Dehydration Process Influences the Phenolic Profile, Antioxidant And

Total Page:16

File Type:pdf, Size:1020Kb

Dehydration Process Influences the Phenolic Profile, Antioxidant And Industrial Crops & Products 120 (2018) 97–103 Contents lists available at ScienceDirect Industrial Crops & Products journal homepage: www.elsevier.com/locate/indcrop Dehydration process influences the phenolic profile, antioxidant and T antimicrobial properties of Galium aparine L. ⁎ Sylwia Senioa, Carla Pereiraa, Josiana Vaza, Marina Sokovicb, Lillian Barrosa, , ⁎ Isabel C.F.R. Ferreiraa, a Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal b University of Belgrade, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia ARTICLE INFO ABSTRACT Keywords: Galium aparine L. is a very disseminated plant in temperate zones, commonly known as clivers or bedstraw, Galium aparine L. belonging to the Rubiaceae family and it is traditionally used for its medicinal applications. In this study, G. Dehydration process aparine hydromethanolic extracts and infusions were prepared from air-dried and freeze-dried samples in order Phenolic compounds to assess their phenolic profile, antioxidant, antimicrobial, and cytotoxic properties. All the studied extracts Bioactive properties revealed a similar phenolic profile, but the hydromethanolic extract obtained from the freeze-dried sample presented the highest concentration of phenolic compounds, followed by the respective infusion and the air- dried sample hydromethanolic extract. The major compound detected in the extracts was 5-O-caffeoylquinic acid (from 145 to 163 mg/g extract). Regarding the bioactivity, in general, the extracts presenting higher phenolic concentrations also revealed enhanced bioactive properties. The EC50 values obtained in the antioxidant activity assays ranged from 13.5 to 884 μg/mL, with the freeze-dried sample hydromethanolic extract presenting the highest activity (13.5–555 μg/mL). Similar conclusions could be made in terms of antimicrobial properties, with this extract showing the lowest MIC (1.85–15 mg/mL), MBC (3.75–7.5 mg/mL), and MFC (3.75–20 mg/mL) values. None of the extracts revealed cytotoxicity. The results obtained in this study suggested that G. aparine extracts can be a good source of phenolic compounds with antioxidant and antimicrobial properties. 1. Introduction antioxidants to delay oxidation processes in foodstuffs and biological membranes has recently focused much attention (Lindsey et al., 2002; There are 350,000 plant species in the world, among which about Vlase et al., 2014), which has led to an increased antioxidant assess- 80,000 edible and yet, it is estimated that only about 150 species are ment of many medicinal and food plant species (Abbasi et al., 2015). In cultivated, directly for human consumption or as a feed for animals this matter, the traditional knowledge plays an essential role on the (Füleky, 2009). Numerous plant species that could provide excellent identification of plants that may be useful, however, in many instances sources of foodstuff as part of a balanced diet, pharmaceutical products, most of this knowledge survives in the people’s memory and is now in insecticides, food additives such as colorants and flavourings, or even a danger of disappearing (Fabricant and Farnsworth, 2001; Fennell et al., raw ingredient for the preparation of beverages, remain underutilized 2004; Jyotsna and Katewa, 2016). (Haq, 1993). Galium aparine L. (Rubiaceae), commonly known as clivers or bed- It is well-known that polyphenol-rich foods and beverages may in- straw is a common weed in temperate zones on all continents and in crease plasma antioxidant capacity, and plants are considered rich Europe, it occurs from Portugal in the west to Russia in the east, and sources of these secondary metabolites, with a variety of more than from the UK in the north to Italy in the south (CABI, 2018). It is an 8000 such compounds identified from various plant species (Pandey unwanted and troublesome plant species in cereal, rapeseed and sugar and Rizvi, 2009). Moreover, epidemiological data indicates that the beet fields where it is noted for its detrimental impact on the potential long term consumption of diets rich in plant polyphenols offers a pro- yields (Malik and Born, 1988). Traditionally, G. aparine has enjoyed a tection against the development of cancers, diabetes, osteoporosis, large number of medicinal applications for diverse health conditions. cardiovascular and neurodegenerative diseases (Pandey and Rizvi, Briefly, the whole herb (stem, leaf, flower and seed) has been com- 2009; Young and Woodside, 2001). The ability of these natural monly used as cooling diuretic in fevers and for urinary tract infections, ⁎ Corresponding authors. E-mail addresses: [email protected] (L. Barros), [email protected] (I.C.F.R. Ferreira). https://doi.org/10.1016/j.indcrop.2018.04.054 Received 5 February 2018; Received in revised form 14 March 2018; Accepted 19 April 2018 Available online 07 May 2018 0926-6690/ © 2018 Elsevier B.V. All rights reserved. S. Senio et al. Industrial Crops & Products 120 (2018) 97–103 in skin diseases such as eczema or psoriasis, ulcers, chronic sores, as a 2.3. Phenolic compounds blood purifier i.e., to increase lymphatic flow, to reduce swellings, in- fection and inflammation, or to stop bleeding from wounds (Tobyn The phenolic profile was determined by LC-DAD-ESI/MSn (Dionex et al., 2016). Ultimate 3000 UPLC, Thermo Scientific, San Jose, CA, USA). The lyo- Beyond these applications, in Sweden, roasted seeds of G. aparine philized infusions and hydromethanolic extracts were re-dissolved in were used as a coffee substitute (Malik and Born, 1988) and in Turkey, water and methanol/water mixture (80:20, v/v), respectively, at a young shoots of G. aparine are also eaten roasted (Taskin and Bitis, concentration of 5 mg/mL. Double online detection was used using a 2016) and used to coagulate milk, being known as “yogurt herb” DAD (280, 330, and 370 nm as preferred wavelengths) and in a mass (Aslantürk et al., 2017; Deliorman et al., 2001). Although the herb has spectrometer in negative mode, equipped with an ESI source (Linear Ion long history of its use in phytotherapy, and the contemporary time’s Trap LTQ XL mass spectrometer, Thermo Finnigan, San Jose, CA, USA), herbalists continue to use it as a diuretic, the pharmacological evidence as previously described by Bessada et al. (2016). supporting this efficiency is scarce. According to some reports, this The identification of the phenolic compounds was performed using plant is a source of polyphenols (Moubasher et al., 2016; Vlase et al., standard compounds, when available, by comparing their retention 2014), phytosterols (Mocan et al., 2016), alkaloids, anthraquinones, times, UV–vis and mass spectra; and also comparing the obtained in- saponins (Aslantürk et al., 2017), sesquiterpenoids, squalene, aromatic formation with available data reported in the literature, giving a ten- compounds, higher alkanes (and derivatives), fatty acids, chlorophylls, tative identification, when no standards were available. For quantita- carotenoids and iridoids (Deliorman et al., 2001; Goryacha et al., tive analysis, calibration curves (5–100 μg/mL) for each available 2014). phenolic standard (5-O-caffeoylquinic acid ≥ 99%, p-coumaric In order to establish scientific rationale for the use of G. aparine, the acid ≥ 90%, ferulic acid ≥ 90%, and quercetin-3-O-rutinoside ≥ 99% first aim of this study was to investigate the phenolic profile, anti- HPLC purity, Extrasynthèse, Genay, France) were constructed based on oxidant, antimicrobial and cytotoxic properties of hydromethanolic the UV signal. For the identified phenolic compounds for which a extracts and infusions prepared from this plant species. Furthermore, commercial standard was not available, the quantification was per- since medicinal plants are often dried and sold as semi- and processed formed through the calibration curve of the most similar available products, in this study, a freshly harvested botanical material was standard (Table 1). The results were expressed as mg/g of extract. prepared by air-drying and freeze-drying with the objective of ex- amining the effect of the drying method on the phenolic composition 2.4. Antioxidant activity and bioactive properties of G. aparine. For the antioxidant activity assessment, the lyophilized infusions 2. Material and methods and hydromethanolic extracts were re-dissolved in water and me- thanol/water mixture (80:20, v/v), respectively, at a final concentra- 2.1. Samples and samples preparation tion of 10 mg/mL. These stock solutions were further diluted to perform the bellow described assays. Galium aparine L. (Rubiaceae) was collected at various growth stages in order to prepare a homogeneous sample, in June 2017, from the 2.4.1. DPPH radical-scavenging activity assay campus of the Polytechnic Institute of Bragança, Portugal. The collected DPPH radical-scavenging activity was assessed using BioTek plant material was authenticated by Professor of Botany Carlos Aguiar ELX800 microplate Reader (Bio-Tek Instruments, Inc.; Winooski, USA). and a specimen voucher was deposited in the herbarium of the School The reaction mixture in each of the 96 wells consisted of the infusions of Agriculture, Polytechnic Institute of Bragança (Portugal). and hydromethanolic extracts at different concentrations (30 μL) and − The vegetal material (leaves, stems, flowers and seeds) was sub- methanolic solution (270 μL) containing DPPH radicals (6 × 10 5 mol/ jected to two drying methods, i.e., air-drying (one week, at room L). The mixture was left to stand for 60 min in the dark and at room temperature, in the dark) and freeze-drying (lyophilisation; FeeeZone temperature. The absorbance was measured at 515 nm to assess the 4.5, Labconco, Kansas City, MO, USA). The dried samples were reduced reduction of DPPH radicals, which was calculated as a percentage of to fine and homogeneous powder (∼20 mesh) and stored at room DPPH discolouration using the formula: [(A DPPH − A S)/A DPPH] × 100, temperature, protected from direct light, for further analysis. where A S is the absorbance of the solution containing the sample, and A DPPH is the absorbance of the DPPH solution (Rita et al., 2016).
Recommended publications
  • 28. GALIUM Linnaeus, Sp. Pl. 1: 105. 1753
    Fl. China 19: 104–141. 2011. 28. GALIUM Linnaeus, Sp. Pl. 1: 105. 1753. 拉拉藤属 la la teng shu Chen Tao (陈涛); Friedrich Ehrendorfer Subshrubs to perennial or annual herbs. Stems often weak and clambering, often notably prickly or “sticky” (i.e., retrorsely aculeolate, “velcro-like”). Raphides present. Leaves opposite, mostly with leaflike stipules in whorls of 4, 6, or more, usually sessile or occasionally petiolate, without domatia, abaxial epidermis sometimes punctate- to striate-glandular, mostly with 1 main nerve, occasionally triplinerved or palmately veined; stipules interpetiolar and usually leaflike, sometimes reduced. Inflorescences mostly terminal and axillary (sometimes only axillary), thyrsoid to paniculiform or subcapitate, cymes several to many flowered or in- frequently reduced to 1 flower, pedunculate to sessile, bracteate or bracts reduced especially on higher order axes [or bracts some- times leaflike and involucral], bracteoles at pedicels lacking. Flowers mostly bisexual and monomorphic, hermaphroditic, sometimes unisexual, andromonoecious, occasionally polygamo-dioecious or dioecious, pedicellate to sessile, usually quite small. Calyx with limb nearly always reduced to absent; hypanthium portion fused with ovary. Corolla white, yellow, yellow-green, green, more rarely pink, red, dark red, or purple, rotate to occasionally campanulate or broadly funnelform; tube sometimes so reduced as to give appearance of free petals, glabrous inside; lobes (3 or)4(or occasionally 5), valvate in bud. Stamens (3 or)4(or occasionally 5), inserted on corolla tube near base, exserted; filaments developed to ± reduced; anthers dorsifixed. Inferior ovary 2-celled, ± didymous, ovoid, ellipsoid, or globose, smooth, papillose, tuberculate, or with hooked or rarely straight trichomes, 1 erect and axile ovule in each cell; stigmas 2-lobed, exserted.
    [Show full text]
  • Catchweed Bedstraw
    CatChweed Bedstraw Integrated Pest Management for Home Gardeners and Landscape Professionals Catchweed bedstraw, Galium aparine, LIFE CYCLE (Fig. 1), an annual weed belonging to Bedstraw is a winter or summer annual the Madder (Rubiaceae) family, can be in California with peak germination found throughout most of the world. in mid- to late December and second- The species name “aparine” comes ary germination in February or March from a Latin word meaning “to seize,” when soil is still cool and moist. Seed- which is very appropriate consider- lings (Fig. 4) can emerge even if they ing the clinging nature of this weed. are buried up to 3 inches deep in loose Catchweed bedstraw is known by soil. However, the seed will not sprout many names around the world includ- on the soil surface, as exposure to light Figure 1. Catchweed bedstraw. ing cleavers, bedstraw, stickywilly, inhibits germination. and “velcro plant.” Bedstraw is native to North America and can be found Bedstraw has a slender taproot and throughout California, particularly sprawling stems, and can tolerate in moist, shady areas. Bedstraw often freezing temperatures while in the veg- is an early colonizer of waste places, etative growth stage. This fast growing roadsides, and other disturbed sites; weed can flower in as little as eight however, it also can be a major weed weeks after germination; the flowers of crops such as cereals, hay, rapeseed, are self-pollinated and usually set seed and sugarbeet as well as home land- in late spring to mid-summer months. scapes and vegetable gardens. Two-lobed, spherical or slightly kidney- shaped fruit separate into two nutlets Figure 2.
    [Show full text]
  • Determining the Emergence Timing, Morphological Characteristics, and Species Composition of Galium Populations in Western Canada
    Determining the emergence timing, morphological characteristics, and species composition of Galium populations in western Canada A Thesis Submitted to the College of Graduate Studies and Research In Partial fulfillment of the Requirements For the Degree of Master of Science In the Department of Plant Sciences University of Saskatchewan Saskatoon By Andrea C. De Roo © Copyright Andrea C. De Roo, 2016. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying, publication, or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Request for permission to copy or to make other use of material in this thesis, in whole or part, should be addressed to: Head of the Department of Plant Sciences 51 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan (S7N 5A8) i Abstract Three species of Galium are commonly believed to thrive in western Canada; Galium aparine L., Galium spurium L.
    [Show full text]
  • Pierre Huyghe (Paris, 1962)
    ENGLISH OTHER PLANTS IN THE VARIOUS BIOTOPES La Saison des Fêtes is a ‘living artwork’ by also spread out across the garden. There the French artist Pierre Huyghe (Paris, 1962). are also plants that keep the soil covered Huyghe is fascinated by the ambiguous way and that reinforce the atmosphere in that people relate to nature. He works in various places. many different media and creates, among other things, large-scale installations in La Saison des Fêtes reveals the connection between humans and nature in a stylized A. Tussock grass A. Tussock grass A. Wavy Hair-grass A. Sand sedge which animals or plants play a role. Deschampsia Deschampsia Deschampsia Carex arenaria manner. Here, art has forced nature into cespitosa cespitosa ‘Goldtau’ flexuosa In La Saison des Fêtes it involves plants: a certain order. Humans, in this case the a colourful collection of trees, shrubs, Kröller-Müller Museum, will have to continue perennials, annuals and bulbs, arranged in intervening in the natural development to a circular garden. The plants are related to maintain the artwork in its intended form. festivals and memorial days from all around the world, twenty in total and all selected With the flowering of the different plants by Pierre Huyghe. From the large, visually and the reference to the festivals, seasons A. Common rush A. Hairawn muhly B. Sweet woodruff B. Cinquefoils dominant palm tree to the tiny clover, all and months, La Saison des Fêtes remains constantly topical. The work is an important Juncus effusus Muhlenbergia Galium odoratum Potentilla tridentata the plants play a role in a celebration or capillaris ‘Nuuk’ commemoration, somewhere in the world.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • (Galium Aparine L.) and False Cleavers
    Molecular discrimination of Catchweed Bedstraw (Galium aparine L.) and False Cleavers (Galium spurium L.) in Western Canada Andrea De Roo, Peter Eckstein, Aaron Beattie and Chris Willenborg University of Saskatchewan, Saskatoon Galium spp. ▪ Three in Western Canada • Galium boreale L. • Galium aparine L. • Galium spurium L. ▪ Differences in habitat preferences ▪ Known differences in chromosome count in Galium aparine and Galium spurium Galium aparine vs. Galium spurium Importance to Weed Science ▪ Need for improved techniques ▪ Predict the movement of herbicide resistance ▪ Competitive characteristics ▪ Environmental restraints The Problem for Producers ▪ Presence of cleavers on the Prairies is increasing ▪ Difficult to determine species visually and cytogentically ▪ Solution: Look into DNA to tell them apart Project Objectives ▪ Identify variation within the ITS1-5.8S-ITS2 region in the cleavers genome that could be used to differentiate species ▪ Determine the speciation of various cleavers populations across western Canada What is the ITS Region? 18S 5.8S 26S ITS1 ITS2 Large Subunit RNA ITS1 → 18S 5.8S 26S ITS1 ITS2 ITS4 ▪ 5.8S gene is highly conserved ▪ ITS1 and ITS2 can readily evolve Methodology ▪ Cleaver DNA extracted from leaf material • Standard CTAB method ▪ ITS1-5.8S-ITS2 region isolated using polymerase chain reaction (PCR) ▪ Clone to isolate single copies ▪ Sequencing • Standard Sanger sequencing Developing Consensus Sequences ▪ 10 plant samples per population • Isolated and sequenced 3 copies of the target region • Total of 30 sequences for a consensus sequence ▪ Why? a) PCR coping introduces mistakes b) Sequencing introduces mistakes ▪ Robust sequences Variation at the ITS2 Variation in the 5.8S Gene Spurium – A Aparine – G Conclusions ▪ ITS region can successfully differentiate Galium spp.
    [Show full text]
  • Galium (Bedstraw)
    VC VR N I Galium Very Common Very Rare Native Introduced Lady’s Bedstraw (Galium verum) N Flowers small, yellow Plant does not have and spirally whorled recurved prickles. around the stem. Cleavers (Galium aparine) N VC Flowers small, white Plant with recurved and in clusters of 3-10. prickles which help with climbing and support. Leaves lanceolate and in The prickles on Galiums whorls of 6-8 around give them the ability to the stem. stick/cling onto objects. Northern Bedstraw (Galium boreale) N Flowers small, white Fruits of the plant with and in multiple clusters. recurved prickles. Leaves lanceolate with 3 veins and rough edges in whorls of 4-8 around the stem. Woodruff (Galium odoratum) N Flowers small, white Fruits of the plant with and in loose clusters. recurved prickles. Plant is scented. Leaves oblong- Associated with lanceolate in whorls of 8 woodland and damp around the stem. shaded areas. Marsh Bedstraw (Galium palustre) N VC Flowers small, white Plant with recurved and in loose clusters. prickles. Associated with wet ground, marshes, wet Leaves oblong- grasslands and even lanceolate in whorls of ditches. 4-6. Heath Bedstraw (Galium saxatile) N VC Leaves with forward Flowers small, white facing prickles. and in clusters. Leaves oblong- Mat-forming species lanceolate in whorls of Associated with dry 6-8. grasslands Limestone Bedstraw (Galium sterneri) N VR Flowers small, creamy Leaves have recurved white in clusters. prickles on the margins. Leaves linear in whorls Associated with of 6-8. limestone habitat. Hedge Bedstraw (Galium mollugo) I VR Flowers small, white and Small hairs on leaf in long loose clusters.
    [Show full text]
  • A Previously Unknown Contribution to the Ethnobotany of Ukraine and Poland Monika Kujawska1*†, Łukasz Łuczaj2† and Joanna Typek3
    Kujawska et al. Journal of Ethnobiology and Ethnomedicine (2015) 11:85 DOI 10.1186/s13002-015-0073-8 RESEARCH Open Access Fischer’s Lexicon of Slavic beliefs and customs: a previously unknown contribution to the ethnobotany of Ukraine and Poland Monika Kujawska1*†, Łukasz Łuczaj2† and Joanna Typek3 Abstract Background: Historical ethnobotanical studies are important, even if they are only descriptive, because they help to throw light on the missing chains needed for diachronic analysis. However, the documentation of traditional uses of plants in some countries, e.g. Ukraine, is still fragmentary. The aim of this contribution is to fill the gap and present a portion of the data set, from western Ukraine, which was collected by Adam Fischer, a Polish ethnographer from Lviv, in the 1930s. These data were originally gathered to be published in the first part of the Lexicon of Slavic beliefs and customs, dedicated to plant uses in traditional Slavonic culture. The idea of writing the Lexicon arose in 1929 during the I Congress of Slavic Philologists in Prague and was intended to be a joint international enterprise, but has never actually been fulfilled. Methods: In this article we used information from south-eastern Poland at that time – nowadays western Ukraine, collected in four provinces, 11 counties and 28 localities by Fischer’s collaborators. The majority of the information was accompanied by voucher specimens, which were determined by botanists at the Jan Kazimierz University. These data are still unpublished and stored on filecards in the archives of the Polish Ethnological Society in Wrocław, Poland. In our analysis we applied two indices: one to measure general plant versatility – Use Value, and another regarding medicinal plants – Relative Importance Value.
    [Show full text]
  • Number English Name Welsh Name Latin Name Availability Llysiau'r Dryw Agrimonia Eupatoria 32 Alder Gwernen Alnus Glutinosa 409 A
    Number English name Welsh name Latin name Availability Sponsor 9 Agrimony Llysiau'r Dryw Agrimonia eupatoria 32 Alder Gwernen Alnus glutinosa 409 Alder Buckthorn Breuwydd Frangula alnus 967 Alexanders Dulys Smyrnium olusatrum Kindly sponsored by Alexandra Rees 808 Allseed Gorhilig Radiola linoides 898 Almond Willow Helygen Drigwryw Salix triandra 718 Alpine Bistort Persicaria vivipara 782 Alpine Cinquefoil Potentilla crantzii 248 Alpine Enchanter's-nightshade Llysiau-Steffan y Mynydd Circaea alpina 742 Alpine Meadow-grass Poa alpina 1032 Alpine Meadow-rue Thalictrum alpinum 217 Alpine Mouse-ear Clust-y-llygoden Alpaidd Cerastium alpinum 1037 Alpine Penny-cress Codywasg y Mwynfeydd Thlaspi caerulescens 911 Alpine Saw-wort Saussurea alpina Not Yet Available 915 Alpine Saxifrage Saxifraga nivalis 660 Alternate Water-milfoil Myrdd-ddail Cylchynol Myriophyllum alterniflorum 243 Alternate-leaved Golden-saxifrageEglyn Cylchddail Chrysosplenium alternifolium 711 Amphibious Bistort Canwraidd y Dŵr Persicaria amphibia 755 Angular Solomon's-seal Polygonatum odoratum 928 Annual Knawel Dinodd Flynyddol Scleranthus annuus 744 Annual Meadow-grass Gweunwellt Unflwydd Poa annua 635 Annual Mercury Bresychen-y-cŵn Flynyddol Mercurialis annua 877 Annual Pearlwort Cornwlyddyn Anaf-flodeuog Sagina apetala 1018 Annual Sea-blite Helys Unflwydd Suaeda maritima 379 Arctic Eyebright Effros yr Arctig Euphrasia arctica 218 Arctic Mouse-ear Cerastium arcticum 882 Arrowhead Saethlys Sagittaria sagittifolia 411 Ash Onnen Fraxinus excelsior 761 Aspen Aethnen Populus tremula
    [Show full text]
  • Melon Aphids Pink/ White Yellow Lavender Bronze Coral Red Leanne S
    Fall Mum Cultlvars Best for Containers. Melon Aphids Pink/ White Yellow lavender Bronze Coral Red Leanne S. Pundt Encore Anna Adorn Bandit Grenadine Bravo Extension Educator Frolic Cream Debonair Dark Serenade Buckeye Greenhouse 1PMCoordinator Hekla Frolic Emily Grenadine Minngopher Illusion Donna Lynn Dark Red Re Linda Fortune Megan Triumph markable Nicx>le Goldmine Naomi Denise Tolima Holly Small Ginger Jessica Wonder Grace ast season, many growers Legend Stardom Minnautumn LIhad difficulty managing Sunny Stargazer Mirage "black flies" on their chrysanthemums and other crops. Upon Morning Sundoro Remark closer inspection, growers found the melon or cotton aphid, Target Symphony able West Point Robin Aphisgossypii to be the culprit. Yellow Sandy The melon aphid has a wide host range including chrysan Illusion Sarah themums, Easter lilies, cineraria and begonias. Vegetables Yellow Shelley Triumph Tanaga such as tomatoes, potatoes, cucumbers and melons as well as Triumph herbaceous perennials including hollyhock, european colum Viking bine, dahlia, poppy, beebalm, gooseneck loosestrife, pen- stemon and forget-me-not and others may become infested. Fall Mum Cultlvars Best for Baskets. Different biotypes of the melon aphid may occur that will Pink/ vary in their host preference and degree of insecticide resis White Yellow Lavender Bronze Coral Red tance. In Japan, researchers have found melon aphids col Encore Allure Debonair Dark Grenadine Bravo lected from chrysanthemum which showed a higher level of Frolic Anna Emily Grenadine Red Re Hekla Donna Lynn Dark markable resistance than melon aphids collected from potato and egg Illusion Goldmine Megan Triumph plant. In this study, insecticide resistance was not always cor Linda Jessica Stardom Denise related with the frequency of insecticide application.
    [Show full text]
  • Common Arable Weeds in Germany Support the Biodiversity of Arthropods and Birds
    Bachelorthesis Title: Common arable weeds in Germany support the biodiversity of arthropods and birds Submitted by: Naomi Sarah Bosch Submission date: 21.8.2020 Date of birth: 19.11.1997 Place of birth: Lauf a.d. Pegnitz Agrar- und Faculty of agricultural and Umweltwissenschaftliche Fakultät environmental sciences Studiengang Agrarwissenschaften Degree course Agricultural sciences Professur Phytomedizin Division Phytomedicine Betreuer / Supervisors: Prof. Dr. Bärbel Gerowitt Dr. Han Zhang The earth's vegetation is part of a web of life in which there are intimate and essential relations between plants and the earth, between plants and other plants, between plants and animals. Sometimes we have no choice but to disturb these relationships, but we should do so thoughtfully, with full awareness that we do may have consequences remote in time and place. - Rachel Carson, Silent Spring (1962) 2 Abstract Where have all the flowers gone? The intensification of agriculture, with its more efficient weed control methods, has led to significant changes in agroecosystems. Since 1950, the biodiversity of arable weeds in crops has sunk by more than 70%. At the same time, arthropods and birds have been in steep decline across all taxa in Germany and beyond. The global biodiversity loss is occurring at an alarming rate, but what is the role of arable weeds in supporting biodiversity? And how can the knowledge of the ecological value of arable weeds be integrated into practical farming? In this thesis, the 51 arable weed species and 3 weed genera that are most common in Germany were reviewed for their provision of food and shelter for the fauna.
    [Show full text]
  • Tarset and Greystead Biological Records
    Tarset and Greystead Biological Records published by the Tarset Archive Group 2015 Foreword Tarset Archive Group is delighted to be able to present this consolidation of biological records held, for easy reference by anyone interested in our part of Northumberland. It is a parallel publication to the Archaeological and Historical Sites Atlas we first published in 2006, and the more recent Gazeteer which both augments the Atlas and catalogues each site in greater detail. Both sets of data are also being mapped onto GIS. We would like to thank everyone who has helped with and supported this project - in particular Neville Geddes, Planning and Environment manager, North England Forestry Commission, for his invaluable advice and generous guidance with the GIS mapping, as well as for giving us information about the archaeological sites in the forested areas for our Atlas revisions; Northumberland National Park and Tarset 2050 CIC for their all-important funding support, and of course Bill Burlton, who after years of sharing his expertise on our wildflower and tree projects and validating our work, agreed to take this commission and pull everything together, obtaining the use of ERIC’s data from which to select the records relevant to Tarset and Greystead. Even as we write we are aware that new records are being collected and sites confirmed, and that it is in the nature of these publications that they are out of date by the time you read them. But there is also value in taking snapshots of what is known at a particular point in time, without which we have no way of measuring change or recognising the hugely rich biodiversity of where we are fortunate enough to live.
    [Show full text]