Ecology and Control of Pythium Root Rot in Flower Bulb Culture

Total Page:16

File Type:pdf, Size:1020Kb

Ecology and Control of Pythium Root Rot in Flower Bulb Culture Os proefschrift 27-08-2003 11:43 Pagina 1 Ecology and control of Pythium root rot in flower bulb culture Gera van Os UB E UITGEVERIJ EIGEN BEHEER Os proefschrift 27-08-2003 11:43 Pagina 2 Voor mijn ouders Os proefschrift 27-08-2003 11:43 Pagina 3 Ecology and control of Pythium root rot in flower bulb culture Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus Dr. D.D. Breimer, hoogleraar in de faculteit der Wiskunde en Natuurwetenschappen en die der Geneeskunde, volgens het besluit van het College voor Promoties te verdedigen op woensdag 5 november 2003 te klokke 14:15 uur door Geertruida Jeltje van Os geboren te Amstelveen in 1965 Os proefschrift 27-08-2003 11:43 Pagina 4 Promotiecommissie: Promotor Prof. dr. J.A. van Veen Co-promotor Dr. J. van Aartrijk (Koninklijke Algemeene Vereeniging voor Bloembollencultuur) Referent Prof. J.M. Whipps (Horticultural Research International) Overige leden Prof. dr. E. van der Meijden Prof. dr. E.J.J. Lugtenberg Prof. dr. A.H.C. van Bruggen (Wageningen Agricultural University) Dr. ir. J.M. Raaijmakers (Wageningen Agricultural University) Uitgeverij Eigen Beheer Amsterdam ISBN: 90 73838 14 2 The research described in this thesis was conducted at the Bulb Research Centre in Lisse, the Netherlands. Part of this research was financed by the Dutch Urgency Program for Research on Diseases and Breeding of Flower Bulbs, financed jointly by the Commodity Board for Ornamental Plants (PT) and the Netherlands Ministry of Agriculture, Nature Conservation and Fisheries. Os proefschrift 27-08-2003 11:43 Pagina 5 5 Contents CHAPTER 1 General introduction 7 CHAPTER 2 Disease development op Pythium root rot in bulbous iris and 19 crocus CHAPTER 3 Effects of soil fumigation and flooding on suppression of 35 Pythium root rot in ornamental bulb culture CHAPTER 4 Effects of composted organic household waste on Pythium 53 root rot in iris and crocus CHAPTER 5 Suppression of Pythium root rot in bulbous iris in relation to 69 biomass and activity of the soil microflora CHAPTER 6 Microbial community responses to disease management soil 83 treatments used in flower bulb cultivation CHAPTER 7 Identification and pathogenicity of Pythium spp. in flower 103 bulb culture CHAPTER 8 Summary and concluding remarks 123 References 133 Samenvatting147 Curriculum vitae 153 List of publications 155 Nawoord 157 Os proefschrift 27-08-2003 11:43 Pagina 6 Os proefschrift 27-08-2003 11:43 Pagina 7 7 CHAPTER 1 General Introduction Os proefschrift 27-08-2003 11:43 Pagina 8 . Photograph Bulb field with premature die-off caused by Pythium infection in iris. Os proefschrift 27-08-2003 11:43 Pagina 9 9 CHAPTER 1 General introduction Introduction Root rot caused by Pythium spp. is an important disease in ornamental bulb culture in the Netherlands. Current legislation about the registration of pesticides, the decreasing use of chemical control methods, and increasing pressures for the use of environmentally friendly methods, make it difficult to recommend chemical disease control methods. These can rapidly become out of date because of the non- availability of the chemicals, or the withdrawal of approval for the use of a chemical on a certain crop. The development and registration of new, environmentally acceptable chemicals is expensive and time consuming and the use of a limited number of specific pesticides increases the risk that pathogens develop resistance. The long juvenile period and the slow vegetative propagation of bulb crops make them very vulnerable for diseases in general, and seriously hamper breeding. Since the 17th century, breeders selected hybrids according to flower characteristics and forcing ability, rather than to disease resistance (Le Nard & De Hertogh, 1993). Alternative control measures, therefore, have to be developed. This thesis describes research on Pythium root rot of ornamental bulbs, designed to obtain knowledge for the development of alternative control measures in order to reduce the use of and dependence on chemical control. Bulb culture in the Netherlands Ornamental bulb culture in the Netherlands comprises the cultivation of several flower crops with different kinds of perennating structures. For example, tulip, crocus and dahlia produce bulbs, corms and tubers respectively. In general, these crops are all indicated as bulb crops. Bulb cultivation, i.e. tulips, probably occurred as early as the 12th century near Persia (Botschantzeva, 1982). These bulbs originated from Central Asia (Hoog, 1973) and adjacent territories such as the Middle East and the Mediterranean. Bulbs were introduced into Europe via Turkey after the middle of the 16th century and brought to the Netherlands in 1571 (Botschantzeva, 1982). Today, the Netherlands is the centre of flower bulb production and trade in the world. Around 70% of the world production originates from the c. 22.000 hectares within its borders used for bulb cultivation. In 2001, the production value of the total flower bulb production was approximately 680 million Euro. The sandy soil behind the dunes in the western part of the country along the North Sea coast provides a well-suited substratum and the mild winters and summers create the optimum climate for the bulb growing “industry”. Outside the Netherlands, production areas of flower bulbs are increasing. Because the auction and trading firms still reside in the Netherlands, Os proefschrift 27-08-2003 11:43 Pagina 10 10 Chapter 1 most of the foreign production is sold via the Netherlands. 93% of the world trade in flower bulbs is controlled by Dutch firms. More than 75% of the Dutch production is exported. An important number of these exported bulbs is used in gardens and parks. From the bulbs that are not exported, around 90% is used for the production of cut flowers. More than 50% of the flowers thus produced are exported as well (International Flowerbulb Centre, 2002). In the Netherlands, the majority of spring flowering bulb crops, like tulip, hyacinth, iris, crocus and narcissus, is grown on sandy soil in the provinces of Noord- Holland en Zuid-Holland, in rotations with bulb crops only. In other parts of the Netherlands and on the heavier soils in Noord-Holland, bulbs are grown in rotations with e.g. grass, potato, wheat, sugar beet and vegetables. Bulb crops have a complex annual cycle of growth and senescence. For commercial bulb production, propagation is based on the generally slow vegetative production of daughter bulbs in the field. For example, bulbs of tulip, iris, crocus and narcissus can produce one to four new bulbs annually. These crops are planted in autumn, the bulbs root immediately and leaf emergence can be observed in early spring. The new (daughter) bulbs are harvested in June until August after senescence of the leaves. Bulbs of a sufficiently large size to produce a flower are saleable. Smaller bulbs need to grow for one or more years before they can be sold. Many cultivars of major bulb crops are sterile and do not set seed. Seeds from fertile cultivars produce a highly variable offspring and are used for breeding purposes only. Breeders depend on vegetative propagation of their seedlings in order to produce a uniform stock of sufficient quantity that can be tested for the development of new varieties. The selection of a new cultivar and the production of a reasonably large stock may take 10 to 20 years. Diseases and pests The vegetative propagation cycle of most bulb crops comprises several years of growth in soil. Within this period, bulbs are planted and lifted each season, stored and transported, exposing them frequently to physical damage and various contamination sources. Diseases and pests can accumulate and cause severe losses once introduced in the production cycle. Most of the ornamental bulbs and cut flowers are for export which demands high standards for quality and plant health. Diseases can affect the whole growing plant in a range of ways. For example, pathogens affect the plant in the ‘dormant’ condition, i.e. the storage organ(s), the growing plant, such as the leaves, or the underground parts. Symptom expression does not necessarily reflect the site of the attack, as below-ground damage can result in the wilting of collapse of apparently healthy above-ground parts, or secondary infections of shoots and flowers may result from a bulb or corm infection (Rees, 1992). Important fungal diseases are caused by Fusarium oxysporum, Botrytis spp., Os proefschrift 27-08-2003 11:43 Pagina 11 General introduction 11 Rhizoctonia solani, and Pythium spp. Infestation with these fungi affects both propagation in the field and flower production of several major bulb crops. Penicillium spp. may cause considerable damage to some bulb crops in storage. A few bacterial diseases of bulb crops are serious, ‘yellow disease’ (geelziek in Dutch) of hyacinth, caused by Xanthomonas hyacinthi being the most notorious one. Numerous viruses have been identified as pathogens of bulb crops. For instance, at least 14 viruses are known to infect tulip, and more than 15 are confirmed in narcissus (Rees, 1992). The vegetative propagation of bulb crops allows the spread of virus diseases throughout most bulb stocks unless specific steps are taken by the growers to establish a nucleus of virus-free material as a base for healthy stocks. Nematodes are among the most serious pests of major crops. In addition to the damage they cause directly, some, such as nematodes of the genus Trichodorus, are of importance as vectors of virus diseases. Other migratory nematodes (including root lesion nematodes) of the genera Longidorus, Pratylenchus and Xiphinema can be important for a range of bulb crops in light, sandy soils. Stem and tuber nematodes of the genus Ditylenchus are major pests of most commercially grown bulb crops (Rees, 1992).
Recommended publications
  • Phytopythium: Molecular Phylogeny and Systematics
    Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses.
    [Show full text]
  • Eb0710 1979.Pdf (3.892Mb)
    Contents Fungus Diseases - - - ------ - - ---- - - ~ - -- -- - ----- --- - --- ----- -- - 3 MOSAIC AND OTHER VIRUSES Iris Severe Mosaic (Yellow or Latent Virus Diseases ----------------------------------------------- 3 Mosaic or Gray Disease) -------------------------- 17 Nematode Diseases ----------------------------------------- 3 Bacterial Diseases ------------------------------------------ 3 MISCELLANEOUS DISEASES AND CONDITIONS Physiological Diseases ------------------------------------ 3 Nematode (Eel worm) --------------------------------- 19 General Control Program ------ -- ------ ---- ------------- 4 Black Storage Molds ------------------------------------ 20 Black Tip _______ _____ ____ ___ _____ ------------------------------ 21 MAJOR DISEASES Botrytis Blight ---------------- --------------------- ----- -------- 21 Blindness (Three Leaf) 4 Suggestions to the Grower ____ ____ ___ ___ _______ __ _ 5 Gray Bulb Rot ----------------------------------------------- 21 Suggestions to the Forcer -------------------------- 6 Pythium Root Rot ----------------------------- ------------ 21 Summary of Forcing Problems _____ ______ ___ ____ _ 7 Rhizoctonia Neck and Bulb Rot _____ ___ ____ _____ __ _ 21 Blasting ------------------------------------------------------- __ 7 Rust -------------------------------------------------------------- __ 22 Bacterial Blight ___ ___ _- ------------------------------------ 8 Sunburn -------------------------------------------------------- 2 2 Black Slime (Black Rot) --------------------- -------- 9 Blue
    [Show full text]
  • Crossing Borders Program Book of Abstracts
    25th International EUCARPIA Symposium Section Ornamentals CROSSING BORDERS PROGRAM BOOK OF ABSTRACTS June 28th- July 2nd 2015 Institute for Agricultural and Fisheries Research Melle, Belgium Welcome Dear participant, EUCARPIA aims to promote scientific and technical co-operation in the field of plant breeding in order to foster its further development. To achieve this purpose, the Association organizes on a regular basis meetings to discuss general or specific problems from all fields of plant breeding and genetic research. The section Ornamentals was founded in 1971 and a first meeting took place in Wageningen, The Netherlands. This year the twenty-fifth symposium is hosted in Melle, Belgium. Ornamental breeding is involved with a great number of species and a continuous demand for novelties. The importance of ornamentals cannot be underestimated as they contribute to the daily joy of life. They decorate our homes, landscapes and gardens, ameliorate climate, abate the harmful aspects of pollutions and much more. “Crossing borders”, the central theme of this symposium, expresses our intention to go beyond traditional ornamental plant breeding. Recent boosts in fundamental knowledge offers opportunities for ornamentals. Interaction and discussion between plant breeders and scientists create new ideas. We are excited that besides the lectures of leading experts also 130 scientific contributions from all over the world are presented. Parallel with the scientific sessions we scheduled two workshops. In these workshops active participation of breeding companies will be stimulated. A post-symposium tour gives you the opportunity to discover the dynamic and innovative ornamental plant breeding industry in Belgium. It is my personal wish that the symposium can be the start of new longstanding collaborations and friendships.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from themicrofilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, prim bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note win indicate the deletion. Oversize materials (e.g^ maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs inchiried in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Be<l & Howell Information Company 300 North ZeeO Road. Ann Arbor. Ml 48106-1346 USA 313.- 761-4700 800/ 521-0600 BACTERIA ASSOCIATED WITH WELL WATER: BIOGEOCHEMICAL TRANSFORMATION OF FE AND MN, AND CHARACTERIZATION AND CHEMOTAXIS OF A METHYLOTROPHIC HYPHOMICROBIUM SP. DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Laura Tuhela, B.S., M.S.
    [Show full text]
  • The Genus Pythium in Mainland China
    菌物学报 [email protected] 8 April 2013, 32(增刊): 20-44 Http://journals.im.ac.cn Mycosystema ISSN1672-6472 CN11-5180/Q © 2013 IMCAS, all rights reserved. The genus Pythium in mainland China HO Hon-Hing* Department of Biology, State University of New York, New Paltz, New York 12561, USA Abstract: A historical review of studies on the genus Pythium in mainland China was conducted, covering the occurrence, distribution, taxonomy, pathogenicity, plant disease control and its utilization. To date, 64 species of Pythium have been reported and 13 were described as new to the world: P. acrogynum, P. amasculinum, P. b ai sen se , P. boreale, P. breve, P. connatum, P. falciforme, P. guiyangense, P. guangxiense, P. hypoandrum, P. kummingense, P. nanningense and P. sinensis. The dominant species is P. aphanidermatum causing serious damping off and rotting of roots, stems, leaves and fruits of a wide variety of plants throughout the country. Most of the Pythium species are pathogenic with 44 species parasitic on plants, one on the red alga, Porphyra: P. porphyrae, two on mosquito larvae: P. carolinianum and P. guiyangense and two mycoparasitic: P. nunn and P. oligandrum. In comparison, 48 and 28 species have been reported, respectively, from Taiwan and Hainan Island with one new species described in Taiwan: P. sukuiense. The prospect of future study on the genus Pythium in mainland China was discussed. Key words: Pythiaceae, taxonomy, Oomycetes, Chromista, Straminopila 中国大陆的腐霉属菌物 何汉兴* 美国纽约州立大学 纽约 新帕尔茨 12561 摘 要:综述了中国大陆腐霉属的研究进展,内容包括腐霉属菌物的发生、分布、分类鉴定、致病性、所致植物病 害防治及腐霉的利用等方面。至今,中国已报道的腐霉属菌物有 64 个种,其中有 13 个种作为世界新种进行了描述, 这 13 个新种分别为:顶生腐霉 Pythium acrogynum,孤雌腐霉 P.
    [Show full text]
  • Cibulnaté a Hlíznaté Rostliny
    Cibulnaté a hlíznaté rostliny Přehled druhů 2: Asparagales Řád Asparagales rozsáhlý řád, 14 čeledí, některé obrovské semena rostlin obsahují černé barvivo melanin (některé druhy ho druhotně ztratily) Hosta PREZENTACE © JN Iridaceae (kosatcovité) Řád Asparagales Čeleď Iridaceae (kosatcovité) vytrvalé byliny s oddenky, hlízami, nebo cibulemi stonek přímý nevětvený, někdy zkrácený listy mečovité nebo čárkovité, dvouřadé se souběžnou žilnatinou květy jednotlivé nebo v chudých květenstvích (vějířek nebo srpek) – významné druhy okrasného zahradnictví subtropy až mírné pásmo 70/1750, ČR 3/12 PREZENTACE © JN Iridaceae (kosatcovité) Řád Asparagales Čeleď Iridaceae (kosatcovité) Zahradnicky významné jsou: mečíky (Gladiolus), frézie (Freesia), kosatce (Iris), šafrány (Crocus) Mezi další zahradnicky významné Iridaceae patří např. Crocosmia, Ixia, Tigridia © Saxifraga-Dirk Hilbers © Saxifraga-Inigo Sanchez Iris xiphium http://www.freenatureimages.eu/Plants/Flora%20D-I/Iris%20xiphium/slides/Iris%20xiphium%201,%20Saxifraga-Dirk%20Hilbers.jpg http://www.freenatureimages.eu/Plants/Flora%20D-I/Iris%20xiphium/slides/Iris%20xiphium%202,%20Saxifraga-Inigo%20Sanchez.jpg Iridaceae (kosatcovité) Iris (kosatec) zahrnuje i množství druhů které se neřadí mezi cibuloviny. Do cibulovin patří kosatce sekce Xiphium a Reticulata Sekce Xiphium - původní druhy pocházejí ze středomoří, hlavně Pyrenejí, zde rostou v 1500 m na mořem Cibule se 3-5 masitými šupinami, žlábkovité listy , stvol s 2-3 tuhými zelenými listeny a 2-3 květy, jsou modré se žlutým středem na vnějších okvětních lístcích, v přírodě kvetou koncem června Křížením původních druh této sekce hlavně Iris xiphium a I. tingitana vzniklo velké množství kutivarů – označované jako Dutch iris (holandské kosatce), pěstují se tržně v mnoha barvách (od bílé, žluté, modré až po fialovou) a prodávají jako řezané květiny např.
    [Show full text]
  • Studies on Root Necrosis of Wheat Caused by Pythium Graminicola Subr John Edward Grafius Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1943 Studies on root necrosis of wheat caused by Pythium graminicola Subr John Edward Grafius Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation Grafius, oJ hn Edward, "Studies on root necrosis of wheat caused by Pythium graminicola Subr " (1943). Retrospective Theses and Dissertations. 13814. https://lib.dr.iastate.edu/rtd/13814 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI OT lOGf m'lOSIS OF 1^1 m mmwm «»»»» wii*' % SiifcfIns 4 ^iwl# Satoaitfced to th® Gradm#» for the I^gre® of seetoa ©r wii«®« iubjeotss Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. »« UMI Number: DP13246 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Field Manual of Diseases on Garden and Greenhouse Flowers Field Manual of Diseases on Garden and Greenhouse Flowers
    R. Kenneth Horst Field Manual of Diseases on Garden and Greenhouse Flowers Field Manual of Diseases on Garden and Greenhouse Flowers R. Kenneth Horst Field Manual of Diseases on Garden and Greenhouse Flowers R. Kenneth Horst Plant Pathology and Plant Microbe Biology Cornell University Ithaca, NY , USA ISBN 978-94-007-6048-6 ISBN 978-94-007-6049-3 (eBook) DOI 10.1007/978-94-007-6049-3 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013935122 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Parkinsonia Aculeata
    Investigating the cause of dieback in the invasive plant, Parkinsonia aculeata BY TRACEY VIVIEN STEINRUCKEN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at Western Sydney University in 2017 This page has been intentionally left blank “Watch with glittering eyes the whole world around you because the greatest secrets are always hidden in the most unlikely places. Those who don't believe in magic will never find it” -- Roald Dahl This page has been intentionally left blank Acknowledgements I would like to thank my advisors Rieks van Klinken (CSIRO Health & Biosecurity), Andrew Bissett (CISRO Oceans & Atmosphere) and Jeff Powell (Hawkesbury Institute for the Enivronment, Western Sydney University) for their excellent mentoring, patient communication across borders and constant support. This research project was supported by Meat and Livestock Australia via a technical assistance grant (B.STU.0271). My PhD was supported by the Australian Government via an Australian Postgraduate Award and Western Sydney University via a top-up stipend. The Hawkesbury Institute for the Environment also supported my work with an annual research allocation and conference attendance funding. Thanks to Patricia Hellier, David Harland, Ian Anderson and Lisa Davison at HIE for administrative support. Thank-you to Kelli Pukallus (Biosecurity Queensland), Andrew White (CSIRO), Eva Pôtet (Agro Campus Oest, Paris), Marcus Klein (HIE at WSU), Donald Gardiner (CSIRO), Shamsul Hoque (CSIRO), Ryan O’Dell (DAFF) and Dylan Smith (UC Berkeley) for field and technical support in various chapters throughout this thesis. Huge thanks to my CSIRO Biosecurity team: Gio Fichera, Ryan Zonneveld, Brad Brown, Andrew White and Jeff Makinson for technical support in Chapter 3.
    [Show full text]
  • Pathogenicity and Host Range of Pythium Kashmirense—A Soil-Borne Oomycete Recently Discovered in the UK
    Journal of Fungi Article Pathogenicity and Host Range of Pythium kashmirense—A Soil-Borne Oomycete Recently Discovered in the UK Clara Benavent-Celma 1,2 , Alexandra Puertolas 3 , Debbie McLaggan 2 , Pieter van West 2 and Steve Woodward 1,* 1 Department of Plant and Soil Science, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; [email protected] 2 International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; [email protected] (D.M.); [email protected] (P.v.W.) 3 ANSES, Laboratoire de la Santé des Végétaux–Unité de Mycologie, Domaine de Pixérécourt–Bât. E, CS 40009, F-54220 Malzéville, France; [email protected] * Correspondence: [email protected]; Tel.: +44-1224-272-669 Abstract: During a survey of oomycetes in ornamental plants carried out at the University of Aberdeen in 2014–2015, Pythium kashmirense was isolated from a specimen of Viburnum plicatum ‘Lanarth’, the first report of this oomycete in the UK (and in Europe). Pathogenicity of a Py. kashmirense isolate was examined using a range of plant species. Inoculations were carried out under controlled conditions in the absence of other Pythium and Phytophthora species, on Glycine max (soya bean), Phaseolus vulgaris (common bean), Lupinus angustifolius (blue lupin), Cucumis sativa (cucumber) and Viburnum opulus. The majority of inoculations caused pre-emergence damping-off, as well as seed rot Citation: Benavent-Celma, C.; and root rot. In the in vitro assays, germination rates (%) of soya bean and blue lupin seeds were Puertolas, A.; McLaggan, D.; van less than 50%; in the in vivo inoculations on plants, over 50% of soya bean, blue lupin and common West, P.; Woodward, S.
    [Show full text]
  • Biological Control Methods for Damping-Off of Tomato Seedlings Caused by Pythium Myriotylum
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2006 Biological Control Methods for Damping-off of Tomato Seedlings Caused by Pythium myriotylum Miranda Marshall Clark University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Clark, Miranda Marshall, "Biological Control Methods for Damping-off of Tomato Seedlings Caused by Pythium myriotylum. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1527 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Miranda Marshall Clark entitled "Biological Control Methods for Damping-off of Tomato Seedlings Caused by Pythium myriotylum." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Kimberly D. Gwinn, Major Professor We have read this thesis and recommend its acceptance: Bonnie H. Ownley, Ernest C. Bernard, Craig H. Canaday Accepted for the Council: Carolyn R. Hodges
    [Show full text]
  • Shifts in Diversification Rates and Host Jump Frequencies Shaped the Diversity of Host Range Among Sclerotiniaceae Fungal Plant Pathogens
    Original citation: Navaud, Olivier, Barbacci, Adelin, Taylor, Andrew, Clarkson, John P. and Raffaele, Sylvain (2018) Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens. Molecular Ecology . doi:10.1111/mec.14523 Permanent WRAP URL: http://wrap.warwick.ac.uk/100464 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Received: 30 May 2017 | Revised: 26 January 2018 | Accepted: 29 January 2018 DOI: 10.1111/mec.14523 ORIGINAL ARTICLE Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens Olivier Navaud1 | Adelin Barbacci1 | Andrew Taylor2 | John P. Clarkson2 | Sylvain Raffaele1 1LIPM, Universite de Toulouse, INRA, CNRS, Castanet-Tolosan, France Abstract 2Warwick Crop Centre, School of Life The range of hosts that a parasite can infect in nature is a trait determined by its Sciences, University of Warwick, Coventry, own evolutionary history and that of its potential hosts. However, knowledge on UK host range diversity and evolution at the family level is often lacking.
    [Show full text]