, chemically designated as sodium 5-ethyl-5-(1- methylbutyl) barbiturate. The structural formula for pentobarbital sodium is: The sodium salt occurs as a white, slightly bitter powder which is freely soluble in water and alcohol but practically insoluble in benzene and ether. CLINICAL PHARMACOLOGY Barbiturates are capable of producing all levels of CNS mood alteration from excitation to mild sedation, to hypnosis, and deep coma. Overdosage can produce death. In high enough therapeutic doses, barbiturates induce anesthesia. -
Management of Chronic Problems
MANAGEMENT OF CHRONIC PROBLEMS INTERACTIONS BETWEEN ALCOHOL AND DRUGS A. Leary,* T. MacDonald† SUMMARY concerned. Alcohol may alter the effects of the drug; drug In western society alcohol consumption is common as is may change the effects of alcohol; or both may occur. the use of therapeutic drugs. It is not surprising therefore The interaction between alcohol and drug may be that concomitant use of these should occur frequently. The pharmacokinetic, with altered absorption, metabolism or consequences of this combination vary with the dose of elimination of the drug, alcohol or both.2 Alcohol may drug, the amount of alcohol taken, the mode of affect drug pharmacokinetics by altering gastric emptying administration and the pharmacological effects of the drug or liver metabolism. Drugs may affect alcohol kinetics by concerned. Interactions may be pharmacokinetic or altering gastric emptying or inhibiting gastric alcohol pharmacodynamic, and while coincidental use of alcohol dehydrogenase (ADH).3 This may lead to altered tissue may affect the metabolism or action of a drug, a drug may concentrations of one or both agents, with resultant toxicity. equally affect the metabolism or action of alcohol. Alcohol- The results of concomitant use may also be principally drug interactions may differ with acute and chronic alcohol pharmacodynamic, with combined alcohol and drug effects ingestion, particularly where toxicity is due to a metabolite occurring at the receptor level without important changes rather than the parent drug. There is both inter- and intra- in plasma concentration of either. Some interactions have individual variation in the response to concomitant drug both kinetic and dynamic components and, where this is and alcohol use. -
Chemistry 234 Chapter 16 Problem Set Electrophilic Aromatic
Chemistry 234 Chapter 16 Problem Set Electrophilic Aromatic Substitution 1) Predict the product and draw the mechanism for electrophile generation for each of the following reactions. Cl (a) 2 FeCl3 HNO3 (b) H2SO4 SO (c) 3 H2SO4 2) Explain why reaction of benzene with Br2/FeBr3 results in the product bromobenzne instead of 5,6-dibromo-1,3-cyclohexadiene. 3) Predict the product and draw the active electrophile for each reaction shown below. Cl (a) AlCl3 Cl (b) AlCl3 Cl O (c) AlCl3 Page 1 of 13 Chem. 234 – Chapter 16 Problem Set 4) Explain why each of the following substrates do not undergo Freidel-Crafts reactions. NH2 NO2 N(CH3)3 NH 5) Arrange the following benzene substituents in order of reactivity in electrophilic aromatic substitution reactions. O Cl Ph Ph N Ph Ph H O N H S Ph N Ph Ph Ph O O 6) Predict the maJor products when the following benzene derivatives are treated to nitration conditions (HNO3/H2SO4). a. O Br b. NH2 Br c. NO2 Cl 7) Write the full electron pushing mechanism for the nitration of toluene. Page 2 of 13 Chem. 234 – Chapter 16 Problem Set 8) Predict the product(s) when each of the following benzene derivatives is treated to chloroethane and AlCl3. a. Br b. NH2 Cl c. OH Br d. OH Cl Cl e. NO2 Cl Cl f. Br Br g. SO3H Page 3 of 13 Chem. 234 – Chapter 16 Problem Set 9) Predict the product(s) when the following benzene derivatives are subjected to electrophilic chlorination conditions (Cl2, FeCl3). -
United States Patent Office Patented Feb
3,794,643 United States Patent Office Patented Feb. 26, 1974 1. 2 3,794,643 aZolinedione derivatives are produced by reacting the QUINAZOLINEDONE DERIVATIVES compounds having the following general formula: Takahiro Yabuuchi, Takarazuka, and Hajime Fujimura, Akira Nakagawa, and Ryuichi Kimura, Kyoto, Japan, assignors to Hisamitsu Pharmaceutical Co., Inc., Tosu, Saga Prefecture, Japan No Drawing. Filed Apr. 20, 1971, Ser. No. 135,693 int, C. C07, 51/48 U.S. C. 260-260 8 Claims ABSTRACT OF THE DISCLOSURE O The present invention relates to novel quinazolinedione R3 R2 derivatives possessing excellent anti-inflammatory action and analgesic action, and process for the production (wherein R2 and/or Rs have the same meaning as men thereof by reacting the compounds having the following 5 tioned above) with the general formula, RX or RSO, general formula, (wherein R represents the same substances as mentioned O above), R represents lower alkyl radical, and X repre C Sents halogen atom). Consequently, the reaction of the present invention can be understood as being alkylation. 20 The abovementioned compounds used as starting reac tion materials in the present invention can be obtained in good yield by reacting N-phenylanthranilic acid or N substituted phenylanthranilic acid with urea. The quinazolinedione derivatives used as the afore Rs R 25 said starting reaction materials include 1-phenyl-2,4- (1H,3H)-quinazolinedione or 1-substituted phenyl-2,4- (1H,3H)-quinazolinedione, for example, (wherein R and/or R3 represent hydrogen atom, CFs, 1-(3'-triuuoromethylphenyl-2,4(1H,3H)- -
Safety Data Sheet
SAFETY DATA SHEET 1. Identification Product identifier Jump Start® Starting Fluid Other means of identification Product Code No. 05671 (Item# 1003843) Recommended use Starting fluid Recommended restrictions None known. Manufacturer/Importer/Supplier/Distributor information Manufactured or sold by: Company name CRC Industries, Inc. Address 885 Louis Dr. Warminster, PA 18974 US Telephone General Information 215-674-4300 Technical Assistance 800-521-3168 Customer Service 800-272-4620 24-Hour Emergency 800-424-9300 (US) (CHEMTREC) 703-527-3887 (International) Website www.crcindustries.com 2. Hazard(s) identification Physical hazards Flammable aerosols Category 1 Gases under pressure Compressed gas Health hazards Skin corrosion/irritation Category 2 Carcinogenicity Category 2 Specific target organ toxicity, single exposure Category 3 narcotic effects Aspiration hazard Category 1 Environmental hazards Hazardous to the aquatic environment, acute Category 2 hazard Hazardous to the aquatic environment, Category 3 long-term hazard OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Extremely flammable aerosol. Contains gas under pressure; may explode if heated. May be fatal if swallowed and enters airways. Causes skin irritation. May cause drowsiness or dizziness. Suspected of causing cancer. Toxic to aquatic life. Harmful to aquatic life with long lasting effects. Material name: Jump Start® Starting Fluid SDS US No. 05671 (Item# 1003843) Version #: 01 Issue date: 08-29-2017 1 / 10 Precautionary statement Prevention Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Do not spray on an open flame or other ignition source. -
Deliberate Self-Poisoning with a Lethal Dose of Pentobarbital: Survival with Supportive Care
Deliberate self-poisoning with a lethal dose of pentobarbital: Survival with supportive care. (1) (1,2) Santosh Gone , Andis Graudins (1) Clinical Toxicology Service, Program of Emergency Medicine, Monash Health (2) Monash Emergency Research Collaboration, Clinical Sciences at Monash Health, Monash University Abstract 84 INTRODUCTION CASE REPORT (continued) DISCUSSION Pentobarbital (Nembutal) is short acting In the ED: Pentobarbital has been a banned substance for barbiturate sedative-hypnotic, currently widely GCS: 3/15, fixed dilated pupils, apnoeic and human use in Australia since 1998. However, it can used in veterinary practice for anesthesia and ventilated. be procured overseas or bought on the internet. euthanasia. Pulse: 116 bpm sinus tachycardia BP: 115/60 on epinephrine infusion. Pentobarbital is recommended as an effective It is also commonly recommended as a VBG: pH 7.03 pCO2 77 mmHg Bicarb 19 mmol/L agent for use in euthanasia due to its apparently euthanasia drug for assisted suicide and it is Lactate 8.8 mmol/L peaceful transition to death. unlikely that any resuscitative measures will be Activated charcoal (50g) given via an NG tube. attempted in such cases. Course in the Intensive Care Department: In a case series of 150 assisted suicides in Day-1 post-OD: Sweden, a 100% success rate was seen with Intentional overdose results in depression of - Absent brain stem reflexes and fixed dilated pupils for ingestion of 9 grams. Cardiovascular collapse was brain stem function and rapid onset respiratory five days. seen within 15 minutes in 30% of patients. It is rare depression and apnoea. Hypotension also - Diabetes insipidus developed with urine output of to see survival after intentional ingestion for develops, followed by cardiovascular collapse 300ml/hour. -
Pentobarbital Sodium
PENTobarbital Sodium Brand names Nembutal Sodium Medication error Look-alike, sound-alike drug names. Tall man letters (not FDA approved) are recommended potential to decrease confusion between PENTobarbital and PHENobarbital.(1,2) ISMP recommends the following tall man letters (not FDA approved): PENTobarbital.(30) Contraindications Contraindications: In patients with known hypersensitivity to barbiturates or any com- and warnings ponent of the formulation.(2) If an allergic or hypersensitivity reaction or a life-threatening adverse event occurs, rapid substitution of an alternative agent may be necessary. If pentobarbital is discontinued due to development of a rash, an anticonvulsant that is structurally dissimilar should be used (i.e., nonaromatic). (See Rare Adverse Effects in the Comments section.) Also contraindicated in patients with a history of manifest or latent porphyria.(2) Warnings: Rapid administration may cause respiratory depression, apnea, laryngospasm, or vasodilation with hypotension.(2) Should be withdrawn gradually if large doses have been used for prolonged periods.(2) Paradoxical excitement may occur or important symptoms could be masked when given to patients with acute or chronic pain.(2) May be habit forming. Infusion-related Respiratory depression and arrest requiring mechanical ventilation may occur. Monitor cautions oxygen saturation. If hypotension occurs, the infusion rate should be decreased and/or the patient should be treated with IV fluids and/or vasopressors. Pentobarbital is an alkaline solution (pH = 9–10.5); therefore, extravasation may cause tissue necrosis.(2) (See Appendix E for management.) Gangrene may occur following inadvertent intra-arterial injection.(2) Dosage Medically induced coma (for persistently elevated intracranial pressure (ICP) or refractory status epilepticus): Patient should be intubated and mechanically ventilated. -
Pharmacology – Inhalant Anesthetics
Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers. -
1,2-DICHLOROETHANE 1. Exposure Data
1,2-DICHLOROETHANE Data were last reviewed in IARC (1979) and the compound was classified in IARC Monographs Supplement 7 (1987a). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 107-06-2 Chem. Abstr. Name: 1,2-Dichloroethane IUPAC Systematic Name: 1,2-Dichloroethane Synonym: Ethylene dichloride 1.1.2 Structural and molecular formulae and relative molecular mass Cl CH2 CH2 Cl C2H4Cl2 Relative molecular mass: 98.96 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid with a pleasant odour (Budavari, 1996) (b) Boiling-point: 83.5°C (Lide, 1995) (c) Melting-point: –35.5°C (Lide, 1995) (d) Solubility: Slightly soluble in water; miscible with ethanol, chloroform and diethyl ether (Lide, 1995; Budavari, 1996) (e) Vapour pressure: 8 kPa at 20°C (Verschueren, 1996) (f) Flash-point: 18°C, open cup (Budavari, 1996) (g) Conversion factor: mg/m3 = 4.0 × ppm 1.2 Production and use World production capacities in 1988 for 1,2-dichloroethane have been reported as follows (thousand tonnes): North America, 9445; western Europe, 9830; Japan, 3068; and other, 8351 (Snedecor, 1993). Production in the United States has been reported as follows (thousand tonnes): 1983, 5200; 1990, 6300; 1991, 6200; 1992, 6900; 1993, 8100 (United States National Library of Medicine, 1997). The total annual production in Canada in 1990 was estimated to be 922 thousand tonnes; more than 1000 thousand tonnes were produced in the United Kingdom in 1991 (WHO, 1995). –501– 502 IARC MONOGRAPHS VOLUME 71 1,2-Dichloroethane is used primarily in the production of vinyl chloride; 99% of total demand in Canada, 90% in Japan and 88% of total production in the United States are used for this purpose. -
SAFETY DATA SHEET Ethyl Chloride
SAFETY DATA SHEET Ethyl Chloride Section 1. Identification GHS product identifier : Ethyl Chloride Chemical name : chloroethane Other means of : Ethane, chloro-; Ethyl chloride; Muriatic ether; Monochloroethane; Hydrochloric ether; identification ether hydrochloric; 1-CHLOROETHANE; Ethyl chloride (Chloroethane); ethane, chloro; Monochlorethane; R 160 Product type : Liquefied gas Product use : Synthetic/Analytical chemistry. Synonym : Ethane, chloro-; Ethyl chloride; Muriatic ether; Monochloroethane; Hydrochloric ether; ether hydrochloric; 1-CHLOROETHANE; Ethyl chloride (Chloroethane); ethane, chloro; Monochlorethane; R 160 SDS # : 001023 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Liquefied gas CARCINOGENICITY - Category 2 AQUATIC HAZARD (LONG-TERM) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. Contains gas under pressure; may explode if heated. Suspected of causing cancer. Harmful to aquatic life with long lasting effects. May cause frostbite. May displace oxygen and cause rapid suffocation. May form explosive mixtures with air. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. -
Calcium Current Block by (-)-Pentobarbital, Phenobarbital
The Journal of Neuroscience, August 1993, 13(E): 321 l-3221 Calcium Current Block by (-)-Pentobarbital, Phenobarbital, and CHEB but not (+)-Pentobarbital in Acutely Isolated Hippocampal CA1 Neurons: Comparison with Effects on GABA-activated Cl- Current Jarlath M. H. ffrench-Mullen,’ Jeffery L. Barker,* and Michael A. Rogawski3 ‘Department of Pharmacology, Zeneca Pharmaceuticals Group, Zeneca Inc., Wilmington, Delaware 19897 and *Laboratory of Neurophysiology, and 3Neuronal Excitability Section, Epilepsy Research Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 Block of a voltage-activated Ca*+ channel current by pheno- Ca*+ current, whereas the sedative effects that occur at high- barbital (PHB), 5-(2-cyclohexylideneethyl)-5-ethyl barbituric er concentrations could reflect stronger Ca2+ current block- acid (CHEB), and the optical R(-)- and S(+)-enantiomers of ade. The powerful sedative-hypnotic action of (-)-PB may pentobarbital (PB) was examined in freshly dissociated adult reflect greater maximal enhancement of GABA responses guinea pig hippocampal CA1 neurons; the effects of the in conjunction with strong inhibition of Ca2+ current. The barbiturates on GABA-activated Cl- current were also char- convulsant action of CHEB is unlikely to be related to its acterized in the same preparation. (-)-PB, PHB, and CHEB effects on the Ca*+ current. produced a reversible, concentration-dependent block of the [Key words: calcium channel, GABA receptor, (-)-pen- peak Ca*+ channel current (3 mM Ba2+ as the charge carrier) tobarbital, (+)-pentobarbital, phenobarbital, CHEB [S-(2-cy- evoked by depolarization from -80 to - 10 mV (I&,, values, clohexylideneethyl)-S-ethyl barbituric acid], CA 1 hippocam- 3.5, 72, and 118 PM, respectively).