Investigating the Mysteries of Reproduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines. -
Caesarean Section Or Vaginal Delivery in the 21St Century
CAESAREAN SECTION OR VAGINAL DELIVERY IN THE 21ST CENTURY ntil the 20th Century, caesarean fluid embolism. The absolute risk of trans-placentally to the foetus, prepar- section (C/S) was a feared op- death with C/S in high and middle- ing the foetus to adopt its mother’s Ueration. The ubiquitous classical resource settings is between 1/2000 and microbiome. C/S interferes with neonatal uterine incision meant high maternal 1/4000 (2, 3). In subsequent pregnancies, exposure to maternal vaginal and skin mortality from bleeding and future the risk of placenta previa, placenta flora, leading to colonization with other uterine rupture. Even with aseptic surgi- accreta and uterine rupture is increased. environmental microbes and an altered cal technique, sepsis was common and These conditions increase maternal microbiome. Routine antibiotic exposure lethal without antibiotics. The operation mortality and severe maternal morbid- with C/S likely alters this further. was used almost solely to save the life of ity cumulatively with each subsequent Microbial exposure and the stress of a mother in whom vaginal delivery was C/S. This is of particular importance to labour also lead to marked activation extremely dangerous, such as one with women having large families. of immune system markers in the cord placenta previa. Foetal death and the use blood of neonates born vaginally or by of intrauterine foetal destructive proce- Maternal Benefits C/S after labour. These changes are absent dures, which carry their own morbidity, C/S has a modest protective effect against in the cord blood of neonates born by were often preferable to C/S. -
Western Spotted Catshark, Asymbolus Occiduus
Published Date: 1 March 2019 Western Spotted Catshark, Asymbolus occiduus Report Card Sustainable assessment IUCN Red List IUCN Red List Australian Endemic to Australia Global Least Concern Assessment Assessment Assessors Simpfendorfer, C. & Heupel, M.R. Report Card Remarks Little known shark with limited fishing across its range Summary The Western Spotted Catshark is a small, little known temperate catshark. It is endemic to southern Australia and has a reasonably large geographic and depth range. The species is unlikely to Source: CSIRO National Fish Collection. License: CC BY Attribution be negatively affected by commercial fisheries because there is limited fishing throughout its range. Therefore, it is assessed as Least Concern (IUCN) and Sustainable (SAFS). Distribution The Western Spotted Catshark is distributed along the southern and western coasts of Australia from Fowlers Bay (South Australia) to Perth (Western Australia) (Last and Stevens 2009). Stock structure and status There is currently no information on population size, structure, or trend for the species. Fisheries The Western Spotted Catshark is caught incidentally and very infrequently in the Southern and Eastern Scalefish and Shark Fishery (SESSF). An estimated 69 kg of the species were caught and discarded annually from 2000 to 2006 (Walker and Gason 2007). Habitat and biology The Western Spotted Catshark is found at depths of 98 to 400 m and is most abundant on the outer continental shelf and common off the Western Australian coast. The biology of the species is almost entirely unknown. Adults and juveniles differ significantly in their colour patterns and the association between the two forms was only made recently (Last and Stevens 2009). -
An Introduction to the Classification of Elasmobranchs
An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved. -
Evolution of Oviductal Gestation in Amphibians MARVALEE H
THE JOURNAL OF EXPERIMENTAL ZOOLOGY 266394-413 (1993) Evolution of Oviductal Gestation in Amphibians MARVALEE H. WAKE Department of Integrative Biology and Museum of Vertebrate Zoology, University of California,Berkeley, California 94720 ABSTRACT Oviductal retention of developing embryos, with provision for maternal nutrition after yolk is exhausted (viviparity) and maintenance through metamorphosis, has evolved indepen- dently in each of the three living orders of amphibians, the Anura (frogs and toads), the Urodela (salamanders and newts), and the Gymnophiona (caecilians). In anurans and urodeles obligate vivi- parity is very rare (less than 1%of species); a few additional species retain the developing young, but nutrition is yolk-dependent (ovoviviparity) and, at least in salamanders, the young may be born be- fore metamorphosis is complete. However, in caecilians probably the majority of the approximately 170 species are viviparous, and none are ovoviviparous. All of the amphibians that retain their young oviductally practice internal fertilization; the mechanism is cloaca1 apposition in frogs, spermato- phore reception in salamanders, and intromission in caecilians. Internal fertilization is a necessary but not sufficient exaptation (sensu Gould and Vrba: Paleobiology 8:4-15, ’82) for viviparity. The sala- manders and all but one of the frogs that are oviductal developers live at high altitudes and are subject to rigorous climatic variables; hence, it has been suggested that cold might be a “selection pressure” for the evolution of egg retention. However, one frog and all the live-bearing caecilians are tropical low to middle elevation inhabitants, so factors other than cold are implicated in the evolu- tion of live-bearing. -
Management of Neonates Born at ≤34 6/7 Weeks' Gestation with Suspected Or Proven Early-Onset Bacterial Sepsis Karen M
CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care ≤ ’ Management of Neonates Born at 34 Karen M. Puopolo, MD, PhD, FAAP, a, b William E. Benitz, MD, FAAP, c Theoklis E. Zaoutis, MD, MSCE, FAAP, a, d 6/7COMMITTEE ONWeeks FETUS AND NEWBORN, GestationCOMMITTEE ON INFECTIOUS DISEASES With Suspected or Proven Early-Onset Bacterial Sepsis Early-onset sepsis (EOS) remains a serious and often fatal illness among abstract infants born preterm, particularly among newborn infants of the lowest gestational age. Currently, most preterm infants with very low birth weight are treated empirically with antibiotics for risk of EOS, often for prolonged aDepartment of Pediatrics, Perelman School of Medicine, University periods, in the absence of a culture-confirmed infection. Retrospective of Pennsylvania, Philadelphia, Pennsylvania; bChildren’s Hospital of studies have revealed that antibiotic exposures after birth are associated Philadelphia, and dRoberts Center for Pediatric Research, Philadelphia, Pennsylvania; and cDivision of Neonatal and Developmental Medicine, with multiple subsequent poor outcomes among preterm infants, making the Department of Pediatrics, School of Medicine, Stanford University, Palo risk/benefit balance of these antibiotic treatments uncertain. Gestational Alto, California age is the strongest single predictor of EOS, and the majority of preterm This document is copyrighted and is property of the American Academy of Pediatrics and its Board of Directors. All authors have births occur in the setting of other factors associated with risk of EOS, filed conflict of interest statements with the American Academy of Pediatrics. Any conflicts have been resolved through a process making it difficult to apply risk stratification strategies to preterm infants. -
© Iccat, 2007
A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo -
Seafood Watch Seafood Report
Seafood Watch Seafood Report Sharks and Dogfish With a focus on: Blacktip shark (Carcharhinus limbatus) Common thresher shark (Alopias vulpinus) Dusky smoothhound/smooth dogfish (Mustelus canis) Sandbar shark (Carcharhinus plumbeus) Shortfin mako shark (Isurus oxyrinchus) Spiny dogfish (Squalus acanthias) © Monterey Bay Aquarium Final Report December 21, 2005 Stock Status Update June 9, 2011 Santi Roberts Fisheries Research Analyst Monterey Bay Aquarium SeafoodWatch® Sharks & DogfishReport June 9, 2010 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives,” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. -
4 Thresher Shark, Alopias Vulpinus
4 Thresher Shark, Alopias vulpinus Thresher shark, Alopias vulpinus. Photo credit: Dale Sweetnam. History of the Fishery The common thresher shark, Alopias vulpinus, is the most common commercially landed shark in California. They are primarily caught using large mesh drift gill nets and hook and line gear, but are also caught incidentally with small mesh gill nets and harpoon. Prior to 1977, all sharks were reported in one market category and not separated by species, and it is assumed threshers were caught as bycatch in gears at levels similar or greater than today. The first significant fishery for thresher sharks began the late 1970s to early 1980s when drift gill net fishers began to target them close to the southern California coastline. The fishery expanded rapidly and, because of overfishing concerns, the California Department of Fish and Game (Department) as mandated by the State Legislature began an observer program, monitored landings and implemented a logbook program. A limited entry permit program for drift gill net gear was initiated in 1982, with permits issued to fishers rather than boats to prevent false inflation in value. The drift gill net fishery for thresher sharks peaked in 1981 when 113 Status of the Fisheries Report 2008 4-1 drift gill net boats landed nearly 600 tons (544 metric tons). However, total landings using all gears were highest the following year with a total of more than 1700 tons (1542 metric tons) taken by all gears (Figure 4-1). 2000 1500 1000 Landings (short tons) (short Landings 500 0 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 Year Figure 4-1. -
Sustainability of Threatened Species Displayed in Public Aquaria, with a Case Study of Australian 1 Sharks and Rays 2 3 Kathryn
https://link.springer.com/article/10.1007/s11160-017-9501-2 1 PREPRINT 1 Sustainability of threatened species displayed in public aquaria, with a case study of Australian 2 sharks and rays 3 4 Kathryn A. Buckley • David A. Crook • Richard D. Pillans • Liam Smith • Peter M. Kyne 5 6 7 K.A. Buckley • D.A. Crook • P.M. Kyne 8 Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, 9 Australia 10 R.D. Pillans 11 CSIRO Oceans and Atmosphere, 41 Boggo Road, Dutton Park, QLD 4102, Australia 12 L. Smith 13 BehaviourWorks Australia, Monash Sustainable Development Institute, Building 74, Monash University, 14 Wellington Road, Clayton, VIC 3168, Australia 15 Corresponding author: K.A. Buckley, Research Institute for the Environment and Livelihoods, Charles Darwin 16 University, Darwin, NT 0909, Australia; Telephone: +61 4 2917 4554; Fax: +61 8 8946 7720; e-mail: 17 [email protected] 18 https://www.nespmarine.edu.au/document/sustainability-threatened-species-displayed-public-aquaria-case-study-australian-sharks-and https://link.springer.com/article/10.1007/s11160-017-9501-2 2 PREPRINT 19 Abstract Zoos and public aquaria exhibit numerous threatened species globally, and in the modern context of 20 these institutions as conservation hubs, it is crucial that displays are ecologically sustainable. Elasmobranchs 21 (sharks and rays) are of particular conservation concern and a higher proportion of threatened species are 22 exhibited than any other assessed vertebrate group. Many of these lack sustainable captive populations, so 23 comprehensive assessments of sustainability may be needed to support the management of future harvests and 24 safeguard wild populations. -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Identifying Lethal Temperatures Targeting Immature Life Stage Control of Spotted Wing Drosophila
AGRICULTURAL RESEARCH FOUNDATION FINAL REPORT FUNDING CYCLE 2015 – 2017 TITLE: Identifying Lethal Temperatures Targeting Immature Life Stage Control of Spotted Wing Drosophila RESEARCH LEADER: Vaughn Walton COOPERATORS: Daniel Dalton, Riki York SUMMARY: Survival of spotted wing drosophila (D. suzukii, SWD) larvae to adulthood was evaluated after exposure to temperatures ranging 29-49°C in a laboratory thermal gradient bench for 60 minutes. Vials filled with pre-made fly diet up to approximately 1.5 cm from the bottom were used as oviposition media inside the gradient wells. Forty-three vials were prepared each day for 4 consecutive days. Five adult females were placed in each of 36 vials for 24 hours for oviposition to occur, seven vials were held as controls without flies. Upon removal, adult flies were placed in ethanol. Four ages were tested between 1-4-day old egg/larvae (i.e. 1 day old, 2 days old, 3 days old, and four days old). Sample vials were examined for oviposition success. Immature flies exposed temperatures of 32-35°C had the highest survival to adulthood. Above 38°C survival to adulthood with no survival at 41°C and 49°C, and a few surviving to adulthood under 45°C. An additional trial was conducted to evaluate the potential for thermal conditioning to improve larval survival at higher temperatures. For this study, four-day-old larvae were subject to 30, 60, and 90 minutes at 35°C, then allowed to cool to room temperature (22°C) for 60 minutes prior to placement in the thermal bench. These trials were used to determine how heat may reduce successful development to adulthood, leading to better management practices in the field.