Portable Optical Ground Stations for Satellite Communication Kathleen Michelle Riesing

Total Page:16

File Type:pdf, Size:1020Kb

Portable Optical Ground Stations for Satellite Communication Kathleen Michelle Riesing Portable Optical Ground Stations for Satellite Communication by Kathleen Michelle Riesing B.S.E., Princeton University (2013) S.M., Massachusetts Institute of Technology (2015) Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 ○c Massachusetts Institute of Technology 2018. All rights reserved. Author............................................................................ Department of Aeronautics and Astronautics May 24, 2018 Certified by. Kerri L. Cahoy Associate Professor of Aeronautics and Astronautics Thesis Supervisor Certified by. David W. Miller Jerome Hunsaker Professor of Aeronautics and Astronautics Certified by. Sertac Karaman Associate Professor of Aeronautics and Astronautics Certified by. Jamie W. Burnside Senior Staff Member, MIT Lincoln Laboratory Accepted by....................................................................... Hamsa Balakrishnan Associate Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 Portable Optical Ground Stations for Satellite Communication by Kathleen Michelle Riesing Submitted to the Department of Aeronautics and Astronautics on May 24, 2018, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aeronautics and Astronautics Abstract Small satellite technical capabilities continue to grow and launch opportunities are rapidly expanding. Several commercial constellations of small satellites for Earth observation and communications are making their way onto orbit, increasing the need for high bandwidth data downlink. Laser communications (lasercom) has the potential to achieve high data rates with a reduction in power and size compared to radio frequency (RF) communications, while simultaneously avoiding the significant regulatory burden of RF spectrum allocation. Lasercom benefits from high carrier frequencies and narrow beamwidths, butthe resulting challenge is to precisely point these beams between transmit and receive terminals. Arcsecond to sub-arcsecond pointing is required from both the space ter- minal and the ground station. While existing lasercom ground stations have primarily utilized professional telescopes at observatory-class facilities, making optical ground stations more affordable and transportable is a key enabler for expanding lasercom to small satellites and new applications, as well as establishing networks to mitigate the effects of weather. This thesis focuses on the development of a portable optical ground station utiliz- ing a commercial off-the-shelf (COTS), low-cost telescope. The Portable Telescope for Lasercom (PorTeL) reduces mass and cost by at least 10× compared with existing op- tical ground stations. To enable the use of a low-cost telescope, several contributions are made to the state-of-the-art approach to optical ground station design, point- ing, and tracking. A system architecture is proposed that enables rapid deployment in approximately 30 minutes and that is capable of tracking satellites in low-Earth orbit (LEO) to within arcseconds of accuracy. A novel telescope calibration algo- rithm is developed that is agnostic to initial mount/telescope orientation and utilizes a star tracker for rapid, automated alignment. This eliminates the need for manual pre-alignment (e.g., leveling of the mount) and provides a generic framework that ex- tends to different mount types. An approach to tracking LEO objects to betterthan 5 arcseconds RMS using only two-line element sets (TLEs) and low-cost hardware is presented. Pointing and tracking algorithms and performance are validated by using a physical ground station setup to track LEO objects, including the International Space Station (ISS). 3 Thesis Supervisor: Kerri L. Cahoy Title: Associate Professor of Aeronautics and Astronautics Thesis Committee Member: David W. Miller Title: Jerome Hunsaker Professor of Aeronautics and Astronautics Thesis Committee Member: Sertac Karaman Title: Associate Professor of Aeronautics and Astronautics Thesis Committee Member: Jamie W. Burnside Title: Senior Staff Member, MIT Lincoln Laboratory 4 Acknowledgments This research has been supported by NASA Space Technology Research Fellow- ship Grant #NNX14AL61H. Thank you to NASA, my NSTRF mentor Dr. Michael Krainak, and the entire NSTRF team for facilitating my graduate research, providing generous funding to attend conferences and travel for work, and for the opportunity to do internships at NASA JPL and NASA GSFC. My graduate school experience would not have been nearly as rewarding without this fellowship. Thank you also to the MIT Deshpande Center for Technological Innovation for providing an Innovation Grant that in part supported my research. A special thank you to my committee members, Prof. David Miller, Prof. Sertac Karaman, Jamie Burnside, and in particular my thesis advisor Prof. Kerri Cahoy, who tirelessly advocates for me and all of her students. Thank you also to Anthony Zolnik, whose support made testing from the roof of MIT Building 37 possible. To all my friends in STAR Lab and SSL – Kit, Tam, Charlotte, Pratik, and many more – thank you for making grad school fun. Thank you to Hyosang Yoon for being both a great friend and mentor – apart from classes, you have taught me the most in my time at MIT and have helped me whenever I’ve asked. Also, special thanks to David Sternberg and Chris Jewison for being one year older and wiser and guiding me through the process. You guys have been great coaches, friends, and therapists. Thank you to Emily Clements – it has been so helpful having an officemate who can review my work and remind me of important deadlines. Thank you to Britta Kelley for being a continual source of support and laughter. Finally, this thesis would not have been possible without my family. Many people say this, but few mean it quite so literally. When January in Boston brought a week of single-digit temperatures and subsequent panic about collecting enough data for my thesis, I packed up my equipment and drove south. My dad and grandpa’s Florida vacation turned into a long attempt to track satellites. Thanks Dad and Grandpa for letting me crash your vacation and helping me drag my telescope out into a field at 4 AM. The next stop was my grandparent’s house in North Carolina, where my grandpa, mom, and aunt provided the same level of support while my brother in Atlanta waited on-call in case of clouds. Those three weeks reflected a lifetime’s worth of unwavering support and self-sacrifice. Let it never be said that the telescope wasn’t portable. 5 6 Contents 1 Introduction 17 1.1 Motivation . 18 1.1.1 Laser Communication for Small Satellites . 18 1.1.2 Optical Ground Networks . 20 1.1.3 Communication for Rapid Response . 21 1.1.4 Space Situational Awareness . 22 1.2 Ground Station Overview . 22 1.2.1 Atmospheric Effects . 22 1.2.2 Components . 23 1.3 Ground Station Challenges . 26 1.3.1 Pointing, Acquisition, and Tracking . 26 1.3.2 Cost and Transportability . 28 1.4 Thesis Contributions and Roadmap . 30 2 Ground Station Design 33 2.1 Literature Review . 33 2.1.1 Fixed Optical Ground Stations . 33 2.1.2 Transportable Optical Ground Stations . 39 2.1.3 Summary and Research Gap . 42 2.2 Portable Telescope for Lasercom . 43 2.2.1 Architecture . 43 2.2.2 Hardware . 45 2.2.3 Pointing and Tracking Requirements . 50 3 Pointing Model 53 3.1 Problem Description . 53 3.2 Literature Review . 55 3.2.1 Professional Telescopes . 55 7 3.2.2 Amateur Telescopes . 57 3.2.3 Research Gap . 59 3.3 Formulation . 60 3.4 Calibration . 64 3.4.1 Coarse Calibration . 64 3.4.2 Fine Calibration . 64 3.5 Gimbal Angle and Rate Commands . 67 4 Satellite Tracking 71 4.1 Problem Description . 71 4.2 Literature Review . 72 4.2.1 Optical Ground Stations . 72 4.2.2 Amateur Telescopes . 73 4.2.3 Research Gap . 74 4.3 Approach . 75 4.3.1 Coarse Stage . 76 4.3.2 Fine Stage . 80 5 Operation and Results 83 5.1 Ground Station Deployment . 83 5.1.1 Physical Setup . 83 5.1.2 Test Locations . 84 5.2 Calibration of Pointing Model . 85 5.3 Star Pointing Results . 90 5.4 Satellite Tracking Results . 92 5.4.1 Coarse Tracking . 92 5.4.2 Fine Tracking . 94 6 Conclusion 103 6.1 Summary . 103 6.2 Contributions . 104 6.3 Future Work . 105 A Vector Notation 109 B Quaternion Conventions 111 8 Nomenclature Acronyms AFRL Air Force Research Laboratory AO Adaptive optics APD Avalanche photodiode BPSK Binary phase shift keying CMOS Complementary metal–oxide–semiconductor COTS Commercial off-the-shelf DLR German Aerospace Center (German: Deutsches Zentrum für Luft- und Raumfahrt) DOF Degree(s) of freedom EKF Extended Kalman filter ERS European Remote Sensing Satellite ESA European Space Agency FCC Federal Communications Commission FOV Field of view FSM Fast-steering mirror Gbps Gigabit per second GEO Geostationary orbit 9 INNOVA IN-orbit and Networked Optical Ground Stations Experimental Veri- fication Advanced Testbed IR Infrared ISS International Space Station JAXA Japan Aerospace Exploration Agency JPL Jet Propulsion Laboratory JSpOC Joint Space Operations Center LCRD Laser Communications Relay Demonstration LEO Low-Earth orbit LLCD Lunar Laser Communication Demonstration LLGT Lunar Lasercom Ground Terminal LOS Line-of-sight LUCE Laser Utilizing Communications Equipment Mbps Megabit per second MITLL Massachusetts Institute of Technology Lincoln Laboratory NASA National Aeronautics and Space Administration NICT National
Recommended publications
  • Handbookhandbook Mobile-Satellite Service (MSS) Handbook
    n International Telecommunication Union Mobile-satellite service (MSS) HandbookHandbook Mobile-satellite service (MSS) Handbook *00000* Edition 2002 Printed in Switzerland Geneva, 2002 ISBN 92-61-09951-3 Radiocommunication Bureau Edition 2002 THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 6141 English Telephone: +41 22 730 6142 French Telephone: +41 22 730 6143 Spanish Fax: +41 22 730 5194 Telex: 421 000 uit ch Telegram: ITU GENEVE E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ITU 2002 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union HandbookHandbook Mobile-satellite service (MSS) Radiocommunication Bureau Edition 2002 - iii - FOREWORD In today’s world, people have become increasingly mobile in both their work and play.
    [Show full text]
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • The "Bug" Heard 'Round the World
    ACM SIGSOFT SOFTWAREENGINEERING NOTES, Vol 6 No 5, October 1981 Page 3 THE "BUG" HEARD 'ROUND THE WORLD Discussion of the software problem which delayed the first Shuttle orbital flight JohnR. Garman Cn April 10, 1981, about 20 minutes prior to the scheduled launching of the first flight of America's Space Transportation System, astronauts and technicians attempted to initialize the software system which "backs-up" the quad-redundant primary software system ...... and could not. In fact, there was no possible way, it turns out, that the BFS (Backup Flight Control System) in the fifth onboard computer could have been initialized , Froperly with the PASS (Primary Avionics Software System) already executing in the other four computers. There was a "bug" - a very small, very improbable, very intricate, and very old mistake in the initialization logic of the PASS. It was the type of mistake that gives programmers and managers alike nightmares - and %heoreticians and analysts endless challenge. I% was the kind of mistake that "cannot happen" if one "follows all the rules" of good software design and implementation. It was the kind of mistake that can never be ruled out in the world of real systems development: a world involving hundreds of programmers and analysts, thousands of hours of testing and simulation, and millions of pages of design specifications, implementation schedules, and test plans and reports. Because in that world, software is in fact "soft" - in a large complex real time control system like the Shuttle's avionics system, software is pervasive and, in virtually every case, the last subsystem to stabilize.
    [Show full text]
  • Lasercom Uncertainty Modeling and Optimization Simulation (LUMOS)
    Clements, E. et al. (2019): JoSS, Vol. 8, No. 1, pp. 815–836 (Peer-reviewed article available at www.jossonline.com) www.adeepakpublishing.com www. JoSSonline.com Lasercom Uncertainty Modeling and Optimization Simulation (LUMOS): A Statistical Approach to Risk-Tolerant Systems Engineering for Small Satellites Emily Clements, Jeffrey Mendenhall, and David Caplan MIT Lincoln Laboratory Lexington, Massachusetts US Kerri Cahoy Massachusetts Institute of Technology Cambridge, Massachusetts US Abstract In contrast to large-budget space missions, risk-tolerant platforms such as nanosatellites may be better posi- tioned to exchange moderate performance uncertainty for reduced cost and improved manufacturability. New uncertainty-based systems engineering approaches such as multidisciplinary optimization require the use of inte- grated performance models with input distributions, which do not yet exist for complex systems, such as laser communications (lasercom) payloads. This paper presents our development of a statistical, risk-tolerant systems engineering approach and apply it to nanosatellite-based design and architecture problems to investigate whether adding a statistical element to systems engineering enables improvements in performance, manufacturability, and cost. The scope of this work is restricted to a subset of nanosatellite-based lasercom systems, which are particu- larly useful given current momentum to field Earth-observing nanosatellite constellations and increasing chal- lenges for data retrieval. We built uncertainty-based lasercom
    [Show full text]
  • Executive Summary of the ICAO Position for ITU WRC-15 Radio
    Executive Summary of the ICAO Position for ITU WRC-15 Radio frequency spectrum is a scarce natural resource with finite capacity for which demand is constantly increasing. The requirements of civil aviation as well as other spectrum users continue to grow at a fast pace, thus creating an ever-increasing pressure to an already stretched resource. International competition between radio services obliges all spectrum users, aeronautical and non- aeronautical alike, to continually defend and justify retention of existing or addition of new frequency bands. The ICAO Position aims at protecting aeronautical frequency spectrum for all radiocommunication and radionavigation systems used for ground facilities and on board aircraft. The ICAO Position addresses all radioregulatory aspects on aeronautical matters on the agenda for the WRC-15. The items of main concern to aviation include the following: identification of additional frequency bands for the International Mobile Telecommunications (IMT). Under this agenda item, the telecommunications industry is seeking up to 1200 MHz of additional spectrum in the 300 MHz to 6 GHz range for mobile and broadband applications. It is expected that a number of aeronautical frequency bands will come under pressure for potential repurposing, especially some of the Primary Surveillance Radar (PSR) bands. Existing frequency allocations which are vital for the operation of aeronautical very small aperture terminal (VSAT) ground-ground communication networks, especially in tropical regions, are also expected to come under pressure. Due to decisions made by a previous WRC, this has already become a problematic issue in Africa. WRC-15 agenda items 1.1 and 9.1.5 refer; potential radioregulatory means to facilitate the use of non-safety satellite service frequency bands for a very safety-critical application, the command and control link for remotely piloted aircraft systems (RPAS) in non-segregated airspace.
    [Show full text]
  • An Assessment of Aerocapture and Applications to Future Missions
    Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission.
    [Show full text]
  • Magnetoshell Aerocapture: Advances Toward Concept Feasibility
    Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2018 Committee: Uri Shumlak, Chair Justin Little Program Authorized to Offer Degree: Aeronautics & Astronautics c Copyright 2018 Charles L. Kelly University of Washington Abstract Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly Chair of the Supervisory Committee: Professor Uri Shumlak Aeronautics & Astronautics Magnetoshell Aerocapture (MAC) is a novel technology that proposes to use drag on a dipole plasma in planetary atmospheres as an orbit insertion technique. It aims to augment the benefits of traditional aerocapture by trapping particles over a much larger area than physical structures can reach. This enables aerocapture at higher altitudes, greatly reducing the heat load and dynamic pressure on spacecraft surfaces. The technology is in its early stages of development, and has yet to demonstrate feasibility in an orbit-representative envi- ronment. The lack of a proof-of-concept stems mainly from the unavailability of large-scale, high-velocity test facilities that can accurately simulate the aerocapture environment. In this thesis, several avenues are identified that can bring MAC closer to a successful demonstration of concept feasibility. A custom orbit code that dynamically couples magnetoshell physics with trajectory prop- agation is developed and benchmarked. The code is used to simulate MAC maneuvers for a 60 ton payload at Mars and a 1 ton payload at Neptune, both proposed NASA mis- sions that are not possible with modern flight-ready technology. In both simulations, MAC successfully completes the maneuver and is shown to produce low dynamic pressures and continuously-variable drag characteristics.
    [Show full text]
  • Minotaur I User's Guide
    This page left intentionally blank. Minotaur I User’s Guide Revision Summary TM-14025, Rev. D REVISION SUMMARY VERSION DOCUMENT DATE CHANGE PAGE 1.0 TM-14025 Mar 2002 Initial Release All 2.0 TM-14025A Oct 2004 Changes throughout. Major updates include All · Performance plots · Environments · Payload accommodations · Added 61 inch fairing option 3.0 TM-14025B Mar 2014 Extensively Revised All 3.1 TM-14025C Sep 2015 Updated to current Orbital ATK naming. All 3.2 TM-14025D Sep 2018 Branding update to Northrop Grumman. All 3.3 TM-14025D Sep 2020 Branding update. All Updated contact information. Release 3.3 September 2020 i Minotaur I User’s Guide Revision Summary TM-14025, Rev. D This page left intentionally blank. Release 3.3 September 2020 ii Minotaur I User’s Guide Preface TM-14025, Rev. D PREFACE This Minotaur I User's Guide is intended to familiarize potential space launch vehicle users with the Mino- taur I launch system, its capabilities and its associated services. All data provided herein is for reference purposes only and should not be used for mission specific analyses. Detailed analyses will be performed based on the requirements and characteristics of each specific mission. The launch services described herein are available for US Government sponsored missions via the United States Air Force (USAF) Space and Missile Systems Center (SMC), Advanced Systems and Development Directorate (SMC/AD), Rocket Systems Launch Program (SMC/ADSL). For technical information and additional copies of this User’s Guide, contact: Northrop Grumman
    [Show full text]
  • 187 Part 87—Aviation Services
    Federal Communications Commission Pt. 87 the ship aboard which the ship earth determination purposes under the fol- station is to be installed and operated. lowing conditions: (b) A station license for a portable (1) The radio transmitting equipment ship earth station may be issued to the attached to the cable-marker buoy as- owner or operator of portable earth sociated with the ship station must be station equipment proposing to furnish described in the station application; satellite communication services on (2) The call sign used for the trans- board more than one ship or fixed off- mitter operating under the provisions shore platform located in the marine of this section is the call sign of the environment. ship station followed by the letters ``BT'' and the identifying number of [52 FR 27003, July 17, 1987, as amended at 54 the buoy. FR 49995, Dec. 4, 1989] (3) The buoy transmitter must be § 80.1187 Scope of communication. continuously monitored by a licensed radiotelegraph operator on board the Ship earth stations must be used for cable repair ship station; and telecommunications related to the (4) The transmitter must operate business or operation of ships and for under the provisions in § 80.375(b). public correspondence of persons on board. Portable ship earth stations are authorized to meet the business, oper- PART 87ÐAVIATION SERVICES ational and public correspondence tele- communication needs of fixed offshore Subpart AÐGeneral Information platforms located in the marine envi- Sec. ronment as well as ships. The types of 87.1 Basis and purpose. emission are determined by the 87.3 Other applicable rule parts.
    [Show full text]
  • Federal Communications Commission § 80.110
    SUBCHAPTER D—SAFETY AND SPECIAL RADIO SERVICES PART 80—STATIONS IN THE 80.71 Operating controls for stations on land. MARITIME SERVICES 80.72 Antenna requirements for coast sta- tions. Subpart A—General Information 80.74 Public coast station facilities for a te- lephony busy signal. GENERAL 80.76 Requirements for land station control Sec. points. 80.1 Basis and purpose. 80.2 Other regulations that apply. STATION REQUIREMENTS—SHIP STATIONS 80.3 Other applicable rule parts of this chap- 80.79 Inspection of ship station by a foreign ter. Government. 80.5 Definitions. 80.80 Operating controls for ship stations. 80.7 Incorporation by reference. 80.81 Antenna requirements for ship sta- tions. Subpart B—Applications and Licenses 80.83 Protection from potentially hazardous RF radiation. 80.11 Scope. 80.13 Station license required. OPERATING PROCEDURES—GENERAL 80.15 Eligibility for station license. 80.17 Administrative classes of stations. 80.86 International regulations applicable. 80.21 Supplemental information required. 80.87 Cooperative use of frequency assign- 80.25 License term. ments. 80.31 Cancellation of license. 80.88 Secrecy of communication. 80.37 One authorization for a plurality of 80.89 Unauthorized transmissions. stations. 80.90 Suspension of transmission. 80.39 Authorized station location. 80.91 Order of priority of communications. 80.41 Control points and dispatch points. 80.92 Prevention of interference. 80.43 Equipment acceptable for licensing. 80.93 Hours of service. 80.45 Frequencies. 80.94 Control by coast or Government sta- 80.47 Operation during emergency. tion. 80.49 Construction and regional service re- 80.95 Message charges.
    [Show full text]
  • Cosmos: a Spacetime Odyssey (2014) Episode Scripts Based On
    Cosmos: A SpaceTime Odyssey (2014) Episode Scripts Based on Cosmos: A Personal Voyage by Carl Sagan, Ann Druyan & Steven Soter Directed by Brannon Braga, Bill Pope & Ann Druyan Presented by Neil deGrasse Tyson Composer(s) Alan Silvestri Country of origin United States Original language(s) English No. of episodes 13 (List of episodes) 1 - Standing Up in the Milky Way 2 - Some of the Things That Molecules Do 3 - When Knowledge Conquered Fear 4 - A Sky Full of Ghosts 5 - Hiding In The Light 6 - Deeper, Deeper, Deeper Still 7 - The Clean Room 8 - Sisters of the Sun 9 - The Lost Worlds of Planet Earth 10 - The Electric Boy 11 - The Immortals 12 - The World Set Free 13 - Unafraid Of The Dark 1 - Standing Up in the Milky Way The cosmos is all there is, or ever was, or ever will be. Come with me. A generation ago, the astronomer Carl Sagan stood here and launched hundreds of millions of us on a great adventure: the exploration of the universe revealed by science. It's time to get going again. We're about to begin a journey that will take us from the infinitesimal to the infinite, from the dawn of time to the distant future. We'll explore galaxies and suns and worlds, surf the gravity waves of space-time, encounter beings that live in fire and ice, explore the planets of stars that never die, discover atoms as massive as suns and universes smaller than atoms. Cosmos is also a story about us. It's the saga of how wandering bands of hunters and gatherers found their way to the stars, one adventure with many heroes.
    [Show full text]
  • Southwest Region Spectrum Management Handbook
    ORDER SW 6050.12A SOUTHWEST REGION SPECTRUM MANAGEMENT HANDBOOK (Date of Order to be entered at time of ASW-400 signature) DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Distribution: A-X-5; A-FAF/AT-0 (STD) Initiated By: ASW-473 RECORD OF CHANGES DIRECTIVE NO. SW 6050.12A CHANGE SUPPLEMENTS OPTIONAL CHANGE SUPPLEMENTS OPTIONAL TO TO BASIC BASIC 12/12/01 SW 6050.12A FOREWORD The radio frequency spectrum is a finite, vital, and very limited natural resource available to all countries of the world. This international resource serves mankind in innumerable ways, and each country exercises its own sovereign rights in the use of the electromagnetic waves. Because the radio spectrum knows no bounds, its use cannot be restricted to individual countries. Requirements for use of this resource generally exceed the amount available; therefore, it is necessary that international, national, and regional spectrum management be rigidly practiced. The purpose of this spectrum management order is to present radio frequency spectrum information, guidance, and policy to those organizations using or administrating the radio frequency spectrum within the Southwest Region. Marcos Costilla Manager, Airway Facilities Division Page i (and ii) SW 6050.12A 12/12/01 Page ii 12/12/01 SW 6050.12A TABLE OF CONTENTS CHAPTER 1. ORGANIZATION, AUTHORITY AND RESPONSIBILITY 1. Purpose..................................................................................................................................................................... 1 2. Distribution..............................................................................................................................................................
    [Show full text]