(Galium Aparine L.) and False Cleavers

Total Page:16

File Type:pdf, Size:1020Kb

(Galium Aparine L.) and False Cleavers Molecular discrimination of Catchweed Bedstraw (Galium aparine L.) and False Cleavers (Galium spurium L.) in Western Canada Andrea De Roo, Peter Eckstein, Aaron Beattie and Chris Willenborg University of Saskatchewan, Saskatoon Galium spp. ▪ Three in Western Canada • Galium boreale L. • Galium aparine L. • Galium spurium L. ▪ Differences in habitat preferences ▪ Known differences in chromosome count in Galium aparine and Galium spurium Galium aparine vs. Galium spurium Importance to Weed Science ▪ Need for improved techniques ▪ Predict the movement of herbicide resistance ▪ Competitive characteristics ▪ Environmental restraints The Problem for Producers ▪ Presence of cleavers on the Prairies is increasing ▪ Difficult to determine species visually and cytogentically ▪ Solution: Look into DNA to tell them apart Project Objectives ▪ Identify variation within the ITS1-5.8S-ITS2 region in the cleavers genome that could be used to differentiate species ▪ Determine the speciation of various cleavers populations across western Canada What is the ITS Region? 18S 5.8S 26S ITS1 ITS2 Large Subunit RNA ITS1 → 18S 5.8S 26S ITS1 ITS2 ITS4 ▪ 5.8S gene is highly conserved ▪ ITS1 and ITS2 can readily evolve Methodology ▪ Cleaver DNA extracted from leaf material • Standard CTAB method ▪ ITS1-5.8S-ITS2 region isolated using polymerase chain reaction (PCR) ▪ Clone to isolate single copies ▪ Sequencing • Standard Sanger sequencing Developing Consensus Sequences ▪ 10 plant samples per population • Isolated and sequenced 3 copies of the target region • Total of 30 sequences for a consensus sequence ▪ Why? a) PCR coping introduces mistakes b) Sequencing introduces mistakes ▪ Robust sequences Variation at the ITS2 Variation in the 5.8S Gene Spurium – A Aparine – G Conclusions ▪ ITS region can successfully differentiate Galium spp. ▪ Cleavers populations are Galium spurium ▪ Herbicide resistance could develop • Already resistant to group 2 and 4 ▪ Formation of markers to check speciation in more samples, quickly and economically Acknowledgements ▪ Supervisor: ▪ CMG Lab Dr. Christian Willenborg Peter Eckstein ▪ Committee Members: Mark Colin Dr. Aaron Beattie ▪ Fellow Grad Students Dr. Steve Shirtliffe Dr. Yuguang Bai Questions? .
Recommended publications
  • Medicinal and Aromatic Plants of Azerbaijan – Naiba Mehtiyeva and Sevil Zeynalova
    ETHNOPHARMACOLOGY – Medicinal and Aromatic Plants of Azerbaijan – Naiba Mehtiyeva and Sevil Zeynalova MEDICINAL AND AROMATIC PLANTS OF AZERBAIJAN Naiba Mehtiyeva and Sevil Zeynalova Institute of Botany, Azerbaijan National Academy of Sciences, Badamdar sh. 40, AZ1073, Baku, Azerbaijan Keywords: Azerbaijan, medicinal plants, aromatic plants, treatments, history, biological active substances. Contents 1. Introduction 2. Historical perspective of the traditional medicine 3. Medicinal and aromatic plants of Azerbaijan 4. Preparation and applying of decoctions and infusions from medicinal plants 5. Conclusion Acknowledgement Bibliography Biographical Sketches Summary Data on the biological active substances and therapeutical properties of more than 131 medicinal and aromatic (spicy-aromatic) plants widely distributed and frequently used in Azerbaijan are given in this chapter. The majority of the described species contain flavonoids (115 sp.), vitamin C (84 sp.), fatty oils (78 sp.), tannins (77 sp.), alkaloids (74 sp.) and essential oils (73 sp.). A prevalence of these biological active substances defines the broad spectrum of therapeutic actions of the described plants. So, significant number of species possess antibacterial (69 sp.), diuretic (60 sp.), wound healing (51 sp.), styptic (46 sp.) and expectorant (45 sp.) peculiarities. The majority of the species are used in curing of gastrointestinal (89 sp.), bronchopulmonary (61 sp.), dermatovenerologic (61 sp.), nephritic (55 sp.) and infectious (52 sp.) diseases, also for treatment of festering
    [Show full text]
  • Effective Typification of Galium Verum Var. Hallaensis, a Replacement Name for the Korean G
    Phytotaxa 423 (5): 289–292 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Correspondence ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.423.5.3 Effective typification of Galium verum var. hallaensis, a replacement name for the Korean G. pusillum (Rubiaceae) DONG CHAN SON1 & KAE SUN CHANG1* 1Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon-si, Gyeonggi-do 11186, Republic of Korea *Author for correspondence: [email protected] The genus Galium Linnaeus (1753: 105), a well-known member of the madder family, consists of around 650 perennial and annual herbaceous species widely distributed in temperate, subtropical, and tropical regions worldwide (Ehrendorfer et al. 2005, Chen & Ehrendorfer 2011). This genus is distinguished from other genera belonging to Rubiaceae by several morphological characteristics including the leaves in whorls of 2–8, 3 or 4-lobed corollas, rudimentary corolla tubes, and dry mericarps (Yamazaki 1993, Ehrendorfer et al. 2014, Elkordy & Schanzer 2015). Article 9.23 of the Shenzhen Code (Turland et al. 2018) requires that “on or after 1 January 2001, lectotypification, neotypification, or epitypification of a name of a species or infraspecific taxon is not effected unless indicated by use of the term “lectotypus”, “neotypus”, or “epitypus”, its abbreviation, or its equivalent in a modern language,” and Art. 7.11 requires that “… designation of a type is achieved only…, on or after 1 January 2001, if the typification statement includes the phrase “designated here” (hic designatus) or an equivalent.” However, in many monographic and taxonomic works published on or after 1 January 2001, the requirements of Art.
    [Show full text]
  • 28. GALIUM Linnaeus, Sp. Pl. 1: 105. 1753
    Fl. China 19: 104–141. 2011. 28. GALIUM Linnaeus, Sp. Pl. 1: 105. 1753. 拉拉藤属 la la teng shu Chen Tao (陈涛); Friedrich Ehrendorfer Subshrubs to perennial or annual herbs. Stems often weak and clambering, often notably prickly or “sticky” (i.e., retrorsely aculeolate, “velcro-like”). Raphides present. Leaves opposite, mostly with leaflike stipules in whorls of 4, 6, or more, usually sessile or occasionally petiolate, without domatia, abaxial epidermis sometimes punctate- to striate-glandular, mostly with 1 main nerve, occasionally triplinerved or palmately veined; stipules interpetiolar and usually leaflike, sometimes reduced. Inflorescences mostly terminal and axillary (sometimes only axillary), thyrsoid to paniculiform or subcapitate, cymes several to many flowered or in- frequently reduced to 1 flower, pedunculate to sessile, bracteate or bracts reduced especially on higher order axes [or bracts some- times leaflike and involucral], bracteoles at pedicels lacking. Flowers mostly bisexual and monomorphic, hermaphroditic, sometimes unisexual, andromonoecious, occasionally polygamo-dioecious or dioecious, pedicellate to sessile, usually quite small. Calyx with limb nearly always reduced to absent; hypanthium portion fused with ovary. Corolla white, yellow, yellow-green, green, more rarely pink, red, dark red, or purple, rotate to occasionally campanulate or broadly funnelform; tube sometimes so reduced as to give appearance of free petals, glabrous inside; lobes (3 or)4(or occasionally 5), valvate in bud. Stamens (3 or)4(or occasionally 5), inserted on corolla tube near base, exserted; filaments developed to ± reduced; anthers dorsifixed. Inferior ovary 2-celled, ± didymous, ovoid, ellipsoid, or globose, smooth, papillose, tuberculate, or with hooked or rarely straight trichomes, 1 erect and axile ovule in each cell; stigmas 2-lobed, exserted.
    [Show full text]
  • Catchweed Bedstraw
    CatChweed Bedstraw Integrated Pest Management for Home Gardeners and Landscape Professionals Catchweed bedstraw, Galium aparine, LIFE CYCLE (Fig. 1), an annual weed belonging to Bedstraw is a winter or summer annual the Madder (Rubiaceae) family, can be in California with peak germination found throughout most of the world. in mid- to late December and second- The species name “aparine” comes ary germination in February or March from a Latin word meaning “to seize,” when soil is still cool and moist. Seed- which is very appropriate consider- lings (Fig. 4) can emerge even if they ing the clinging nature of this weed. are buried up to 3 inches deep in loose Catchweed bedstraw is known by soil. However, the seed will not sprout many names around the world includ- on the soil surface, as exposure to light Figure 1. Catchweed bedstraw. ing cleavers, bedstraw, stickywilly, inhibits germination. and “velcro plant.” Bedstraw is native to North America and can be found Bedstraw has a slender taproot and throughout California, particularly sprawling stems, and can tolerate in moist, shady areas. Bedstraw often freezing temperatures while in the veg- is an early colonizer of waste places, etative growth stage. This fast growing roadsides, and other disturbed sites; weed can flower in as little as eight however, it also can be a major weed weeks after germination; the flowers of crops such as cereals, hay, rapeseed, are self-pollinated and usually set seed and sugarbeet as well as home land- in late spring to mid-summer months. scapes and vegetable gardens. Two-lobed, spherical or slightly kidney- shaped fruit separate into two nutlets Figure 2.
    [Show full text]
  • Determining the Emergence Timing, Morphological Characteristics, and Species Composition of Galium Populations in Western Canada
    Determining the emergence timing, morphological characteristics, and species composition of Galium populations in western Canada A Thesis Submitted to the College of Graduate Studies and Research In Partial fulfillment of the Requirements For the Degree of Master of Science In the Department of Plant Sciences University of Saskatchewan Saskatoon By Andrea C. De Roo © Copyright Andrea C. De Roo, 2016. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying, publication, or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Request for permission to copy or to make other use of material in this thesis, in whole or part, should be addressed to: Head of the Department of Plant Sciences 51 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan (S7N 5A8) i Abstract Three species of Galium are commonly believed to thrive in western Canada; Galium aparine L., Galium spurium L.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Galium (Bedstraw)
    VC VR N I Galium Very Common Very Rare Native Introduced Lady’s Bedstraw (Galium verum) N Flowers small, yellow Plant does not have and spirally whorled recurved prickles. around the stem. Cleavers (Galium aparine) N VC Flowers small, white Plant with recurved and in clusters of 3-10. prickles which help with climbing and support. Leaves lanceolate and in The prickles on Galiums whorls of 6-8 around give them the ability to the stem. stick/cling onto objects. Northern Bedstraw (Galium boreale) N Flowers small, white Fruits of the plant with and in multiple clusters. recurved prickles. Leaves lanceolate with 3 veins and rough edges in whorls of 4-8 around the stem. Woodruff (Galium odoratum) N Flowers small, white Fruits of the plant with and in loose clusters. recurved prickles. Plant is scented. Leaves oblong- Associated with lanceolate in whorls of 8 woodland and damp around the stem. shaded areas. Marsh Bedstraw (Galium palustre) N VC Flowers small, white Plant with recurved and in loose clusters. prickles. Associated with wet ground, marshes, wet Leaves oblong- grasslands and even lanceolate in whorls of ditches. 4-6. Heath Bedstraw (Galium saxatile) N VC Leaves with forward Flowers small, white facing prickles. and in clusters. Leaves oblong- Mat-forming species lanceolate in whorls of Associated with dry 6-8. grasslands Limestone Bedstraw (Galium sterneri) N VR Flowers small, creamy Leaves have recurved white in clusters. prickles on the margins. Leaves linear in whorls Associated with of 6-8. limestone habitat. Hedge Bedstraw (Galium mollugo) I VR Flowers small, white and Small hairs on leaf in long loose clusters.
    [Show full text]
  • Melon Aphids Pink/ White Yellow Lavender Bronze Coral Red Leanne S
    Fall Mum Cultlvars Best for Containers. Melon Aphids Pink/ White Yellow lavender Bronze Coral Red Leanne S. Pundt Encore Anna Adorn Bandit Grenadine Bravo Extension Educator Frolic Cream Debonair Dark Serenade Buckeye Greenhouse 1PMCoordinator Hekla Frolic Emily Grenadine Minngopher Illusion Donna Lynn Dark Red Re Linda Fortune Megan Triumph markable Nicx>le Goldmine Naomi Denise Tolima Holly Small Ginger Jessica Wonder Grace ast season, many growers Legend Stardom Minnautumn LIhad difficulty managing Sunny Stargazer Mirage "black flies" on their chrysanthemums and other crops. Upon Morning Sundoro Remark closer inspection, growers found the melon or cotton aphid, Target Symphony able West Point Robin Aphisgossypii to be the culprit. Yellow Sandy The melon aphid has a wide host range including chrysan Illusion Sarah themums, Easter lilies, cineraria and begonias. Vegetables Yellow Shelley Triumph Tanaga such as tomatoes, potatoes, cucumbers and melons as well as Triumph herbaceous perennials including hollyhock, european colum Viking bine, dahlia, poppy, beebalm, gooseneck loosestrife, pen- stemon and forget-me-not and others may become infested. Fall Mum Cultlvars Best for Baskets. Different biotypes of the melon aphid may occur that will Pink/ vary in their host preference and degree of insecticide resis White Yellow Lavender Bronze Coral Red tance. In Japan, researchers have found melon aphids col Encore Allure Debonair Dark Grenadine Bravo lected from chrysanthemum which showed a higher level of Frolic Anna Emily Grenadine Red Re Hekla Donna Lynn Dark markable resistance than melon aphids collected from potato and egg Illusion Goldmine Megan Triumph plant. In this study, insecticide resistance was not always cor Linda Jessica Stardom Denise related with the frequency of insecticide application.
    [Show full text]
  • Smooth Bedstraw Management
    Smooth Bedstraw Management Smooth bedstraw (Galium mollugo L.) is becoming a serious weed in pastures, hayfields and field margins across the Maritime region (Figure 1). This plant typically occurs first along roadsides, progressively moving inwards. Its invasive nature allows smooth bedstraw to out-compete forage species, reducing the value of the stand. Smooth bedstraw is especially problematic within lower input forage areas. This weed contains the toxin anthraquinone that can cause systemic toxicity and skin Figure 1. Smooth bedstraw infestation within a New disorders in mammals. Poor animal Brunswick hayfield. performance on high diets of smooth bedstraw has been observed. Proper identification is essential for control. Identification Smooth bedstraw is a perennial plant with many, upright, square stems. These stems can be 25 to 120 cm (10 to 48 inches) long and tend to be weak. It is able to reproduce by seed and underground stems, contributing to the clumped growth habit. The entire plant is smooth to the touch and this fact is one distinction between smooth bedstraw and a related species, cleavers or rough bedstraw (Galium aparine L.) which is extremely rough and clinging to the touch. As shown in Figure 2, the leaves form a whorl (grouping of 6-8 leaves around the stem) and are typically 10-30 mm (3/8 to 1 1/8 inches) long by 2-4 mm (1/16 – 1/8 inch) wide. Flowers are clustered at the end of branches and are quite small (2-4 mm or 1/16 – 1/8 inch) with white petals (Figure 3). Flowering typically occurs in late June to early July, but may continue into August if the plants are cut.
    [Show full text]
  • Common Arable Weeds in Germany Support the Biodiversity of Arthropods and Birds
    Bachelorthesis Title: Common arable weeds in Germany support the biodiversity of arthropods and birds Submitted by: Naomi Sarah Bosch Submission date: 21.8.2020 Date of birth: 19.11.1997 Place of birth: Lauf a.d. Pegnitz Agrar- und Faculty of agricultural and Umweltwissenschaftliche Fakultät environmental sciences Studiengang Agrarwissenschaften Degree course Agricultural sciences Professur Phytomedizin Division Phytomedicine Betreuer / Supervisors: Prof. Dr. Bärbel Gerowitt Dr. Han Zhang The earth's vegetation is part of a web of life in which there are intimate and essential relations between plants and the earth, between plants and other plants, between plants and animals. Sometimes we have no choice but to disturb these relationships, but we should do so thoughtfully, with full awareness that we do may have consequences remote in time and place. - Rachel Carson, Silent Spring (1962) 2 Abstract Where have all the flowers gone? The intensification of agriculture, with its more efficient weed control methods, has led to significant changes in agroecosystems. Since 1950, the biodiversity of arable weeds in crops has sunk by more than 70%. At the same time, arthropods and birds have been in steep decline across all taxa in Germany and beyond. The global biodiversity loss is occurring at an alarming rate, but what is the role of arable weeds in supporting biodiversity? And how can the knowledge of the ecological value of arable weeds be integrated into practical farming? In this thesis, the 51 arable weed species and 3 weed genera that are most common in Germany were reviewed for their provision of food and shelter for the fauna.
    [Show full text]
  • Dehydration Process Influences the Phenolic Profile, Antioxidant And
    Industrial Crops & Products 120 (2018) 97–103 Contents lists available at ScienceDirect Industrial Crops & Products journal homepage: www.elsevier.com/locate/indcrop Dehydration process influences the phenolic profile, antioxidant and T antimicrobial properties of Galium aparine L. ⁎ Sylwia Senioa, Carla Pereiraa, Josiana Vaza, Marina Sokovicb, Lillian Barrosa, , ⁎ Isabel C.F.R. Ferreiraa, a Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal b University of Belgrade, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia ARTICLE INFO ABSTRACT Keywords: Galium aparine L. is a very disseminated plant in temperate zones, commonly known as clivers or bedstraw, Galium aparine L. belonging to the Rubiaceae family and it is traditionally used for its medicinal applications. In this study, G. Dehydration process aparine hydromethanolic extracts and infusions were prepared from air-dried and freeze-dried samples in order Phenolic compounds to assess their phenolic profile, antioxidant, antimicrobial, and cytotoxic properties. All the studied extracts Bioactive properties revealed a similar phenolic profile, but the hydromethanolic extract obtained from the freeze-dried sample presented the highest concentration of phenolic compounds, followed by the respective infusion and the air- dried sample hydromethanolic extract. The major compound detected in the extracts was 5-O-caffeoylquinic acid (from 145 to 163 mg/g extract). Regarding the bioactivity, in general, the extracts presenting higher phenolic concentrations also revealed enhanced bioactive properties. The EC50 values obtained in the antioxidant activity assays ranged from 13.5 to 884 μg/mL, with the freeze-dried sample hydromethanolic extract presenting the highest activity (13.5–555 μg/mL).
    [Show full text]
  • Rubiaceae): Evolution of Major Clades, Development of Leaf-Like Whorls, and Biogeography
    TAXON 59 (3) • June 2010: 755–771 Soza & Olmstead • Molecular systematics of Rubieae Molecular systematics of tribe Rubieae (Rubiaceae): Evolution of major clades, development of leaf-like whorls, and biogeography Valerie L. Soza & Richard G. Olmstead Department of Biology, University of Washington, Box 355325, Seattle, Washington 98195-5325, U.S.A. Author for correspondence: Valerie L. Soza, [email protected] Abstract Rubieae are centered in temperate regions and characterized by whorls of leaf-like structures on their stems. Previous studies that primarily included Old World taxa identified seven major clades with no resolution between and within clades. In this study, a molecular phylogeny of the tribe, based on three chloroplast regions (rpoB-trnC, trnC-psbM, trnL-trnF-ndhJ) from 126 Old and New World taxa, is estimated using parsimony and Bayesian analyses. Seven major clades are strongly supported within the tribe, confirming previous studies. Relationships within and between these seven major clades are also strongly supported. In addition, the position of Callipeltis, a previously unsampled genus, is identified. The resulting phylogeny is used to examine geographic distribution patterns and evolution of leaf-like whorls in the tribe. An Old World origin of the tribe is inferred from parsimony and likelihood ancestral state reconstructions. At least eight subsequent dispersal events into North America occurred from Old World ancestors. From one of these dispersal events, a radiation into North America, followed by subsequent diversification in South America, occurred. Parsimony and likelihood ancestral state reconstructions infer the ancestral whorl morphology of the tribe as composed of six organs. Whorls composed of four organs are derived from whorls with six or more organs.
    [Show full text]