Numerical Advances in Pricing Forward Volatility Sensitive Equity Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Advances in Pricing Forward Volatility Sensitive Equity Derivatives Numerical advances in pricing forward volatility sensitive equity derivatives Fiodar Kilin Centre for Practical Quantitative Finance Frankfurt School of Finance & Management A thesis submitted for the degree of Doktor rerum politicarum Supervisor: Prof. Dr. Uwe Wystup Submission date: July 7, 2009 Acknowledgements I am deeply grateful to my supervisor, Professor Uwe Wystup for many helpful suggestions, important advice and constant encouragement during this work. I also wish to thank Professor Rolf Poulsen, Professor Wolfgang Schmidt, Professor Robert Tompkins, Professor Eckhard Platen, Dr. Bernd Engel- mann, Dr. Peter Schwendner, Dr. Michael Dirkmann, Dr. Matthias Fen- gler, Dr. Friedrich Hubalek, Dr. Antonis Papapantoleon, Morten Nalholm and Martin Keller-Ressel for useful comments and discussions. I wish to express my gratitude to the sta® of the Frankfurt School of Finance & Management that have provided an excellent research environment. The ¯nancial support of Quanteam AG is gratefully acknowledged. Contents List of Figures v List of Tables vii 1 Introduction 1 2 Models 3 2.1 Heston model ................................. 3 2.2 Bates model .................................. 4 2.3 Barndor®-Nielsen&Shephard model with the Gamma-Ornstein-Uhlenbeck latent state .................................. 5 2.4 Levy models with stochastic time ...................... 6 2.5 Bergomi model ................................ 7 3 Pricing exotic options in stochastic volatility models 11 3.1 Model choice ................................. 11 3.2 Calibration and pricing of vanilla options ................. 13 3.3 Monte-Carlo pricing of exotic options .................... 17 3.4 Analytical pricing of exotic options ..................... 18 4 Accelerating the calibration of stochastic volatility models 21 4.1 Characteristic functions ........................... 22 4.2 Pricing methods ............................... 24 4.3 Caching technique .............................. 28 4.4 Numerical experiment ............................ 30 iii CONTENTS 5 Forward-start options in the Barndor®-Nielsen&Shephard model 35 5.1 Derivation ................................... 36 5.2 Numerical examples ............................. 39 6 On the cost of poor volatility modeling { The case of cliquets 51 6.1 Forward volatility and forward skew .................... 51 6.2 Cliquet options ................................ 53 6.3 Price comparison ............................... 56 6.4 Hedge performance .............................. 58 7 Conclusion 65 Bibliography 67 iv List of Figures 5.1 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to comovement .......................... 40 5.2 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to mean-reversion rate ...................... 40 5.3 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to exponential law parameter .................. 41 5.4 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to Poisson intensity ....................... 41 5.5 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to initial latent state ....................... 42 5.6 Price and theta of a forward-start call in the Barndor®-Nielsen&Shephard model ..................................... 42 6.1 Histogram of relative cumulative hedging errors of a call spread cliquet. Hedging with recalibration using delta and short-term vega ....... 62 6.2 Histogram of relative cumulative hedging errors of a call spread cliquet. Hedging with constant parameters using delta and short-term vega ... 63 6.3 Histogram of relative cumulative hedging errors of a call spread cliquet. Hedging with constant parameters using delta and parallel shift vega .. 64 v LIST OF FIGURES vi List of Tables 3.1 Models examined and recommended in some of the existing literature on model risk. .................................. 14 4.1 Comparison of three methods for pricing vanilla options in stochastic volatility models. Grid sizes that are needed to obtain some benchmark accuracy levels ................................ 32 4.2 Comparison of three methods for pricing vanilla options in stochastic volatility models. Average calibration time ................ 33 5.1 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to comovement .......................... 44 5.2 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to mean-reversion rate ...................... 45 5.3 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to exponential law parameter .................. 46 5.4 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to Poisson intensity ....................... 47 5.5 Price of a forward-start call in the Barndor®-Nielsen&Shephard model, sensitivity to initial latent state ....................... 48 5.6 Price and theta of a forward-start call in the Barndor®-Nielsen&Shephard model ..................................... 49 6.1 Input parameters for pricing and hedging tests .............. 56 6.2 Input parameters for pricing and hedging tests .............. 56 6.3 Calibrated Heston parameters. ....................... 57 6.4 Calibrated Barndor®-Nielsen&Shephard parameters. ........... 57 vii LIST OF TABLES 6.5 Calibrated VGSA parameters. ........................ 57 6.6 Comparison of theoretical cliquet values. Scenario 1. ........... 58 6.7 Comparison of theoretical cliquet values. Scenario 2. ........... 58 6.8 Comparison of theoretical cliquet values. Scenario 3. ........... 59 6.9 Comparison of theoretical cliquet values. Scenario 4. ........... 59 6.10 Comparison of theoretical cliquet values. Scenario 5. ........... 59 viii GLOSSARY Glossary This glossary contains abbreviations for the models used in this thesis, the full name and a reference to a page, where they are ¯rst de¯ned. Bates 4 Bergomi 7 BNS (Barndor®-Nielsen&Shephard) 36 BNS-GOU (Barndor®-Nielsen&Shephard model with the Gamma-Ornstein-Uhlenbeck latent state) 5 CEV (Constant elasticity of variance) 8 Heston 3 NIG-CIR (Normal Inverse Gaussian with the Cox-Ingersoll-Ross stochastic clock) 6 NIG-GOU (Normal Inverse Gaussian with the Gamma-Ornstein-Uhlenbeck stochastic clock) 6 VG-CIR (Variance Gamma with the Cox-Ingersoll-Ross stochastic clock 6 VG-GOU (Variance Gamma with the Gamma-Ornstein-Uhlenbeck stochastic clock) 6 VGSA (Variance Gamma with stochastic arrival) 6 ix GLOSSARY x 1 Introduction The main purpose of this thesis is to describe new numerical and analytical methods for pricing equity derivatives in stochastic volatility models. We introduce an inno- vative method of high-speed calibration for this class of models. We also develop an e±cient method of pricing forward-start options. Using this method we derive a ready- to-implement formula for this type of contracts. The described results are supported by numerical examples and description of thorough tests. Before describing the main results, we provide a literature overview that motivates introducing the new calibration and pricing techniques. We analyse applications of the introduced methods in a±ne stochastic volatility models (e.g., the models of Heston, Bates, Barndor®-Nielsen&Shephard) and the Levy models with stochastic time change. Furthermore, we illustrate the use of these methods for model risk analysis and evaluating hedging performance of stochastic volatility models. Among the contracts which we consider are forward start options, variance swaps, vola- tility swaps, options on realized variance, reverse cliquets, accumulators and Napoleons. The obtained results are important in both practical and academic applications. Attrac- tive bene¯ts from using the described innovative methods in the quantitative analysis departments of investment banks are speed and accuracy of calculations, stability of calibrated model parameters in time direction, stability and reliability of greeks. From the point of view of academic research the introduced techniques signi¯cantly acceler- ate experiments that require numerous recalculations of prices in di®erent models and under di®erent market conditions. 1 1. INTRODUCTION The advantages of stochastic volatility models1 over local volatility models are the pos- sibility to produce a realistic forward smile, the leverage e®ect, the volatility clustering, the possibility to ¯t the whole market implied volatility surface with ¯ve or six param- eters only, the possibility of hedging second order greeks with respect to volatility (i.e. volga and vanna). A natural question is often posed: Why are stochastic volatility models not used ex- tensively in equity derivatives modeling, although they possess a lot of theoretical ad- vantages? We point out following reasons for this situation: (1) In calm markets (e.g. 2004-2007), the local volatility model performs quite well and it is easier to handle. This statement is corroborated by tests described in Engelmann et al.(2006b). Mercurio & Morini(2009) also show that that the dynamic and hedging behaviors of local volatility and stochastic volatility models are not qualitatively as di®erent as it is assumed in current market wisdom. (2) Application of stochastic volatility models often leads to calibration bias in cases of steep implied volatility skew. This bias negatively a®ects the quality of the valuation of down-and-out puts and makes static hedge strategies for reverse-knock-out options even more complicated.
Recommended publications
  • Lévy Finance *[0.5Cm] Models and Results
    Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Calculus for L´evy Processes L´evy-Process Driven Financial Market Models Jump-Diffusion Models Merton-Model Kou-Model General L´evy Models Variance-Gamma model CGMY model GH models Variance-mean mixtures European Style Options Equivalent Martingale Measure Jump-Diffusion Models Variance-Gamma Model NIG Model Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Integral for L´evyProcesses Let (Xt ) be a L´evy process with L´evy-Khintchine triplet (α, σ, ν(dx)). By the L´evy-It´odecomposition we know X = X (1) + X (2) + X (3), where the X (i) are independent L´evyprocesses. X (1) is a Brownian motion with drift, X (2) is a compound Poisson process with jump (3) distributed concentrated on R/(−1, 1) and X is a square-integrable martingale (which can be viewed as a limit of compensated compound Poisson processes with small jumps). We know how to define the stochastic integral with respect to any of these processes! Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Canonical Decomposition From the L´evy-It´odecomposition we deduce the canonical decomposition (useful for applying the general semi-martingale theory) Z t Z X (t) = αt + σW (t) + x µX − νX (ds, dx), 0 R where Z t Z X xµX (ds, dx) = ∆X (s) 0 R 0<s≤t and Z t Z Z t Z Z X X E xµ (ds, dx) = xν (ds, dx) = t xν(dx).
    [Show full text]
  • Pricing, Risk and Volatility in Subordinated Market Models
    risks Article Pricing, Risk and Volatility in Subordinated Market Models Jean-Philippe Aguilar 1,* , Justin Lars Kirkby 2 and Jan Korbel 3,4,5,6 1 Covéa Finance, Quantitative Research Team, 8-12 rue Boissy d’Anglas, FR75008 Paris, France 2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA; [email protected] 3 Section for the Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; [email protected] 4 Complexity Science Hub Vienna, Josefstädterstrasse 39, 1080 Vienna, Austria 5 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech Republic 6 The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodárenskou Vˇeží4, 182 00 Prague 8, Czech Republic * Correspondence: jean-philippe.aguilar@covea-finance.fr Received: 26 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: We consider several market models, where time is subordinated to a stochastic process. These models are based on various time changes in the Lévy processes driving asset returns, or on fractional extensions of the diffusion equation; they were introduced to capture complex phenomena such as volatility clustering or long memory. After recalling recent results on option pricing in subordinated market models, we establish several analytical formulas for market sensitivities and portfolio performance in this class of models, and discuss some useful approximations when options are not far from the money. We also provide some tools for volatility modelling and delta hedging, as well as comparisons with numerical Fourier techniques.
    [Show full text]
  • The Forward Smile in Stochastic Local Volatility Models
    The forward smile in stochastic local volatility models Andrea Mazzon∗ Andrea Pascucciy Abstract We introduce an approximation of forward start options in a multi-factor local-stochastic volatility model. We derive explicit expansion formulas for the so-called forward implied volatility which can be useful to price complex path-dependent options, as cliquets. The expansion involves only polynomials and can be computed without the need for numerical procedures or special functions. Recent results on the exploding behaviour of the forward smile in the Heston model are confirmed and generalized to a wider class of local-stochastic volatility models. We illustrate the effectiveness of the technique through some numerical tests. Keywords: forward implied volatility, cliquet option, local volatility, stochastic volatility, analytical ap- proximation Key messages • approximation for the forward implied volatility • local stochastic volatility models • explosion of the out-of-the-money forward smile 1 Introduction In an arbitrage-free market, we consider the risk-neutral dynamics described by the d-dimensional Markov diffusion dXt = µ(t; Xt)dt + σ(t; Xt)dWt; (1.1) where W is a m-dimensional Brownian motion. The first component X1 represents the log-price of an asset, while the other components of X represent a number of things, e.g., stochastic volatilities, economic indicators or functions of these quantities. We are interested in the forward start payoff + X1 −X1 k e t+τ t − e (1.2) ∗Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L'Aquila, Italy ([email protected]) yDipartimento di Matematica, Universit`a di Bologna, Piazza di Porta S.
    [Show full text]
  • New Frontiers in Practical Risk Management
    New Frontiers in Practical Risk Management English edition Issue n.6-S pring 2015 Iason ltd. and Energisk.org are the editors of Argo newsletter. Iason is the publisher. No one is al- lowed to reproduce or transmit any part of this document in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Iason ltd. Neither editor is responsible for any consequence directly or indirectly stem- ming from the use of any kind of adoption of the methods, models, and ideas appearing in the con- tributions contained in Argo newsletter, nor they assume any responsibility related to the appropri- ateness and/or truth of numbers, figures, and statements expressed by authors of those contributions. New Frontiers in Practical Risk Management Year 2 - Issue Number 6 - Spring 2015 Published in June 2015 First published in October 2013 Last published issues are available online: www.iasonltd.com www.energisk.org Spring 2015 NEW FRONTIERS IN PRACTICAL RISK MANAGEMENT Editors: Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Andrea RONCORONI (ESSEC Business School, Paris) Executive Editor: Luca OLIVO (Iason ltd) Scientific Editorial Board: Fred Espen BENTH (University of Oslo) Alvaro CARTEA (University College London) Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Mark CUMMINS (Dublin City University Business School) Gianluca FUSAI (Cass Business School, London) Sebastian JAIMUNGAL (University of Toronto) Fabio MERCURIO (Bloomberg LP) Andrea RONCORONI (ESSEC Business School, Paris) Rafal WERON (Wroclaw University of Technology) Iason ltd Registered Address: 6 O’Curry Street Limerick 4 Ireland Italian Address: Piazza 4 Novembre, 6 20124 Milano Italy Contact Information: [email protected] www.iasonltd.com Energisk.org Contact Information: [email protected] www.energisk.org Iason ltd and Energisk.org are registered trademark.
    [Show full text]
  • Arbitrage Free Approximations to Candidate Volatility Surface Quotations
    Journal of Risk and Financial Management Article Arbitrage Free Approximations to Candidate Volatility Surface Quotations Dilip B. Madan 1,* and Wim Schoutens 2,* 1 Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA 2 Department of Mathematics, KU Leuven, 3000 Leuven, Belgium * Correspondence: [email protected] (D.B.M.); [email protected] (W.S.) Received: 19 February 2019; Accepted: 10 April 2019; Published: 21 April 2019 Abstract: It is argued that the growth in the breadth of option strikes traded after the financial crisis of 2008 poses difficulties for the use of Fourier inversion methodologies in volatility surface calibration. Continuous time Markov chain approximations are proposed as an alternative. They are shown to be adequate, competitive, and stable though slow for the moment. Further research can be devoted to speed enhancements. The Markov chain approximation is general and not constrained to processes with independent increments. Calibrations are illustrated for data on 2695 options across 28 maturities for SPY as at 8 February 2018. Keywords: bilateral gamma; fast Fourier transform; sato process; matrix exponentials JEL Classification: G10; G12; G13 1. Introduction A variety of arbitrage free models for approximating quoted option prices have been available for some time. The quotations are typically in terms of (Black and Scholes 1973; Merton 1973) implied volatilities for the traded strikes and maturities. Consequently, the set of such quotations is now popularly referred to as the volatility surface. Some of the models are nonparametric with the Dupire(1994) local volatility model being a popular example. The local volatility model is specified in terms of a deterministic function s(K, T) that expresses the local volatility for the stock if the stock were to be at level K at time T.
    [Show full text]
  • Informs 2007 Proceedings
    informs14th ® Applied Probability Conference July 9–11, 2007 Program Monday July 9, 2007 Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7 Track 8 Track 9 Room CZ 4 CZ 5 CZ 10 CZ 11 CZ 12 CZ 13 CZ 14 CZ 15 CZ 16 9:00am - 9:15am Opening (Room: Blauwe Zaal) 9:15am - 10:15am Plenary - Peter Glynn (Room: Blauwe Zaal) MA Financial Random Fields Rare Event Asymptotic Scheduling Call Centers 1 MDP 1 Retrial Inventory 1 10:45am - 12:15pm Engineering 1 Simulation 1 Analysis 1 Queues Kou Kaj Dupuis Bassamboo / Borst / Koole Feinberg Artalejo Van Houtum Randhawa Wierman Keppo Scheffler Blanchet Lin Gupta Taylor Bispo Machihara Buyukkaramikli DeGuest Ruiz-Medina Glasserman Tezcan Ayesta Jongbloed Van der Laan Nobel Qiu Peng Kaj Juneja Gurvich Wierman Henderson Haijema Shin Timmer Weber Mahmoodi Dupuis Randhawa Winands Koole Feinberg Artalejo Van Houtum 12:45pm - 1.45pm Tutorial Philippe Robert MB Financial Percolation and Simulation 1 Stability of Stoch. Communication Many-server Games 1 Fluid Queues Search 2:00pm - 3:30pm Engineering 2 Related Topics Networks Systems 1 Models 1 Models Schoutens / Van den Berg Henderson Ramanan Choi Armony Economou Adan Klafter Valdivieso Werker Newman Chick Gamarnik Bae Tezcan Economou Dieker Benichou Koch Newman Haas Reiman Kim Jennings Amir Nazarathy Oshanin Scherer Meester Blanchet Williams Park Ward Dube Margolius Eliazar Valdivieso Kurtz Henderson Zachary Roubos Armony Economou Adan Metzler MC Exit Times Interacting Stoch. Prog. Stoch. Netw. & Flow-Level Markov Control Queueing Inventory 2 4:00pm - 5:30pm
    [Show full text]
  • Some Mathematical Aspects of Market Impact Modeling by Alexander Schied and Alla Slynko
    EMS Series of Congress Reports EMS Congress Reports publishes volumes originating from conferences or seminars focusing on any field of pure or applied mathematics. The individual volumes include an introduction into their subject and review of the contributions in this context. Articles are required to undergo a refereeing process and are accepted only if they contain a survey or significant results not published elsewhere in the literature. Previously published: Trends in Representation Theory of Algebras and Related Topics, Andrzej Skowro´nski (ed.) K-Theory and Noncommutative Geometry, Guillermo Cortiñas et al. (eds.) Classification of Algebraic Varieties, Carel Faber, Gerard van der Geer and Eduard Looijenga (eds.) Surveys in Stochastic Processes Jochen Blath Peter Imkeller Sylvie Rœlly Editors Editors: Jochen Blath Peter Imkeller Sylvie Rœlly Institut für Mathematik Institut für Mathematik Institut für Mathematik der Technische Universität Berlin Humboldt-Universität zu Berlin Universität Potsdam Straße des 17. Juni 136 Unter den Linden 6 Am Neuen Palais, 10 10623 Berlin 10099 Berlin 14469 Potsdam Germany Germany Germany [email protected] [email protected] [email protected] 2010 Mathematics Subject Classification: Primary: 60-06, Secondary 60Gxx, 60Jxx Key words: Stochastic processes, stochastic finance, stochastic analysis,statistical physics, stochastic differential equations ISBN 978-3-03719-072-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks.
    [Show full text]
  • Regulatory Circular RG16-044
    Regulatory Circular RG16-044 Date: February 29, 2016 To: Trading Permit Holders From: Regulatory Division RE: Product Description and Margin and Net Capital Requirements - Asian Style Settlement FLEX Broad-Based Index Options - Cliquet Style Settlement FLEX Broad-Based Index Options KEY POINTS On March 21, 2016, Chicago Board Options Exchange, Incorporated (“CBOE” or “Exchange”) plans to commence trading Asian style settlement and Cliquet style settlement FLEX Broad-Based Index Options (“Asian options” and “Cliquet options,” respectively).1 Asian and Cliquet options are permitted only for broad-based indexes on which options are eligible for trading on CBOE. Asian and Cliquet options may not be exercised prior to the expiration date and must have a $100 multiplier. Asian style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is based on an arithmetic average of the specified closing prices of an underlying broad-based index taken on 12 predetermined monthly observation dates. Cliquet style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is equal to the greater of $0 or the sum of capped monthly returns (i.e., percent changes in the closing value of the underlying broad-based index from one month to the next month) applied over 12 predetermined monthly observation dates. The monthly observation date is set by the parties to a transaction. It is the date each month on which the value of the underlying broad-based index is observed for the purpose of calculating the exercise settlement value.
    [Show full text]
  • Calibration Risk for Exotic Options
    Forschungsgemeinschaft through through Forschungsgemeinschaft SFB 649DiscussionPaper2006-001 * CASE - Center for Applied Statistics and Economics, Statisticsand Center forApplied - * CASE Calibration Riskfor This research was supported by the Deutsche the Deutsche by was supported This research Wolfgang K.Härdle** Humboldt-Universität zuBerlin,Germany SFB 649, Humboldt-Universität zu Berlin zu SFB 649,Humboldt-Universität Exotic Options Spandauer Straße 1,D-10178 Berlin Spandauer http://sfb649.wiwi.hu-berlin.de http://sfb649.wiwi.hu-berlin.de Kai Detlefsen* ISSN 1860-5664 the SFB 649 "Economic Risk". "Economic the SFB649 SFB 6 4 9 E C O N O M I C R I S K B E R L I N Calibration Risk for Exotic Options K. Detlefsen and W. K. H¨ardle CASE - Center for Applied Statistics and Economics Humboldt-Universit¨atzu Berlin Wirtschaftswissenschaftliche Fakult¨at Spandauer Strasse 1, 10178 Berlin, Germany Abstract Option pricing models are calibrated to market data of plain vanil- las by minimization of an error functional. From the economic view- point, there are several possibilities to measure the error between the market and the model. These different specifications of the error give rise to different sets of calibrated model parameters and the resulting prices of exotic options vary significantly. These price differences often exceed the usual profit margin of exotic options. We provide evidence for this calibration risk in a time series of DAX implied volatility surfaces from April 2003 to March 2004. We analyze in the Heston and in the Bates model factors influencing these price differences of exotic options and finally recommend an error func- tional.
    [Show full text]
  • Für Strukturierte Produkte 2016
    für Strukturierte Produkte 2016 NR. 07 JAHRBUCH www.payoff.ch EDITORIAL Impulsiver Jahrgang So volatil und bewegt wie das Jahr 2015 zu Ende ging, so schwungvoll startete das neue Jahr 2016. Insbesondere der nur von wenigen Marktbeobachtern prognostizierte Absturz des Ölpreises sorgt zunehmend für Unruhe. Nach dem angekündigten Ende der über zwei Jahrzehnte geltenden Iran-Sanktionen fällt der Preis für ein Barrel Brent-Öl zeitweise unter 28 Dollar. Je tiefer der Ölpreis, desto grösser die Sorgenfalten vieler Marktteilnehmer. Grotesk, eigentlich sollte sich die Wirtschaft über tiefere Kosten freuen, doch zu viele Unternehmen in der Rohstoffbranche hängen am seidenen Faden, finanziert noch zu Zeiten, als der Ölpreis bedenkenlos hoch lag und Basismetalle noch ein weites Stück teurer waren. Banken und Kreditgeber bekommen zunehmend kalte Füsse. Im Umkehrschluss schiesst die Volatilität, gemessen am VSMI, VDAX und VIX, deutlich nach oben. Optionen und Derivate als Grundstein für Strukturierte Produkte bieten plötzlich wieder sehr interessante Möglichkeiten. Egal ob long oder short, der Struki-Baukasten ist en vogue. Zwar ist es noch etwas zu früh für seriöse Jahresprognosen, doch steht fest, dass die Schweiz nach wie vor in der globalen Liga für strukturierte Finanzprodukte auf dem ersten Platz rangiert und eine erstklas- sige Markt-Infrastruktur hat. Die Emittenten, Broker und die Börsenbetreiber, allen voran die SIX Swiss Exchange, tragen hieran einen verdienten Anteil. Doch kommt der Erfolg nicht von alleine: Über 2'000 Menschen sind börsentäglich mit und für die Entwicklung, Marketing, Platzierung und Abwicklung von Strukturierten Produkten in der Schweiz im Einsatz. Wir haben auch für die Jahrgangsreihe 2016 diese einzigartige Community porträ- tiert, analysiert und Stimmungsberichte zu relevanten Trends, wie beispielsweise die Structuring-Plattformen, destilliert.
    [Show full text]
  • Model Risk in the Pricing of Exotic Options
    Model Risk in the Pricing of Exotic Options Jacinto Marabel Romo∗ José Luis Crespo Espert† [email protected] [email protected] Abstract The growth experimented in recent years in both the variety and volume of structured products implies that banks and other financial institutions have become increasingly exposed to model risk. In this article we focus on the model risk associated with the local volatility (LV) model and with the Vari- ance Gamma (VG) model. The results show that the LV model performs better than the VG model in terms of its ability to match the market prices of European options. Nevertheless, both models are subject to significant pricing errors when compared with the stochastic volatility framework. Keywords: Model risk, exotic options, local volatility, stochastic volatil- ity, Variance Gamma process, path dependence. JEL: G12, G13. ∗BBVA and University Institute for Economic and Social Analysis, University of Alcalá (UAH). Mailing address: Vía de los Poblados s/n, 28033, Madrid, Spain. The content of this paper represents the author’s personal opinion and does not reflect the views of BBVA. †University of Alcalá (UAH) and University Institute for Economic and Social Analysis. Mail- ing address: Plaza de la Victoria, 2, 28802, Alcalá de Henares, Madrid, Spain. 1 Introduction In recent years there has been a remarkable growth of structured products with embedded exotic options. In this sense, the European Commission1 stated that the use of derivatives has grown exponentially over the last decade, with over-the- counter transactions being the main contributor to this growth. At the end of December 2009, the size of the over-the-counter derivatives market by notional value equaled approximately $615 trillion, a 12% increase with respect to the end of 2008.
    [Show full text]
  • Multilevel Particle Filters for L\'Evy-Driven Stochastic Differential
    Multilevel Particle Filters for L´evy-driven stochastic differential equations BY AJAY JASRA 1, KODY J. H. LAW 2 & PRINCE PEPRAH OSEI 1 1 Department of Statistics & Applied Probability, National University of Singapore, Singapore, 117546, SG. E-Mail: [email protected], [email protected] 2 School of Mathematics, University of Manchester, UK, AND Computer Science and Mathematics Division, Oak Ridge National Laboratory Oak Ridge, TN, 37831, USA. E-Mail: [email protected] Abstract We develop algorithms for computing expectations with respect to the laws of models associated to stochastic differential equations (SDEs) driven by pure L´evyprocesses. We consider filtering such processes and well as pricing of path dependent options. We propose a multilevel particle filter (MLPF) to address the computational issues involved in solving these continuum problems. We show via numerical simulations and theoretical results that under suitable assumptions regarding the discretization of the underlying driving L´evyproccess, our proposed method achieves optimal convergence rates: the cost to obtain MSE O(2) scales like O(−2) for our method, as compared with the standard particle filter O(−3). Keywords: L´evy-driven SDE; L´evyprocesses; Particle Filters; Multilevel Particle Filters; Barrier options. 1 Introduction arXiv:1804.04444v2 [stat.CO] 11 Jul 2018 L´evyprocesses have become very useful recently in several scientific disciplines. A non-exhaustive list includes physics, in the study of turbulence and quantum field theory; economics, for con- tinuous time-series models; insurance mathematics, for computation of insurance and risk, and mathematical finance, for pricing path dependent options. Earlier application of L´evyprocesses in modeling financial instruments dates back in [23] where a variance gamma process is used to model market returns.
    [Show full text]