<<

for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Calculus for L´evy Processes L´evy-Process Driven Financial Market Models Jump-Diffusion Models Merton-Model Kou-Model General L´evy Models Variance-Gamma model CGMY model GH models Variance-mean mixtures European Style Options Equivalent Martingale Measure Jump-Diffusion Models Variance-Gamma Model NIG Model

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Integral for L´evyProcesses

Let (Xt ) be a L´evy process with L´evy-Khintchine triplet (α, σ, ν(dx)). By the L´evy-It´odecomposition we know

X = X (1) + X (2) + X (3),

where the X (i) are independent L´evyprocesses. X (1) is a with drift, X (2) is a with jump (3) distributed concentrated on R/(−1, 1) and X is a square-integrable martingale (which can be viewed as a limit of compensated compound Poisson processes with small jumps). We know how to define the stochastic integral with respect to any of these processes!

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Canonical Decomposition

From the L´evy-It´odecomposition we deduce the canonical decomposition (useful for applying the general semi-martingale theory) Z t Z   X (t) = αt + σW (t) + x µX − νX (ds, dx), 0 R where Z t Z X xµX (ds, dx) = ∆X (s) 0 R 0

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options

d˜ Assume ∼ ˜ and [ P |FT ] = Z(T ). Then there exists a P P E dP deterministic process β and a measurable non-negative deterministic process Y , satisfying

Z t Z |x(Y (s, x) − 1)| ν(dx)ds < ∞ 0 R and Z t (σβ(s))2ds < ∞. 0 β and Y can be expressed in terms of X and Z.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Girsanov Theorem

Conversely, if " # dP˜ Z(t) = E |Ft dP Z t 1 Z t = exp β(s)σdW (s) − β2(s)σ2ds 0 2 0 Z t Z   + (Y (s, x) − 1) µX − νX (ds, dx) 0 R Z t Z  − (Y (s, x) − 1 − log Y (s, x)) µX (ds, dx) 0 R

then it defines a probability measure P˜ ∼ P.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Girsanov Theorem

In both cases Z t W˜ (t) = W (t) − β(s)σds 0 X X is a P˜ Brownian motion,ν ˜ (ds, dx) = Y (s, x)ν (ds, dx) is the P˜ compensator of µX and X has the following canonical decomposition under P˜ Z t Z   X (t) =α ˜t + σW˜ (t) + x µX − ν˜X (ds, dx), 0 R where Z t Z t Z α˜t = αt + β(s)σds + x(Y (s, x) − 1)νX (ds, dx) 0 0 R

Professor Dr. R¨udigerKiesel L´evyFinance I if (β, Y ) are deterministic and dependent on time, then X becomes a process with independent (but not stationary) increments; often called an ;

I in the general case X is a semi-martingale.

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Girsanov theorem

X is not necessary a L´evyprocess under P˜ I if (β, Y ) are deterministic and independent of time, then X remains a L´evyprocess with triplet (˜α, σ, Y · ν);

Professor Dr. R¨udigerKiesel L´evyFinance I in the general case X is a semi-martingale.

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Girsanov theorem

X is not necessary a L´evyprocess under P˜ I if (β, Y ) are deterministic and independent of time, then X remains a L´evyprocess with triplet (˜α, σ, Y · ν);

I if (β, Y ) are deterministic and dependent on time, then X becomes a process with independent (but not stationary) increments; often called an additive process;

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Girsanov theorem

X is not necessary a L´evyprocess under P˜ I if (β, Y ) are deterministic and independent of time, then X remains a L´evyprocess with triplet (˜α, σ, Y · ν);

I if (β, Y ) are deterministic and dependent on time, then X becomes a process with independent (but not stationary) increments; often called an additive process;

I in the general case X is a semi-martingale.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options ItˆoFormula for L´evyProcesses

Let (Xt ) be a L´evy process with L´evy-Khintchine triplet (α, σ, ν) and f ∈ C 2. Then Z t 0 f (X (t)) = f (x0) + f (X (u−))dX (u) 0 σ2 Z t + f 00(X (u))du 2 0 X + f (X (s)) − f (X (s−)) − ∆X (s)f 0(X (s−)) . 0

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Exponential

The stochastic exponential of a L´evy process X is the solution Z of the SDE dZ(t) = Z(t−)dX (t), Z(0) = 1 which is

 σ2t  Y Z(t) = exp X (t) − (1 + ∆X (s)) e−∆X (s). 2 0

Professor Dr. R¨udigerKiesel L´evyFinance I The solution of the SDE is the stochastic exponential

 σ2t  Y S(t) = S(0) exp X (t) − (1 + ∆X (s)) e−∆X (s) = E (X ) . 2 t 0

I Problems:

I the asset price can take negative values unless jumps are restricted to be larger than −1

I the distribution of log returns is not known

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Dynamic Specification

I We assume the asset price process dynamics to be

dS(t) = S(t−)dX (t)

with X a suitable driving L´evyprocess with triplet (α, σ, ν).

Professor Dr. R¨udigerKiesel L´evyFinance I Problems:

I the asset price can take negative values unless jumps are restricted to be larger than −1

I the distribution of log returns is not known

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Dynamic Specification

I We assume the asset price process dynamics to be

dS(t) = S(t−)dX (t)

with X a suitable driving L´evyprocess with triplet (α, σ, ν).

I The solution of the SDE is the stochastic exponential

 σ2t  Y S(t) = S(0) exp X (t) − (1 + ∆X (s)) e−∆X (s) = E (X ) . 2 t 0

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Dynamic Specification

I We assume the asset price process dynamics to be

dS(t) = S(t−)dX (t)

with X a suitable driving L´evyprocess with triplet (α, σ, ν).

I The solution of the SDE is the stochastic exponential

 σ2t  Y S(t) = S(0) exp X (t) − (1 + ∆X (s)) e−∆X (s) = E (X ) . 2 t 0

I Problems:

I the asset price can take negative values unless jumps are restricted to be larger than −1

I the distribution of log returns is not known

Professor Dr. R¨udigerKiesel L´evyFinance I Also, the risk-free bank account (discount) factor is

B(t) = ert , r ≥ 0

I The SDE for S(t) is

 1  dS(t) = S(t−) dX (t) + σ2dt + e∆X (t) − 1 − ∆X (t) 2

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Exponential Specification

I In the following, we will assume that the stock price process is

S(t) = S(0) exp{X (t)}.

Professor Dr. R¨udigerKiesel L´evyFinance I The SDE for S(t) is

 1  dS(t) = S(t−) dX (t) + σ2dt + e∆X (t) − 1 − ∆X (t) 2

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Exponential Specification

I In the following, we will assume that the stock price process is

S(t) = S(0) exp{X (t)}.

I Also, the risk-free bank account (discount) factor is

B(t) = ert , r ≥ 0

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Exponential Specification

I In the following, we will assume that the stock price process is

S(t) = S(0) exp{X (t)}.

I Also, the risk-free bank account (discount) factor is

B(t) = ert , r ≥ 0

I The SDE for S(t) is

 1  dS(t) = S(t−) dX (t) + σ2dt + e∆X (t) − 1 − ∆X (t) 2

Professor Dr. R¨udigerKiesel L´evyFinance I Using the product formula and Itˆo’sformula dS˜(t) = −rS˜(t−)dt

 1  +S˜(t−) dX (t) + σ2dt + e∆X (t) − 1 − ∆X (t) 2

I Now use the canonical decomposition of X Z t Z   X (t) = αt + σW (t) + x µX − νX (ds, dx). 0 R

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Existence of EMM - calculations

I We want S˜(t) = S(0) exp{X (t) − rt} to be a martingale.

Professor Dr. R¨udigerKiesel L´evyFinance I Now use the canonical decomposition of X Z t Z   X (t) = αt + σW (t) + x µX − νX (ds, dx). 0 R

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Existence of EMM - calculations

I We want S˜(t) = S(0) exp{X (t) − rt} to be a martingale. I Using the product formula and Itˆo’sformula dS˜(t) = −rS˜(t−)dt

 1  +S˜(t−) dX (t) + σ2dt + e∆X (t) − 1 − ∆X (t) 2

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Existence of EMM - calculations

I We want S˜(t) = S(0) exp{X (t) − rt} to be a martingale. I Using the product formula and Itˆo’sformula dS˜(t) = −rS˜(t−)dt

 1  +S˜(t−) dX (t) + σ2dt + e∆X (t) − 1 − ∆X (t) 2

I Now use the canonical decomposition of X Z t Z   X (t) = αt + σW (t) + x µX − νX (ds, dx). 0 R

Professor Dr. R¨udigerKiesel L´evyFinance I Now we change the measure according to the Girsanov theorem and obtain Z t W (t) = W ∗(t) + σβ(u)du 0 ν∗(du, dx) = Y (u, x)νX (du, dx)

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Existence of EMM - calculations

I So we get the integral form Z t 1  Z t S˜(t) = S˜(0) + S˜(u−) σ2 − r + α du + S˜(u−)σdW (u) 0 2 0 Z t Z + S˜(u−)(ex − 1)µX (du, dx) 0 R Z t Z − S˜(u−)xνX (du, dx) 0 R

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Existence of EMM - calculations

I So we get the integral form Z t 1  Z t S˜(t) = S˜(0) + S˜(u−) σ2 − r + α du + S˜(u−)σdW (u) 0 2 0 Z t Z + S˜(u−)(ex − 1)µX (du, dx) 0 R Z t Z − S˜(u−)xνX (du, dx) 0 R I Now we change the measure according to the Girsanov theorem and obtain Z t W (t) = W ∗(t) + σβ(u)du 0 ν∗(du, dx) = Y (u, x)νX (du, dx) Professor Dr. R¨udigerKiesel L´evyFinance ˜ ∗ I We want S to be a P martingale, so the drift must vanish.

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Existence of EMM - calculations

I Now the dynamics are (we already use the L´evy measure ν)

1  dS˜(t) = S˜(t−) σ2 − r + α + σβ(t) dt 2 +S˜(t−)σdW ∗(t)

Z   + S˜(t−)(ex − 1) µX − ν∗ (dt, dx) R Z + S˜(t−) [(ex − 1)Y (t, x) − x] ν(dx)dt R

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Existence of EMM - calculations

I Now the dynamics are (we already use the L´evy measure ν)

1  dS˜(t) = S˜(t−) σ2 − r + α + σβ(t) dt 2 +S˜(t−)σdW ∗(t)

Z   + S˜(t−)(ex − 1) µX − ν∗ (dt, dx) R Z + S˜(t−) [(ex − 1)Y (t, x) − x] ν(dx)dt R ˜ ∗ I We want S to be a P martingale, so the drift must vanish.

Professor Dr. R¨udigerKiesel L´evyFinance I In terms of the triple after the measure change 1 Z σ2 − r +α ˜ + [(ex − 1 − x)Y (t, x)])ν(dx) = 0 2 R

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Drift Conditions

I In terms of the original triple 1 Z σ2 − r + α + σβ(t) + [(ex − 1)Y (t, x) − x] ν(dx) = 0 2 R

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Drift Conditions

I In terms of the original triple 1 Z σ2 − r + α + σβ(t) + [(ex − 1)Y (t, x) − x] ν(dx) = 0 2 R

I In terms of the triple after the measure change 1 Z σ2 − r +α ˜ + [(ex − 1 − x)Y (t, x)])ν(dx) = 0 2 R

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Generating Function

Consider the exponential L´evymodel

S(t) = S(0)eX (t), t ≥ 0.

Assume that the moment-generating function

h hX (t)i M(h, t) = E e

of X (t) exists; then

M(h, t) = [M(h, 1)]t.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Esscher Measure

The process n o ehX (t)M(h, 1)−t t≥0 is a positive martingale and can be used to define a change of probability measure Q, which is called the Esscher measure of parameter h. The risk-neutral Esscher measure is the Esscher measure of parameter h = h∗ such that the process  −rt e S(t) t≥0 is a martingale. The condition  −rt ∗ E e S(t); h = S(0) yields rt h X (t) ∗i e Professor= E Dr.e R¨udigerKiesel; h L´evyFinance

" ∗ # eX (t)+h X (t) M(1 + h∗, 1)t = = E M(h∗, 1)t M(h∗, 1) or M(1 + h∗, 1) er = . M(h∗, 1) This equation then uniquely determines the parameter h∗. Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Pricing

We apply the above technique to the valuation of a European call with maturity T and strike K on the underlying with price dynamics S(t). By the risk-neutral valuation principle, we have to calculate

h −rT + ∗i E e (S(T ) − K) ; h

h −rT ∗i = E e (S(T ) − K)1{S(T )>K}; h

 ∗  −rT  ∗ = S(0)E 1{S(T )>K}; h + 1 − Ke E 1{S(T )>K}; h .

Professor Dr. R¨udigerKiesel L´evyFinance I The tuple that characterizes the change of measure is (β, Y ) with Y (x) = eδx , which is deterministic and independent of time.

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Esscher Transform via Girsanov

∗ I Assume P ∼ P with  Z t Z Z(t) = exp βσW (t) + δx(µX − νX )(ds, dx) 0 R σ2β2 Z   − + (eδx − 1 − δx)ν(dx) t 2 R

where β ∈ R+ and δ ∈ R.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Esscher Transform via Girsanov

∗ I Assume P ∼ P with  Z t Z Z(t) = exp βσW (t) + δx(µX − νX )(ds, dx) 0 R σ2β2 Z   − + (eδx − 1 − δx)ν(dx) t 2 R

where β ∈ R+ and δ ∈ R. I The tuple that characterizes the change of measure is (β, Y ) with Y (x) = eδx , which is deterministic and independent of time.

Professor Dr. R¨udigerKiesel L´evyFinance I Then S(t)e− log ϕ(−i)t = e−rt S(t)ert−log ϕ(−i)t , where ϕ(u) is the characteristic function of X (t), is a martingale.

I Observe that − log ϕ(−1) = ψ(1) the characteristic exponent.

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Mean-correcting EMM

I Assume S(t) = S(0)eX (t) .

Professor Dr. R¨udigerKiesel L´evyFinance I Observe that − log ϕ(−1) = ψ(1) the characteristic exponent.

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Mean-correcting EMM

I Assume S(t) = S(0)eX (t) .

I Then S(t)e− log ϕ(−i)t = e−rt S(t)ert−log ϕ(−i)t , where ϕ(u) is the characteristic function of X (t), is a martingale.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Mean-correcting EMM

I Assume S(t) = S(0)eX (t) .

I Then S(t)e− log ϕ(−i)t = e−rt S(t)ert−log ϕ(−i)t , where ϕ(u) is the characteristic function of X (t), is a martingale.

I Observe that − log ϕ(−1) = ψ(1) the characteristic exponent.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Classical Construction

The classical formulation is dS(t) = S(t−)dX (t) with driving process N Xt Xt = µt + σ1Wt + i , i=1 where I µ, σ1 > 0 are a constant; I Wt is a standard Brownian motion; I Nt is a Poisson process with intensity λ; I (i ) is a family of independent random variables with distribution F , such that Vi = 1 + i are log-normally distributed and k = R xF (dx).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Classical Construction

So S(t) = E (Xt ) which is here

N(t)   σ2   Y S(t) = S(0) exp σ W (t) + µ − 1 t V 1 2 i i=1

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Classical Construction

If 1 +  is log-normally distributed with parameters

δ2 log(1 + ) = γ − , Var log(1 + ) = δ2,  = k = eγ − 1 E 2 E

under the historical measure P, one can find an equivalent ∗ martingale measure P such that the intensity of N is λ˜ > 0 and the (1 + i ) are log-normally distributed with parameters

δ2 ∗ ∗ log(1 + ) =γ ˜ − , Var log(1 + ) = δ2, ∗ = k˜ = eγ˜ − 1 E 2 E ∗ under P .

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Option Pricing

We find for the price of a European call

∞ X (λ0T )n C(S, 1, T , λ,˜ σ˜) = exp{−λ0T }C (S, 1, ˜r , T , σ˜ ), n! BS n n n=0

with CBS the Black-Scholes call price and parameters

nγ˜ 1  nδ2  λ0 = λ˜(1 + k˜), ˜r = − λ˜k˜, σ˜2 = σ2T + . n T n T 2

Professor Dr. R¨udigerKiesel L´evyFinance I The characteristic function of X is  2 2  σ u  iµ u−σ2 u2/2  φ (u) = exp iµu − + λ e Y Y − 1 , X 2

and the L´evy triplet is (µ, σ, λfY ).

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Merton in exponential L´evyframework

I The driving process is

N(t) X X (t) = µt + σW (t) + Yk k=1

2 where Yk ∼ N(µY , σY ) with normal density fY for k = 1, 2 ....

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Merton in exponential L´evyframework

I The driving process is

N(t) X X (t) = µt + σW (t) + Yk k=1

2 where Yk ∼ N(µY , σY ) with normal density fY for k = 1, 2 ....

I The characteristic function of X is  2 2  σ u  iµ u−σ2 u2/2  φ (u) = exp iµu − + λ e Y Y − 1 , X 2

and the L´evy triplet is (µ, σ, λfY ).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Kou’s Construction

The classical formulation is dS(t) = S(t−)dX (t) with driving process N Xt Xt = µt + σWt + (Vi − 1), i=1 where I µ, σ > 0 are a constant; I Wt is a standard Brownian motion; I Nt is a Poisson process with intensity λ; I (Vi ) is a family of i.i.d. random variables, such that Yi = log Vi have an asymmetric double exponential distribution DbExpo(p, η1, η2). Professor Dr. R¨udigerKiesel L´evyFinance I In distribution  +  ξ , with probability p log V = −  −ξ , with probability q

+ − where ξ , ξ are exponential rvs with mean 1/η1 resp. 1/η2

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Kou’s Construction

I The density of a double exponential distribution is

−η1y −η2y fY (x) = pη1e 1{y≥0} + qη2e 1{y<0}

where p, q ≥ 0; p + q = 1 represent the probabilities of upward and downward jumps.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Kou’s Construction

I The density of a double exponential distribution is

−η1y −η2y fY (x) = pη1e 1{y≥0} + qη2e 1{y<0}

where p, q ≥ 0; p + q = 1 represent the probabilities of upward and downward jumps.

I In distribution  +  ξ , with probability p log V = −  −ξ , with probability q

+ − where ξ , ξ are exponential rvs with mean 1/η1 resp. 1/η2

Professor Dr. R¨udigerKiesel L´evyFinance I N(t)   σ2   Y S(t) = S(0) exp σW (t) + µ − t V 2 i i=1 I p q  1 1 2  p q  E(Y ) = − ; Var(Y ) = pq + + 2 + 2 ; η1 η2 η1 η2 η1 η2 Y η2 η1 E(V ) = E(e ) = q + p η2 + 1 η1 − 1 where we need η1 > 1 to ensure existence of relevant moments (it implies that the average upward jump does not exceed 100 percent)

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Kou’s Construction

I So S(t) = E (Xt )

Professor Dr. R¨udigerKiesel L´evyFinance I p q  1 1 2  p q  E(Y ) = − ; Var(Y ) = pq + + 2 + 2 ; η1 η2 η1 η2 η1 η2 Y η2 η1 E(V ) = E(e ) = q + p η2 + 1 η1 − 1 where we need η1 > 1 to ensure existence of relevant moments (it implies that the average upward jump does not exceed 100 percent)

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Kou’s Construction

I So S(t) = E (Xt )

I N(t)   σ2   Y S(t) = S(0) exp σW (t) + µ − t V 2 i i=1

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Kou’s Construction

I So S(t) = E (Xt )

I N(t)   σ2   Y S(t) = S(0) exp σW (t) + µ − t V 2 i i=1 I p q  1 1 2  p q  E(Y ) = − ; Var(Y ) = pq + + 2 + 2 ; η1 η2 η1 η2 η1 η2 Y η2 η1 E(V ) = E(e ) = q + p η2 + 1 η1 − 1 where we need η1 > 1 to ensure existence of relevant moments (it implies that the average upward jump does not exceed 100 percent) Professor Dr. R¨udigerKiesel L´evyFinance I The characteristic function of X is  2 2   σ u pη1 qη2 φX (u) = exp iµu − + λ − − 1 , 2 η1 − iu η2 + iu

and the L´evy triplet is (µ, σ, λfY ).

Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Kou in exponential L´evyframework

I The driving process is

N(t) X X (t) = µt + σW (t) + Yk k=1

where Yk ∼ DbExpo(p, η1, η2) with DbExpo-density fY for k = 1, 2 ....

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Merton-Model Jump-Diffusion Models Kou-Model General L´evyModels European Style Options Kou in exponential L´evyframework

I The driving process is

N(t) X X (t) = µt + σW (t) + Yk k=1

where Yk ∼ DbExpo(p, η1, η2) with DbExpo-density fY for k = 1, 2 ....

I The characteristic function of X is  2 2   σ u pη1 qη2 φX (u) = exp iµu − + λ − − 1 , 2 η1 − iu η2 + iu

and the L´evy triplet is (µ, σ, λfY ).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Examples of L´evy-type models

I Variance-Gamma model (Madan and Seneta 1990, Carr, Chang, and Madan 1998)

I CGMY model (Carr, Geman, Madan, and Yor 2002)

I hyperbolic distributions (Eberlein and Keller 1995, Eberlein, Keller, and Prause 1998)

I normal inverse Gaussian distributions (Barndorff-Nielsen 1998)

I generalized hyperbolic distributions (Eberlein 2001)

Professor Dr. R¨udigerKiesel L´evyFinance I The L´evy-Khintchine triplet is  1  a(1 − e−b)/b, 0, ae−bx 1 dx x {x>0}

I A is an increasing pure- and has infinitely many jumps in each interval

Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Gamma Process

G I A Gamma process X with parameters a, b > 0 has X G (t + s) − X G (t) ∼ Γ(as, b), i.e. has density

e−x/b f (x; as, b) = xas−1 bas−1Γ(as)

Professor Dr. R¨udigerKiesel L´evyFinance I A Gamma process is an increasing pure-jump process and has infinitely many jumps in each interval

Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Gamma Process

G I A Gamma process X with parameters a, b > 0 has X G (t + s) − X G (t) ∼ Γ(as, b), i.e. has density

e−x/b f (x; as, b) = xas−1 bas−1Γ(as)

I The L´evy-Khintchine triplet is  1  a(1 − e−b)/b, 0, ae−bx 1 dx x {x>0}

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Gamma Process

G I A Gamma process X with parameters a, b > 0 has X G (t + s) − X G (t) ∼ Γ(as, b), i.e. has density

e−x/b f (x; as, b) = xas−1 bas−1Γ(as)

I The L´evy-Khintchine triplet is  1  a(1 − e−b)/b, 0, ae−bx 1 dx x {x>0}

I A Gamma process is an increasing pure-jump process and has infinitely many jumps in each interval

Professor Dr. R¨udigerKiesel L´evyFinance Advanced Financial Mathematics and Structured Derivatives

Extended Black-Scholes Model Stochastic Calculus for L´evyProcesses Variance-Gamma model Lévy ProcessL´evy-Process Driven FinancialDriven Market ModelsModels CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures • Examples: LévyEuropean processes Style Options Gamma Process – Gamma process: Density of a Gamma(10,20)-distributed random variable: Density of a Gamma(10,20)-distributed random variable

www.executiveacademy.at  Prof. Dr. Rudi Zagst, Dr. Matthias Scherer, Stephan Höcht 139 Professor Dr. R¨udigerKiesel L´evyFinance Advanced Financial Mathematics and Structured Derivati ves

Extended Black-Scholes ModelStochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Lévy Process Driven Models Variance-mean mixtures • Examples: Lévy processes European Style Options – Gamma process:Gamma Process • Sample pathSample of a Gamma path of process a Gamma(10,20)-process with parameters a=1 0 and b=20.

www.executiveacademy.at  Prof. Dr. Rudi Zagst, Dr. Matthias Scherer, Stephan Höcht 141

Professor Dr. R¨udigerKiesel L´evyFinance VG G G I Also, X (t) = X (t; C, M) − X (t; C, G) with parameters C = 1/ν > 0

!−1 r1 1 1 G = θ2ν2 + σ2ν − θν > 0 4 2 2 !−1 r1 1 1 M = θ2ν2 + σ2ν + θν > 0 4 2 2

Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options

VG I A Variance Gamma process X can be defined as a time-changed Brownian motion with drift X (t)VG = θX G (t) + σW (X G (t)).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Process

VG I A Variance Gamma process X can be defined as a time-changed Brownian motion with drift X (t)VG = θX G (t) + σW (X G (t)).

VG G G I Also, X (t) = X (t; C, M) − X (t; C, G) with parameters C = 1/ν > 0

!−1 r1 1 1 G = θ2ν2 + σ2ν − θν > 0 4 2 2 !−1 r1 1 1 M = θ2ν2 + σ2ν + θν > 0 4 2 2

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Process

I The characteristic function of a Variance Gamma process X VG with parameters σ, ν, θ is  1 −u/ν φ (u) = 1 − iuθ + σ2νu2 . VG 2

I The L´evy-Khintchine triplet is (γ, 0, νVG (dx)) with −C G e−M − 1 − M e−G − 1 γ = MG The L´evymeasure of the VG-distribution is ( CeGx |x|−1 , x < 0 νVG (dx) = Ce−Mx x−1, x < 0

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Process

I The characteristic function of a Variance Gamma process X VG with parameters σ, ν, θ is  1 −u/ν φ (u) = 1 − iuθ + σ2νu2 . VG 2

I The L´evy-Khintchine triplet is (γ, 0, νVG (dx)) with −C G e−M − 1 − M e−G − 1 γ = MG The L´evymeasure of the VG-distribution is ( CeGx |x|−1 , x < 0 νVG (dx) = Ce−Mx x−1, x < 0

Professor Dr. R¨udigerKiesel L´evyFinance I A VG process is a pure jump process I The parameter can be interpreted as follows

I θ is a parameter, I σ is the variance parameter, I ν is the parameter.

Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Process

I A VG process has infinitely many jumps but is of finite variation

Professor Dr. R¨udigerKiesel L´evyFinance I The parameter can be interpreted as follows

I θ is a skewness parameter, I σ is the variance parameter, I ν is the kurtosis parameter.

Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Process

I A VG process has infinitely many jumps but is of finite variation

I A VG process is a pure jump process

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Process

I A VG process has infinitely many jumps but is of finite variation

I A VG process is a pure jump process I The parameter can be interpreted as follows

I θ is a skewness parameter, I σ is the variance parameter, I ν is the kurtosis parameter.

Professor Dr. R¨udigerKiesel L´evyFinance Advanced Financial Mathematics and Structured Derivati ves

Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models Extended Black-Scholes Model CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures Lévy Process Driven Models European Style Options • Examples: LévyVariance processes Gamma Process

– Variance gamma Sampleprocess path (continued): of a VG process with parameters • Sample pathC of= a 20 VG, G process= 40, M =with 50 parameters C=20, G=40, and M=50.

www.executiveacademy.at  Prof. Dr. RudiProfessor Zagst, Dr. Dr. R¨udigerKieselMatthias Scherer, StephanL´evyFinance Höcht 150 Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Fit – Deutsche Bank

Professor Dr. R¨udigerKiesel L´evyFinance Figure: Fitted VG, GH, Normal and Empirical Densities for Deutsche Bank Returns Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Fit – SAP

Professor Dr. R¨udigerKiesel L´evyFinance Figure: Fitted VG, GH, Normal and Empirical Densities for SAP Returns Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Fit – QQ-Plot

Professor Dr. R¨udigerKiesel L´evyFinance Figure: QQ Plot for the fitted VG, GH and Normal Distribution for Deutsche Bank Returns Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance Gamma Fit – QQ-Plot

Professor Dr. R¨udigerKiesel L´evyFinance Figure: QQ Plot for the fitted VG, GH and Normal Distribution for SAP Returns Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options CGMY Distribution

This is the class of infinitely divisible distributions containing the Variance-Gamma distributions as subclass. The CGMY class is defined by its L´evy-Khintchine triplet (α, σ2, ν(dx)) with respect to a truncation function h(x)

Z ! C −|x| α = h(x)kCGMY (x) − x1{|x|≤1} e dx, |x|1+Y

σ = 0, ν(dx) = kCGMY (x)dx, with the four-parameter L´evy density  exp{−G |x|}  C for x < 0  1+Y k (x) = |x| CGMY exp{−M |x|}  C for x > 0.  1+Y Professor Dr. R¨udigerKiesel |x|L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Generalized Hyperbolic Distributions

For these distributions the densities are given by:

dGH (x; λ, α, β, δ, µ) = a(λ, α, β, δ, µ) (1) 2 2 (λ− 1 )/2 ×(δ + (x − µ) ) 2 q 2 2 ×K 1 (α δ + (x − µ) ) λ− 2 × exp{β(x − µ)} where (α2 − β2)λ/2 a(λ, α, β, δ, µ) = √ λ− 1 λ p 2 2 2πα 2 δ Kλ(δ α − β )

and Kν denotes the modified Bessel function of the third kind Z ∞   1 ν−1 1 −1 Kν(z) = y exp − z(y + y ) dy 2 0 2 Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Generalized Hyperbolic Distributions

Interpretation of parameters:

I α > 0 determines the shape;

I 0 < |β| < α is a skewness parameter; I µ ∈ R determines the location; I δ is a scaling parameter comparable to σ; I λ ∈ R characterises subclasses. Scale and location-invariant (no change under affine transformations) parameterizations are

p β ζ = δ α2 − β2, ρ = , α

− 1 ξ = (1 + ζ) 2 , χ = ξρ.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Generalized Hyperbolic Distributions

Since 0 ≤ |χ| < ξ < 1 the distribution parameterised by χ and ξ can be represented by points of a triangle, the so-called shape triangle. 1 ξ 6L EE @ @ @ @ @ @ @ @ @ @ @@ - N -1 0 1 χ Professor Dr. R¨udigerKiesel L´evyFinance Figure: Shape Triangle Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Tail behaviour of GH-distribution

Professor Dr. R¨udigerKiesel L´evyFinance Figure: Tails of a GH and a Normal Distribution having the same Mean and Variance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Tail behaviour of GH-distribution

Professor Dr. R¨udigerKiesel L´evyFinance Figure: Tails of a GH and a Normal Distribution having the same Mean and Variance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Hyperbolic Distributions

This is the case λ = 1. Since

1 −z K 1 (z) = (π/2z) 2 e 2 the density is now

pα2 − β2 dH (x) = × p 2 2 2αδK1(δ α − β )

 q  exp −α δ2 + (x − µ)2 + β(x − µ) .

Taking the logarithm of dH we get a hyperbola from the term pδ2 + (x − µ)2 (instead of the parabola which results from the normal distribution).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Normal Inverse Gaussian Distribution

This is the case λ = −1/2. The density is α n p o d (x) = exp δ α2 − β2 + β(x − µ) NIG π

 q  x−µ 2 K1 αδ 1 + δ × q . x−µ 2 1 + δ The NIG distribution class is closed under convolution

NIG(α, β, δ1, µ1) ? NIG(α, β, δ2, µ2)

= NIG(α, β, δ1 + δ2, µ1 + µ2).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options NIG L´evyMotions

Professor Dr. R¨udigerKiesel L´evyFinance Figure: Realisations of NIG L´evy Motions Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options NIG L´evyMotions

Professor Dr. R¨udigerKiesel L´evyFinance Figure: Realisations of NIG L´evy Motions Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options NIG Fit

Professor Dr. R¨udigerKiesel L´evyFinance Figure: Fitted GH, HYP, NIG, Normal and Empirical Densities for Deutsche Bank Returns Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options NIG Fit

Professor Dr. R¨udigerKiesel L´evyFinance Figure: Fitted GH, HYP, NIG, Normal and Empirical Densities for SAP Returns Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options QQ-Plot

Professor Dr. R¨udigerKiesel L´evyFinance Figure: QQ Plot for the fitted GH, HYP, NIG and Normal Distribution for Deutsche Bank Returns Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options QQ-Plot

Professor Dr. R¨udigerKiesel L´evyFinance Figure: QQ Plot for the fitted GH, HYP, NIG and Normal Distribution for SAP Returns Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options GH-distributions in Power Markets

I NIG (λ = −1/2, successful in power markets)

I Hyperbolic (λ = 1, successful in power, gas and oil markets)

I t-distribution (λ = −1/2ν, χ = ν, ψ = 0, γ = 0, ν > 0)

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options

Densities for August 06 Power Future

Empirical Density Normal Density NIG Density 010203040

-0.0832 -0.0310 0.0 0.0211 0.0702 Log-Returns

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options

Log-Densities for August 06 Power Future

Empirical Log-Density Normal Log-Density NIG Log-Density -1012345

-0.0832 -0.0310 0.0 0.0211 0.0702 Log-Returns

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance-mean mixtures

All the examples above are cases of variance-mean mixtures of Normal distributions: Let U be a random variable on [0, ∞) with law F , and

X|U=u ∼ Nr (µ + uβ, uΣ), where Σ is a symmetric positive definite r × r matrix with determinant one, µ, β are r-vectors. The distribution of X is called a normal variance-mean mixture with position µ, drift β, structure matrix Σ and mixing distribution F . If β = 0, X is a normal variance mixture.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance-mean mixtures

The density is given by

n T −1 o fX(x) = exp (x − µ) Σ β

Z ∞ − 1 r × (2πu) 2 exp {−Qu(x; µ, β, Σ)} dF (u) 0 where 1 Q (x; µ, β, Σ) = (x − µ)T (uΣ)−1(x − µ) + uβT Σ−1β u 2

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options Variance-mean mixtures

The characteristic function is

n o 1  ψ (t) = exp itT µ φ tT Σt − itT β , X 2 with φ(s) = E exp{−sU} the Laplace-Stieltjes transform of U. ψ is infinitely divisible iff φ is.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options GH as Variance-mean mixtures

Let dGIG denote the density of a generalized inverse Gaussian distribution with parameters λ, δ and γ:

dGIG (x; λ, δ, γ)

γ λ 1  1 δ2  = xλ−1 exp − + γ2x . δ 2Kλ(δγ) 2 x Then the GH-distributions have a representation as

dGH (x; λ, α, β, δ, µ) Z ∞ p 2 2 = dN(µ+βu,u)(x)dGIG (u; λ, δ, α − β )du. 0

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options GH as Variance-mean mixtures

The characteristic function ψGH(λ,α,β,δ,µ)(t) =

λ  p 2 2 δ α − β K (δpα2 − (β + it)2 eiµt λ . p 2 2  λ Kλ(δ α − β ) δpα2 − (β + it)2

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Variance-Gamma model L´evy-Process Driven Financial Market Models CGMY model Jump-Diffusion Models GH models General L´evyModels Variance-mean mixtures European Style Options VG as Variance-mean mixtures

Let dΓ denote the density of a Gamma distribution with parameters µ and ν:

2 µ2 µ µ ν −1  µ ν x exp − ν x dΓ(x; µ, ν) = , x > 0. ν  µ2  Γ ν

Then the VG-distributions have a representation as

dVG (x; σ, β, ν) Z ∞ = dN(βu,σu)(x)dΓ(u; 1, ν)du. 0

Professor Dr. R¨udigerKiesel L´evyFinance I In terms of the triple after the measure change 1 Z σ2 − r +α ˜ + [(ex − 1 − x)Y (t, x)])ν(dx) = 0 2 R

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Drift Conditions

I In terms of the original triple 1 Z σ2 − r + α + σβ(t) + [(ex − 1)Y (t, x) − x] ν(dx) = 0 2 R

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Drift Conditions

I In terms of the original triple 1 Z σ2 − r + α + σβ(t) + [(ex − 1)Y (t, x) − x] ν(dx) = 0 2 R

I In terms of the triple after the measure change 1 Z σ2 − r +α ˜ + [(ex − 1 − x)Y (t, x)])ν(dx) = 0 2 R

Professor Dr. R¨udigerKiesel L´evyFinance I The tuple that characterizes the change of measure is (β, Y ) with Y (x) = eδx , which is deterministic and independent of time.

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Esscher Transform via Girsanov

∗ I Assume P ∼ P with  Z t Z Z(t) = exp βσW (t) + δx(µX − νX )(ds, dx) 0 R σ2β2 Z   − + (eδx − 1 − δx)ν(dx) t 2 R

where β ∈ R+ and δ ∈ R.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Esscher Transform via Girsanov

∗ I Assume P ∼ P with  Z t Z Z(t) = exp βσW (t) + δx(µX − νX )(ds, dx) 0 R σ2β2 Z   − + (eδx − 1 − δx)ν(dx) t 2 R

where β ∈ R+ and δ ∈ R. I The tuple that characterizes the change of measure is (β, Y ) with Y (x) = eδx , which is deterministic and independent of time.

Professor Dr. R¨udigerKiesel L´evyFinance I Then S(t)e− log ϕ(−i)t = e−rt S(t)ert−log ϕ(−i)t , where ϕ(u) is the characteristic function of X (t), is a martingale.

I Observe that − log ϕ(−1) = ψ(1) the characteristic exponent.

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Mean-correcting EMM

I Assume S(t) = S(0)eX (t) .

Professor Dr. R¨udigerKiesel L´evyFinance I Observe that − log ϕ(−1) = ψ(1) the characteristic exponent.

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Mean-correcting EMM

I Assume S(t) = S(0)eX (t) .

I Then S(t)e− log ϕ(−i)t = e−rt S(t)ert−log ϕ(−i)t , where ϕ(u) is the characteristic function of X (t), is a martingale.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Mean-correcting EMM

I Assume S(t) = S(0)eX (t) .

I Then S(t)e− log ϕ(−i)t = e−rt S(t)ert−log ϕ(−i)t , where ϕ(u) is the characteristic function of X (t), is a martingale.

I Observe that − log ϕ(−1) = ψ(1) the characteristic exponent.

Professor Dr. R¨udigerKiesel L´evyFinance I The characteristic function of X is  2 2  σ u  iµ u−σ2 u2/2  φ (u) = exp iµu − + λ e Y Y − 1 , X 2

and the L´evy triplet is (µ, σ, λfY ).

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Merton in exponential L´evyframework

I The driving process is

N(t) X X (t) = µt + σW (t) + Yk k=1

2 where Yk ∼ N(µY , σY ) with normal density fY for k = 1, 2 ....

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Merton in exponential L´evyframework

I The driving process is

N(t) X X (t) = µt + σW (t) + Yk k=1

2 where Yk ∼ N(µY , σY ) with normal density fY for k = 1, 2 ....

I The characteristic function of X is  2 2  σ u  iµ u−σ2 u2/2  φ (u) = exp iµu − + λ e Y Y − 1 , X 2

and the L´evy triplet is (µ, σ, λfY ).

Professor Dr. R¨udigerKiesel L´evyFinance I The characteristic function of X is  2 2   σ u pη1 qη2 φX (u) = exp iµu − + λ − − 1 , 2 η1 − iu η2 + iu

and the L´evy triplet is (µ, σ, λfY ).

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Kou Double-Exponential

I The driving process is

N(t) X X (t) = µt + σW (t) + Yk k=1

where Yk ∼ DbExpo(p, η1, η2) with DbExpo-density fY for k = 1, 2 ....

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Kou Double-Exponential

I The driving process is

N(t) X X (t) = µt + σW (t) + Yk k=1

where Yk ∼ DbExpo(p, η1, η2) with DbExpo-density fY for k = 1, 2 ....

I The characteristic function of X is  2 2   σ u pη1 qη2 φX (u) = exp iµu − + λ − − 1 , 2 η1 − iu η2 + iu

and the L´evy triplet is (µ, σ, λfY ).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options European Call Pricing Formula

Use the classical formulation

dS(t) = (µ − kλ)S(t)dt + σdW (t) + S(t−)dQ(t)

where

I µ, σ > 0 are a constant; I Wt is a standard Brownian motion; I N Xt Qt = Yi , i=1

I Nt is a Poisson process with intensity λ; I (Yi ) is a family of i.i.d. random variables with density fY , such that k = E(Yi ).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options European Call Pricing Formula

N(t)   σ2   Y S(t) = S(0) exp σW (t) + µ − kλ − 1 t (Y + 1) 2 i i=1 The drift condition then reads

µ − kλ = r + σβ − k˜λ˜

Many Choices possible!!

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Classical Construction

If 1 + Yi are log-normally distributed with parameters

δ2 log(1 + Y ) = γ − , Var log(1 + Y ) = δ2, Y = k = eγ − 1 E i 2 i E i

under the historical measure P, one can find an equivalent ∗ martingale measure P such that the intensity of N is λ˜ > 0 and the (1 + Yi ) are log-normally distributed with parameters

δ2 ∗ ∗ log(1+Y ) =γ ˜ − , Var log(1+Y ) = δ2, ∗ = k˜ = eγ˜ −1 E i 2 i E ∗ under P .

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Option Pricing

We find for the price of a European call

∞ X (λ0T )n C(S, 1, T , λ,˜ σ˜) = exp{−λ0T }C (S, 1, ˜r , T , σ˜ ), n! BS n n n=0

with CBS the Black-Scholes call price and parameters

nγ˜ 1  nδ2  λ0 = λ˜(1 + k˜), ˜r = − λ˜k˜, σ˜2 = σ2T + . n T n T 2

Professor Dr. R¨udigerKiesel L´evyFinance VG G G I Also, X (t) = X (t; C, M) − X (t; C, G) with parameters C = 1/ν > 0

!−1 r1 1 1 G = θ2ν2 + σ2ν − θν > 0 4 2 2 !−1 r1 1 1 M = θ2ν2 + σ2ν + θν > 0 4 2 2

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Process

VG I A Variance Gamma process X can be defined as a time-changed Brownian motion with drift X (t)VG = θX G (t) + σW (X G (t)).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Process

VG I A Variance Gamma process X can be defined as a time-changed Brownian motion with drift X (t)VG = θX G (t) + σW (X G (t)).

VG G G I Also, X (t) = X (t; C, M) − X (t; C, G) with parameters C = 1/ν > 0

!−1 r1 1 1 G = θ2ν2 + σ2ν − θν > 0 4 2 2 !−1 r1 1 1 M = θ2ν2 + σ2ν + θν > 0 4 2 2

Professor Dr. R¨udigerKiesel L´evyFinance I The L´evy-Khintchine triplet is (γ, 0, νVG (dx)) with −C G e−M − 1 − M e−G − 1 γ = MG The L´evymeasure of the VG-distribution is ( CeGx |x|−1 , x < 0 νVG (dx) = Ce−Mx x−1, x < 0

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Process

I The characteristic function of a Variance Gamma process X VG with parameters σ, ν, θ is  1 −u/ν φ (u) = 1 − iuθ + σ2νu2 . VG 2

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Process

I The characteristic function of a Variance Gamma process X VG with parameters σ, ν, θ is  1 −u/ν φ (u) = 1 − iuθ + σ2νu2 . VG 2

I The L´evy-Khintchine triplet is (γ, 0, νVG (dx)) with −C G e−M − 1 − M e−G − 1 γ = MG The L´evymeasure of the VG-distribution is ( CeGx |x|−1 , x < 0 νVG (dx) = Ce−Mx x−1, x < 0

Professor Dr. R¨udigerKiesel L´evyFinance I Distributional characteristics VG(C,G,M) VG(C,G,G) mean C(G − M/(MG)) 0 variance C(G 2 + M2)/(MG)2 2CG −2 −1 3 3 2 2 3 skewness 2C 2(G − M )/(G + M ) 2 0 kurtosis 3(1 + 2C −1(G 4 + M4)/(M2 + G 2)2) 3(1 + C −1 )

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Process

VG I The density function of a Variance Gamma process X is (CMC ) (C − M)x  f (x) = √ exp VG πΓ(C) 2 C−1/2  |x|  G+M KC−1/2((G + M) |x| /2)

where Kν(x) denotes the modified Bessel function of the third kind with index ν.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Process

VG I The density function of a Variance Gamma process X is (CMC ) (C − M)x  f (x) = √ exp VG πΓ(C) 2 C−1/2  |x|  G+M KC−1/2((G + M) |x| /2)

where Kν(x) denotes the modified Bessel function of the third kind with index ν. I Distributional characteristics VG(C,G,M) VG(C,G,G) mean C(G − M/(MG)) 0 variance C(G 2 + M2)/(MG)2 2CG −2 −1 3 3 2 2 3 skewness 2C 2(G − M )/(G + M ) 2 0 kurtosis 3(1 + 2C −1(G 4 + M4)/(M2 + G 2)2) 3(1 + C −1 ) Professor Dr. R¨udigerKiesel L´evyFinance VG(σ,ν,θ) VG(σ, ν, 0) mean θ 0 variance σ2 + νθ2 σ2 skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2 0 kurtosis 3(1 + 2ν νσ4(σ2 + νθ2)−2) 3(1 + ν) − Table 5: VG distribution characteristics in the (σ,ν,θ) parametrization.

Going the other way around one can use:

ν = 1/C σ2 = 2C/(MG) θ = C(G M)/(MG). − Its density function is given by

(GM)C (G M)x f (x; C,G,M)(x) = exp − VG √π Γ(C) 2   x C−1/2 Stochastic Calculus for L´evyProcesses | | Equivalent MartingaleKC−1/2 ( MeasureG + M) x /2 , L´evy-Process Driven Financial Market Models × G + MJump-Diffusion Models | | Jump-Diffusion Models  Variance-Gamma Model General L´evyModels  NIG Model where Kν (x) denotesEuropean the modified Style Options Bessel function of the third kind with index ν and Γ(x) denotes the gamma function. VarianceAs Gamma shown in Figures Density 14, 15 and 16 one can see that the distribution is very flexible.

VG density − C=1.3574; G=5.8704; M=14.2699 3

2.5

2

1.5

1

0.5

0 −1 −0.5 0 0.5 1

Figure 14: The VG density Professor Dr. R¨udigerKiesel L´evyFinance

Some distribution characteristics are summarized in the Tables 5 and 6

28 VG(C,G,M) VG(C, G, G) mean C(G M)/(MG) 0 variance C(G2 +−M 2)/(MG)2 2CG−2 skewness 2C−1/2(G3 M 3)/(G2 + M 2)3/2 0 kurtosis 3(1 + 2C−1(G−4 + M 4)/(M 2 + G2)2) 3(1 + C−1) Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Table 6: VG distributionJump-Diffusion characteristics Models in the (C,G,M) parametrization. Variance-Gamma Model General L´evyModels NIG Model European Style Options When θ = 0 the distribution is symmetric. Negative values of θ result Variancein negative Gamma skewness; Density positive θ’s give positive skewness. The parameter ν primarily controls the kurtosis.

VG density − σ=0.2; ν=0.5; θ=−0.25, 0.00, 0.25 3 θ=0 θ=−0.25 2.5 θ=0.25

2

1.5

1

0.5

0 −1 −0.5 0 0.5 1

Professor Dr. R¨udigerKieselFigure 15: TheL´evyFinance VG density

In terms of the (C,G,M)-parameters this reads as follows: Under this setting, G = M gives the symmetric case, GM give rise to positive skewness. The parameter C controls the kurtosis. If we fit the VG density to the Kernel density, we obtain a very good fit (compare with Normal Fit). In Figure 17, one sees a fit on a data set of daily logreturns of the SP500 over more than 30 years. Statistical χ2-tests confirm the goodness of fit.

3.2 The VG Process Recall the definition of a standard Brownian Motion W = W ,t 0 { t ≥ } W starts at zero: W = 0. • 0 W has independent increments: the distribution of increments over non- • overlapping time intervals are stochastically independent.

29 Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Density

VG density − σ=0.2; ν=0.1, 0.5, 0.8 ; θ=0 3.5 ν=0.1 ν=0.5 3 ν=0.8

2.5

2

1.5

1

0.5

0 −1 −0.5 0 0.5 1

Figure 16: The VG density Professor Dr. R¨udigerKiesel L´evyFinance W has stationary increments: the distribution of an increment over a • time-interval depends only on the length of the interval; not on the exact location. W W Normal(0,s): increments are Normally distributed. • s+t − t ∼ One can define in a similar way a based on the VG distri- bution. (For mathematical details and other examples see [157]). A stochastic process X = Xt,t 0 is a Variance-Gamma Process with parameters C,G,M if { ≥ } X starts at zero: X = 0. • 0 X has independent increments. • X has stationary increments. • Furthermore we have that Xs+t Xt VG(Cs,G,M), i.e. increments • are VG distributed; − ∼ It will turn out (see again [157]) that a VG process is a pure jump process. Sample paths have no diffusion component in contrast with a Brownian motion (see Figure ??.

3.3 The VG Stock Price Model Instead of modeling the stock price process as an exponential of a Brownian Motion (with drift):

S = S exp((µ σ2/2)t + σW ), S > 0, t 0 − t 0

30 Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Process

A stochastic process X is a Variance-Gamma process with parameters C, G, M if

I X starts at zero: X0 = 0,

I X has independent increments,

I X has stationary increments,

I X (t + s) − X (t) ∼ VG(Cs, G, M).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Variance Gamma Paths

Standard Brownian Motion 1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VG Process (C=20; G=40; M=50) 0.1

0.05

0

−0.05

−0.1

−0.15 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 18: Brownian Motion and VG paths

Professor Dr. R¨udigerKiesel L´evyFinance Note that, most of the time we immediately will work under a risk-neutral setting (after calibrating the model to market data) and we do not have to worry about the measure change.

4 Pricing Vanillas using FFT

In this Chapter, we describe how one can price very fast and efficiently vanilla options using the theory of characteristic functions and Fast Fourier Trans- forms. Our aim is to develop a solid understanding of the current frameworks for pricing of vanilla derivatives using these techniques and to give readers the mathematical and practical background necessary to apply and implement the

32 I One period log-Returns are VG(CGM) distributed I Mean-correcting Martingale Measure Q

S(t) = S(0) exp{(r + ω)t + X (t)}

with  1  ω = ν−1 log 1 − σ2ν − θν . 2

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Stock Price Model

I Let X = (X (t)) we a VG-Process, then

S(t) = S(0) exp{X (t)}

Professor Dr. R¨udigerKiesel L´evyFinance I Mean-correcting Martingale Measure Q

S(t) = S(0) exp{(r + ω)t + X (t)}

with  1  ω = ν−1 log 1 − σ2ν − θν . 2

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Stock Price Model

I Let X = (X (t)) we a VG-Process, then

S(t) = S(0) exp{X (t)}

I One period log-Returns are VG(CGM) distributed

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Stock Price Model

I Let X = (X (t)) we a VG-Process, then

S(t) = S(0) exp{X (t)}

I One period log-Returns are VG(CGM) distributed I Mean-correcting Martingale Measure Q

S(t) = S(0) exp{(r + ω)t + X (t)}

with  1  ω = ν−1 log 1 − σ2ν − θν . 2

Professor Dr. R¨udigerKiesel L´evyFinance I We know the density

Z ∞ + −rT  (r−ω)T +x  C(K, T ) = e fVG (x; CT , G, M) S(0)e − K dx −∞

I Difficult to evaluate (Bessel function).

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing

I The risk-neutral valuation principle implies for a European call with maturity T and strike K

+ C(K, T ) = exp(−rT )EQ[(S(T ) − K) ]

Professor Dr. R¨udigerKiesel L´evyFinance I Difficult to evaluate (Bessel function).

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing

I The risk-neutral valuation principle implies for a European call with maturity T and strike K

+ C(K, T ) = exp(−rT )EQ[(S(T ) − K) ]

I We know the density

Z ∞ + −rT  (r−ω)T +x  C(K, T ) = e fVG (x; CT , G, M) S(0)e − K dx −∞

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing

I The risk-neutral valuation principle implies for a European call with maturity T and strike K

+ C(K, T ) = exp(−rT )EQ[(S(T ) − K) ]

I We know the density

Z ∞ + −rT  (r−ω)T +x  C(K, T ) = e fVG (x; CT , G, M) S(0)e − K dx −∞

I Difficult to evaluate (Bessel function).

Professor Dr. R¨udigerKiesel L´evyFinance I Suppose we know the characteristic function of sT = log ST

φ(u; T ) = EQ [exp{iusT }] = EQ [exp{iu log ST }]

I Let k = log K

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I Let α be a positive integer such that the αth moment of the stock price exists

Professor Dr. R¨udigerKiesel L´evyFinance I Let k = log K

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I Let α be a positive integer such that the αth moment of the stock price exists

I Suppose we know the characteristic function of sT = log ST

φ(u; T ) = EQ [exp{iusT }] = EQ [exp{iu log ST }]

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I Let α be a positive integer such that the αth moment of the stock price exists

I Suppose we know the characteristic function of sT = log ST

φ(u; T ) = EQ [exp{iusT }] = EQ [exp{iu log ST }]

I Let k = log K

Professor Dr. R¨udigerKiesel L´evyFinance I We know k + C(k, T ) = exp(−rT )EQ[(S(T ) − e ) ] Z ∞   = exp(−rT ) ex − ek q(x, T )dx k

I As C(k, T ) → exp(−rT )S(0) as k → −∞ it is not square-integrable and Fourier theory may not be applied!

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I Let q(x, T ) be the density function of sT = log ST , then Z ∞ φ(u; T ) = exp{iux}q(x, T )dx −∞

Professor Dr. R¨udigerKiesel L´evyFinance I As C(k, T ) → exp(−rT )S(0) as k → −∞ it is not square-integrable and Fourier theory may not be applied!

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I Let q(x, T ) be the density function of sT = log ST , then Z ∞ φ(u; T ) = exp{iux}q(x, T )dx −∞

I We know k + C(k, T ) = exp(−rT )EQ[(S(T ) − e ) ] Z ∞   = exp(−rT ) ex − ek q(x, T )dx k

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I Let q(x, T ) be the density function of sT = log ST , then Z ∞ φ(u; T ) = exp{iux}q(x, T )dx −∞

I We know k + C(k, T ) = exp(−rT )EQ[(S(T ) − e ) ] Z ∞   = exp(−rT ) ex − ek q(x, T )dx k

I As C(k, T ) → exp(−rT )S(0) as k → −∞ it is not square-integrable and Fourier theory may not be applied!

Professor Dr. R¨udigerKiesel L´evyFinance I So the Fourier transform ρ(v) of c(k, T ) exists.

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I For some α > 0 the modified call

c(k, T ) = exp(αk)C(k, T )

is square-integrable.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I For some α > 0 the modified call

c(k, T ) = exp(αk)C(k, T )

is square-integrable.

I So the Fourier transform ρ(v) of c(k, T ) exists.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

Z ∞ exp(ivk)c(k, T )dk −∞ Z ∞ Z ∞   = exp(ivk) exp(αk) exp(−rT ) ex − ek dxdk −∞ k Z ∞ Z x   = e−rT q(x, T ) exp(ivk) exp(αk) ex − ek dkdx −∞ −∞ Z ∞   −rT exp((α + 1 + iv)x) = e q(x, T ) 2 2 −∞ α + α − v + i(2α + 1)v exp(−rT )φ(v − (α + 1)i, T ) = = ρ(v) α2 + α − v 2 + i(2α + 1)v

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

Using the inverse transform we have

C(k, T ) = exp(−αk)c(k, T )

1 Z ∞ = exp(−αk) exp(−ivk)ρ(v)dv 2π −∞ 1 Z ∞ = exp(−αk) exp(−ivk)ρ(v)dv π 0 where we used that C(k, T ) is real, so ρ(v) is odd.

Professor Dr. R¨udigerKiesel L´evyFinance I Valuation can be done fast and accurate with the Fast Fourier Transform.

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I So we obtain the Carr-Madan Formula exp(−α log K) Z ∞ C(K, T ) = exp(−iv log K)ρ(v)dv π 0

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Carr-Madan Formula

I So we obtain the Carr-Madan Formula exp(−α log K) Z ∞ C(K, T ) = exp(−iv log K)ρ(v)dv π 0

I Valuation can be done fast and accurate with the Fast Fourier Transform.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels 4.4 Calibration Results NIG Model European Style Options Doing a global calibration for the VG model introduced in Chapter ??, we a serious improvement over the Black-Scholes case. However observe still a significant difference with real market prices as can be seen in Figure 22. The VG Optioninitial parameters Pricing we – started Calibration with where (C Results= 1, G = 5, M = 5); the final optimal parameters coming out of the calibration procedure are given by: (C = 1.3574, G = 5.8703, M = 14.2699)

SP−500 / 18−04−2002 / VG / ape = 4.67 %

180

160

140

120

100

option price 80

60

40

20

0 1000 1100 1200 1300 1400 1500 strike

Figure 22: Global Calibration of VG

Fitting theProfessor smile at Dr. one R¨udigerKiesel maturity is doneL´evyFinance very accurately as can be seen in Figure 23. The parameters coming out of the calibration procedure for each maturity are given in Table 7. We see a quite typical term-structure for the σ and ν parameter.

5 Monte Carlo Simulation

Next, we look at possible simulation techniques for the processes encountered so far. A L´evy process can be in general simulated based on a compound Poisson

42 Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options VG Option Pricing – Calibration Results

SP500 / 18−04−2002 / VG (T=0.184) / ape =0.24034% SP500 / 18−04−2002 / VG (T=0.436) / ape =0.21534% SP500 / 18−04−2002 / VG (T=0.692) / ape =0.34172% 90 180 180

80 160 160

140 140 70

120 120 60 100 100 50 80 80 Option price Option price Option price 40 60 60

30 40 40

20 20 20

10 0 0 1040 1060 1080 1100 1120 1140 1160 1180 950 1000 1050 1100 1150 1200 1250 950 1000 1050 1100 1150 1200 1250 1300 Strike Strike Strike

SP500 / 18−04−2002 / VG (T=0.936) / ape =0.43269% SP500 / 18−04−2002 / VG (T=1.192) / ape =0.54975% SP500 / 18−04−2002 / VG (T=1.708) / ape =0.48827% 150 200 180

180 160

160 140

140 100 120 120 100 100 80

Option price Option price 80 Option price 50 60 60

40 40

20 20

0 0 0 1000 1050 1100 1150 1200 1250 1300 1350 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 Strike Strike Strike

Figure 23: Calibration of VG maturity per maturity Professor Dr. R¨udigerKiesel L´evyFinance approximation. However, typically, for very specific processes like the VG other much faster techniques are available. We assume we have random number generators at hand which can provide us Normal(0, 1) and Gamma(a, b) random numbers. Throughout we v allways { n} denotes a Normal(0, 1) random number; gn a Gamma random numbers. A good reference book is [139]. { }

5.1 Brownian Motion

Recall that standard Brownian motion W = Wt,t 0 has Normal distributed independent increments. We discretize time{ by taking≥ } time steps of size ∆t, which we assume to be very small. We simulate (by the Euler scheme) the value of the Brownian motion at the time points n∆t, n = 0, 1,... : { }

W0 = 0, Wn∆t = W(n−1)∆t + √∆tvn.

This leads to the following typical picture of standard Brownian motion The Matlab code for this is very simple: T=1; N=250; dt=T/N; tt=[0:dt:T];

43 I Input to the calibration algorithm

I characteristic function of the underlying stochastic dynamics, I initial guess of the parameters, I market prices

I By calling many times the pricing algorithm the optimisation procedure searches the parameter space and minimizes the error between model prices and market prices.

I Typically a nonlinear unconstrained optimisation problem. Often the Nelder-Mead Simplex algorithm is used (implemented in Matlab).

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Calibration to Prices

I A calibration procedure looks for the optimal parameter set such that the model prices match as best as possible the observed market prices

Professor Dr. R¨udigerKiesel L´evyFinance I By calling many times the pricing algorithm the optimisation procedure searches the parameter space and minimizes the error between model prices and market prices.

I Typically a nonlinear unconstrained optimisation problem. Often the Nelder-Mead Simplex algorithm is used (implemented in Matlab).

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Calibration to Call Option Prices

I A calibration procedure looks for the optimal parameter set such that the model prices match as best as possible the observed market prices I Input to the calibration algorithm

I characteristic function of the underlying stochastic dynamics, I initial guess of the parameters, I market prices

Professor Dr. R¨udigerKiesel L´evyFinance I Typically a nonlinear unconstrained optimisation problem. Often the Nelder-Mead Simplex algorithm is used (implemented in Matlab).

Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Calibration to Call Option Prices

I A calibration procedure looks for the optimal parameter set such that the model prices match as best as possible the observed market prices I Input to the calibration algorithm

I characteristic function of the underlying stochastic dynamics, I initial guess of the parameters, I market prices

I By calling many times the pricing algorithm the optimisation procedure searches the parameter space and minimizes the error between model prices and market prices.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Calibration to Call Option Prices

I A calibration procedure looks for the optimal parameter set such that the model prices match as best as possible the observed market prices I Input to the calibration algorithm

I characteristic function of the underlying stochastic dynamics, I initial guess of the parameters, I market prices

I By calling many times the pricing algorithm the optimisation procedure searches the parameter space and minimizes the error between model prices and market prices.

I Typically a nonlinear unconstrained optimisation problem. Often the Nelder-Mead Simplex algorithm is used (implemented in Matlab).

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Normal Inverse Gaussian Distribution

This is the case λ = −1/2 of the generalized hyperbolic distribution. The density is α n p o d (x) = exp δ α2 − β2 + β(x − µ) NIG π

 q  x−µ 2 K1 αδ 1 + δ × q . x−µ 2 1 + δ

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Normal Inverse Gaussian Distribution

Here, 1 Z ∞  1  1  K1(z) = exp − z x + dx, z > 0, 2 0 2 x is the modified Bessel function of the third kind with index 1. The parameter α relates to the steepness, β to the asymmetry, δ to the scale and µ to the location of the density. For β = 0, the NIG-distribution is symmetric.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options NIG Properties

The characteristic function is  q  p 2 2 2 2 φNIG(u) = exp δ α − β − δ α − (β + iu) + iuµ

We will use the corresponding NIG L´evyprocess X in our asset model and assume that annual log returns are NIG(α, β, δ, µ) distributed. Then, Xt is NIG(α, β, δt, µt) distributed.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options The Meixner model

The density of a Meixner(α, β, δ, µ) distribution is

2δ   2 (2 cos(β/2)) i(x − µ) d (x) = exp(β(x − µ)/α) Γ δ + Meix 2απΓ(2δ) α (2) where α > 0, −π < β < π, δ > 0. For β = 0, the Meixner-distribution is symmetric with mode at µ. Its characteristic function is

 cos(β/2) 2δ φ (u) = · exp{iuµ} Meixner cosh((αu − iβ)/2)

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Moments for NIG and Meixner

Meixner(α, β, δ, µ) NIG(α, β, δ, µ) δβ E(X ) µ + αδ tan(β/2) µ + pα2 − β2 α2δ α2δ Var(X ) 2 cos(β/2) (α2 − β2)3/2 E[(X −E(X ))3] 3β sin(β/2)p2/δ Var(X )3/2 q α δpα2 − β2 2 2 E[(X −E(X ))4] 2 − cos(β) α + 4β 2 3 + 3 + 3 Var(X ) δ δα2pα2 − β2 Table: Mean, Variance, Skewness and Kurtosis for Meixner and NIG.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Esscher Transform

The following assumptions are necessary: I X1 possesses a moment-generating function

M(z, 1) = E(exp(zX1)) = φX1 (−iz) on some open interval (a, b) with b − a > 1. ∗ I There exists a real number θ ∈ (a, b − 1) such that M(θ∗, 1) = M(θ∗ + 1, 1).

We call a change of a measure P to a locally equivalent measure Q an Esscher transform if the measures are related by

dQ θ exp(θXt ) = Z = . d t M(θ, t) P Ft For a properly chosen θ, the discounted asset price process −rt e S(t) is a martingale under Q. Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options European Call Pricing Formula - NIG

Now suppose that under the real-world measure the annual returns

ξt = Xt − Xt−1

follow a NIG(α, β, δ, m) distribution. If (r − µ)2 < δ2(2α − 1), we can perform an Esscher transform with parameter s 1 r − µ 4α2 1 θ∗ = −b − + − . 2 2 (r − µ)2 + δ2 δ2

Under the Esscher measure, annual returns ξi are NIG(α, β + θ∗, δ, m) distributed.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options European Call Pricing Formula -Meixner

Assume ξt is Meixner(α, β, δ, µ) under the real-world measure. ∗ Under the Esscher measure, ξt is Meixner(α, β + αθ , δ, µ) with

α ((µ−r)/(2δ)) !! ∗ 1 − cos( 2 ) + e θ = − · β + 2 arctan α . α sin( 2 )

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Calibration to option prices

Parameter Fit to S&P500 option prices.

Meixner NIG BM α 0.3977 6.1882 – β -1.4940 -3.8941 – δ 0.3462 0.1622 – std deviation 0.2255 0.2363 0.1812 skewness -1.6331 -2.1374 0 kurtosis 8.5554 12.9374 3 Table: Parameters according to Schoutens (2003) and corresponding risk-neutral moments.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Densities for Calibrated Distribution

Meixner densities: risk neutral Std = 0.226, Skew = −1.633, Kurt = 8.555 NIG densities: risk neutral Std = 0.236, Skew = −2.137, Kurt = 12.937 3.5 risk neutral Meixner Esscher transformed 3 symmetric Meixner risk neutral NIG Esscher transformed 2.5 symmetric NIG risk neutral BM Std = 0.1812 2

1.5

1

0.5

0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 logreturn − r

Figure: Densities of calibrated distributions.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Barndorff-Nielsen, O.E., 1998, Processes of normal inverse Gaussian type, Finance and Stochastics 2, 41–68. Carr, P., E. Chang, and D.B. Madan, 1998, The Variance-Gamma process and option pricing, European Finance Review 2, 79–105. Carr, P., H. Geman, D.B. Madan, and M. Yor, 2002, The fine structure of asset returns: An empirical investigation., Journal of Business 75, 305–332. Eberlein, E., 2001, Applications of generalized hyperbolic L´evy motions to finance, in O.E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.: L´evyprocesses: Theory and Applications (Birkh¨auser Verlag, Boston, ). Eberlein, E., and U. Keller, 1995, Hyperbolic distributions in finance, Bernoulli 1, 281–299.

Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses Equivalent Martingale Measure L´evy-Process Driven Financial Market Models Jump-Diffusion Models Jump-Diffusion Models Variance-Gamma Model General L´evyModels NIG Model European Style Options Eberlein, E., U. Keller, and K. Prause, 1998, New insights into smile, mispricing and Value-at-Risk: The hyperbolic model, J. Business 71, 371–406. Madan, D.B., and E. Seneta, 1990, The Variance-Gamma (VG) model for share market returns, Journal of Business pp. 511–524.

Professor Dr. R¨udigerKiesel L´evyFinance